Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Bioorg Chem ; 139: 106747, 2023 10.
Article in English | MEDLINE | ID: mdl-37531819

ABSTRACT

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.


Subject(s)
Ceramides , Neutral Ceramidase , Catalytic Domain , Ceramides/chemistry , Neutral Ceramidase/antagonists & inhibitors , Sphingosine/chemistry
2.
Nat Chem Biol ; 16(10): 1052-1061, 2020 10.
Article in English | MEDLINE | ID: mdl-32690944

ABSTRACT

Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) is a promising strategy to correct defects in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. However, no pharmacologic activators of this pathway identified to date are suitable for ER proteostasis remodeling through selective activation of IRE1/XBP1s signaling. Here, we use high-throughput screening to identify non-toxic compounds that induce ER proteostasis remodeling through IRE1/XBP1s activation. We employ transcriptional profiling to stringently confirm that our prioritized compounds selectively activate IRE1/XBP1s signaling without activating other cellular stress-responsive signaling pathways. Furthermore, we demonstrate that our compounds improve ER proteostasis of destabilized variants of amyloid precursor protein (APP) through an IRE1-dependent mechanism and reduce APP-associated mitochondrial toxicity in cellular models. These results establish highly selective IRE1/XBP1s activating compounds that can be widely employed to define the functional importance of IRE1/XBP1s activity for ER proteostasis regulation in the context of health and disease.


Subject(s)
Endoplasmic Reticulum/physiology , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteostasis/drug effects , Unfolded Protein Response/drug effects , X-Box Binding Protein 1/metabolism , Cellular Reprogramming Techniques , Drug Discovery/methods , Endoplasmic Reticulum/drug effects , Endoribonucleases/genetics , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Protein Serine-Threonine Kinases/genetics , Protein Unfolding , X-Box Binding Protein 1/genetics
3.
J Neurosci ; 40(41): 7980-7994, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32887745

ABSTRACT

SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. De novo loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communication disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glutamatergic transmission. However, studies to date have been limited to mouse and rat neurons. Therefore, it remains unknown how SYNGAP1 loss of function impacts the development and function of human neurons. To address this, we used CRISPR/Cas9 technology to ablate SYNGAP1 protein expression in neurons derived from a commercially available induced pluripotent stem cell line (hiPSC) obtained from a human female donor. Reducing SynGAP protein expression in developing hiPSC-derived neurons enhanced dendritic morphogenesis, leading to larger neurons compared with those derived from isogenic controls. Consistent with larger dendritic fields, we also observed a greater number of morphologically defined excitatory synapses in cultures containing these neurons. Moreover, neurons with reduced SynGAP protein had stronger excitatory synapses and expressed synaptic activity earlier in development. Finally, distributed network spiking activity appeared earlier, was substantially elevated, and exhibited greater bursting behavior in SYNGAP1 null neurons. We conclude that SYNGAP1 regulates the postmitotic maturation of human neurons made from hiPSCs, which influences how activity develops within nascent neural networks. Alterations to this fundamental neurodevelopmental process may contribute to the etiology of SYNGAP1-related disorders.SIGNIFICANCE STATEMENTSYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. While this gene is well studied in rodent neurons, its function in human neurons remains unknown. We used CRISPR/Cas9 technology to disrupt SYNGAP1 protein expression in neurons derived from an induced pluripotent stem cell line. We found that induced neurons lacking SynGAP expression exhibited accelerated dendritic morphogenesis, increased accumulation of postsynaptic markers, early expression of synapse activity, enhanced excitatory synaptic strength, and early onset of neural network activity. We conclude that SYNGAP1 regulates the postmitotic differentiation rate of developing human neurons and disrupting this process impacts the function of nascent neural networks. These altered developmental processes may contribute to the etiology of SYNGAP1 disorders.


Subject(s)
Dendrites/physiology , Nerve Net/physiology , Nervous System/growth & development , Synapses/physiology , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/physiology , CRISPR-Cas Systems , Cell Differentiation/genetics , Cell Size , Cells, Cultured , Excitatory Postsynaptic Potentials/genetics , Female , Gene Deletion , Humans , Neurodevelopmental Disorders/genetics , Pluripotent Stem Cells
4.
Cell Physiol Biochem ; 55(3): 265-276, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34014051

ABSTRACT

BACKGROUND/AIMS: Despite recent advances in melanoma drug discovery, the average overall survival of patients with late-stage metastatic melanoma is approximately 3 years, suggesting a need for new approaches and melanoma therapeutic targets. Previously we identified heterogeneous nuclear ribonucleoprotein H2 as a potential target of anti-melanoma compound 2155-14 (Palrasu et al., Cell Physiol Biochem 2019;53:656-686). In the present study, we endeavored to develop an assay to enable a high throughput screening campaign to identify drug-like molecules acting via down regulation of heterogeneous nuclear ribonucleoprotein H2 that can be used for melanoma therapy and research. METHODS: We established a cell-based platform using metastatic melanoma cell line WM266-4 expressing hnRNPH2 conjugated with green fluorescent protein to enable assay development and screening. High Content Screening assay was developed and validated in 384 well plate format, followed by miniaturization to 1,536 well plate format. RESULTS: All plate-based QC parameters were acceptable: %CV = 6.7±0.3, S/B = 21±2.1, Z' = 0.75±0.04. Pilot screen of FDA-approved drug library (n=1,400 compounds) demonstrated hit rate of 0.5%. Two compounds demonstrated pharmacological response and were authenticated by western blot analysis. CONCLUSION: We developed a highly robust HTS-amenable high content screening assay capable of monitoring down regulation of hnRNPH2. This assay is thus capable of identifying authentic down regulators of hnRNPH1 and 2 in a large compound collection and, therefore, is amenable to a large-scale screening effort.


Subject(s)
Down-Regulation , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/biosynthesis , Melanoma/metabolism , Neoplasm Proteins/biosynthesis , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Humans , Melanoma/genetics , Melanoma/pathology , Microscopy, Fluorescence , Neoplasm Proteins/genetics
5.
Bioorg Med Chem ; 42: 116246, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34130216

ABSTRACT

We report the discovery of a fluorescent small molecule probe. This probe exhibits an emission increase in the presence of the oncoprotein MYC that can be attenuated by a competing inhibitor. Hydrogen-deuterium exchange mass spectrometry analysis, rationalized by induced-fit docking, suggests it binds to the "coiled-coil" region of the leucine zipper domain. Point mutations of this site produced functional MYC constructs resistant to inhibition in an oncogenic transformation assay by compounds that displace the probe. Utilizing this probe, we have developed a high-throughput assay to identify MYC inhibitor scaffolds. Screening of a diversity library (N = 1408, 384-well) and a library of pharmacologically active compounds (N = 1280, 1536-well) yielded molecules with greater drug-like properties than the probe. One lead is a potent inhibitor of oncogenic transformation and is specific for MYC relative to resistant mutants and transformation-inducing oncogenes. This method is simple, inexpensive, and does not require protein modification, DNA binding, or the dimer partner MAX. This assay presents an opportunity for MYC inhibition researchers to discover unique scaffolds.


Subject(s)
Drug Development , Fluorescent Dyes/pharmacology , High-Throughput Screening Assays , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Binding Sites/drug effects , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Molecular Structure , Proto-Oncogene Proteins c-myc/metabolism , Structure-Activity Relationship
6.
Biochem J ; 475(18): 2941-2953, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30068530

ABSTRACT

A series of compounds formerly identified by high-throughput screening was studied for their ability to serve as pharmacoperones for the vasopressin type 2 receptor (V2R) mutant L83Q, which is known to cause nephrogenic diabetes insipidus (NDI). Three compounds were particularly effective in rerouting the mutant receptor in a concentration-dependent manner, were neither agonists nor antagonists, and displayed low cellular toxicity. Compound 1 was most effective and can be used as a molecular probe for future studies of how small molecules may affect NDI caused by mutant V2R. These compounds, however, failed to rescue the V2R Y128S mutant, indicating that the compounds described may not work in the rescue of all known mutants of V2R. Taken collectively, the present studies have now identified a promising lead compound that could function as a pharmacoperone to correct the trafficking defect of the NDI-associated mutant V2R L83Q and thus has the therapeutic potential for the treatment of NDI.


Subject(s)
Molecular Chaperones/pharmacology , Molecular Probes/pharmacology , Mutation, Missense , Receptors, Vasopressin/metabolism , Amino Acid Substitution , Diabetes Insipidus, Nephrogenic/drug therapy , Diabetes Insipidus, Nephrogenic/genetics , Diabetes Insipidus, Nephrogenic/metabolism , HeLa Cells , Humans , Molecular Chaperones/chemistry , Receptors, Vasopressin/chemistry , Receptors, Vasopressin/genetics
7.
Antimicrob Agents Chemother ; 60(4): 2195-208, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26810656

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development.


Subject(s)
Anti-HIV Agents/pharmacology , Azoles/pharmacology , Capsid Proteins/antagonists & inhibitors , Capsid/drug effects , HIV-1/drug effects , Organoselenium Compounds/pharmacology , Small Molecule Libraries/pharmacology , Anti-HIV Agents/chemistry , Azoles/chemistry , Binding Sites , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Databases, Pharmaceutical , Fluorescence Resonance Energy Transfer , HIV-1/physiology , HeLa Cells , High-Throughput Screening Assays , Humans , Isoindoles , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Moloney murine leukemia virus/drug effects , Moloney murine leukemia virus/physiology , Organoselenium Compounds/chemistry , Protein Binding , Protein Domains , Protein Multimerization/drug effects , Protein Structure, Secondary , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/physiology , Small Molecule Libraries/chemistry , Virus Assembly/drug effects , Virus Assembly/physiology , Virus Replication/drug effects
8.
Biopolymers ; 102(5): 396-406, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25048711

ABSTRACT

Zinc metalloproteinases meprin α and meprin ß are implicated in a variety of diseases, such as fibrosis, inflammation and neurodegeneration, however, there are no selective small molecule inhibitors that would allow to study their role in these processes. To address this lack of molecular tools, we have developed high throughput screening assays to enable discovery of inhibitors of both meprin α and meprin ß and screened a collection of well characterized pharmaceutical agents (library of pharmaceutically active compounds, n = 1,280 compounds). Two compounds (PPNDS, NF449) confirmed their activity and selectivity for meprin ß. Kinetic studies revealed competitive (PPNDS) and mixed competitive/noncompetitive (NF449) inhibition mechanisms suggesting that binding occurs in meprin ß active site. Both PPNDS and NF449 exhibited low nanomolar IC50 and Ki values making them the most potent and selective inhibitors of meprin ß reported to the date. These results demonstrate the ability of meprin α and ß assays to identify selective compounds and discard artifacts of primary screening.


Subject(s)
High-Throughput Screening Assays/methods , Matrix Metalloproteinase Inhibitors/analysis , Matrix Metalloproteinase Inhibitors/pharmacology , Metalloendopeptidases/antagonists & inhibitors , Biological Assay , Databases, Chemical , Humans , Metalloendopeptidases/chemistry , Pilot Projects , Reproducibility of Results , Substrate Specificity/drug effects , Time Factors
9.
SLAS Discov ; 29(3): 100148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38677875

ABSTRACT

Fluorescence-based potassium channel assays are typically run on expensive, hard to obtain, fluorescence imaging kinetic plate readers that are uncommon in most laboratories. Here we describe the use of the Brilliant Thallium Snapshot assay to conduct an endpoint potassium channel assay, so that it can be used across multiple plate reader platforms that are more common in many labs. These methods will allow users to identify modulators of potassium channels. For this work, we have taken a kinetic mode Molecular Devices FLIPR based protocol and adapted it to be utilized on endpoint plate readers, such as the BMG Labtech PHERAstar, to identify activators of GIRK channels in CHO cells. We demonstrate that both plate readers are functionally competent at generating excellent Z' values which makes them ideally suited to finding corollary hits from the Sigma LOPAC 1,280 screening collection. Importantly, this assay has also been validated using a high content reader, demonstrating the possibility of spatially resolving signals from individual cells within a mixed cell population. The compendium of these results shows the flexibility, accessibility and functionality of endpoint-compatible potassium channel assay readouts on more common plate readers.


Subject(s)
Cricetulus , CHO Cells , Animals , Kinetics , Potassium Channels/metabolism , Humans , Biological Assay/methods , Microscopy/methods , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , High-Throughput Screening Assays/methods
10.
SLAS Discov ; 29(3): 100141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218316

ABSTRACT

High Throughput Screening (HTS) with 3D cell models is possible thanks to the recent progress and development in 3D cell culture technologies. Results from multiple studies have demonstrated different drug responses between 2D and 3D cell culture. It is now widely accepted that 3D cell models more accurately represent the physiologic conditions of tumors over 2D cell models. However, there is still a need for more accurate tests that are scalable and better imitate the complex conditions in living tissues. Here, we describe ultrahigh throughput 3D methods of drug response profiling in patient derived primary tumors including melanoma as well as renal cell carcinoma that were tested against the NCI oncologic set of FDA approved drugs. We also tested their autologous patient derived cancer associated fibroblasts, varied the in-vitro conditions using matrix vs matrix free methods and completed this in both 3D vs 2D rendered cancer cells. The result indicates a heterologous response to the drugs based on their genetic background, but not on their maintenance condition. Here, we present the methods and supporting results of the HTS efforts using these 3D of organoids derived from patients. This demonstrated the possibility of using patient derived 3D cells for HTS and expands on our screening capabilities for testing other types of cancer using clinically approved anti-cancer agents to find drugs for potential off label use.


Subject(s)
Antineoplastic Agents , Carcinoma, Renal Cell , Drug Screening Assays, Antitumor , High-Throughput Screening Assays , Melanoma , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , High-Throughput Screening Assays/methods , Melanoma/drug therapy , Melanoma/pathology , Drug Screening Assays, Antitumor/methods , Antineoplastic Agents/pharmacology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Cell Culture Techniques/methods , Cell Line, Tumor , Cell Culture Techniques, Three Dimensional/methods , Drug Evaluation, Preclinical/methods
11.
SLAS Discov ; 29(6): 100178, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159824

ABSTRACT

Emerging highly pathogenic viruses can pose profound impacts on global health, the economy, and society. To meet that challenge, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) centers for early-stage identification and validation of novel antiviral drug candidates against viruses with pandemic potential. As part of this initiative, we established paired entry assays that simultaneously screen for inhibitors specifically targeting SARS-CoV-2 (SARS2), Lassa virus (LASV) and Machupo virus (MACV) entry. To do so we employed a dual pseudotyped virus (PV) infection system allowing us to screen ∼650,000 compounds efficiently and cost-effectively. Adaptation of these paired assays into 1536 well-plate format for ultra-high throughput screening (uHTS) resulted in the largest screening ever conducted in our facility, with over 2.4 million wells completed. The paired infection system allowed us to detect two PV infections simultaneously: LASV + MACV, MACV + SARS2, and SARS2 + LASV. Each PV contains a different luciferase reporter gene which enabled us to measure the infection of each PV exclusively, albeit in the same well. Each PV was screened at least twice utilizing different reporters, which allowed us to select the inhibitors specific to a particular PV and to exclude those that hit off targets, including cellular components or the reporter proteins. All assays were robust with an average Z' value ranging from 0.5 to 0.8. The primary screening of ∼650,000 compounds resulted in 1812, 1506, and 2586 unique hits for LASV, MACV, and SARS2, respectively. The confirmation screening narrowed this list further to 60, 40, and 90 compounds that are unique to LASV, MACV, and SARS2, respectively. Of these compounds, 8, 35, and 50 compounds showed IC50 value < 10 µM, some of which have much greater potency and excellent antiviral activity profiles specific to LASV, MACV, and SARS2, and none are cytotoxic. These selected compounds are currently being studied for their mechanism of action and to improve their specificity and potency through chemical modification.

12.
SLAS Discov ; 29(5): 100164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796112

ABSTRACT

Zika virus (ZIKV) continues to pose a significant global public health threat, with recurring regional outbreaks and potential for pandemic spread. Despite often being asymptomatic, ZIKV infections can have severe consequences, including neurological disorders and congenital abnormalities. Unfortunately, there are currently no approved vaccines or antiviral drugs for the prevention or treatment of ZIKV. One promising target for drug development is the ZIKV NS2B-NS3 protease due to its crucial role in the virus life cycle. In this study, we established a cell-based ZIKV protease inhibition assay designed for high-throughput screening (HTS). Our assay relies on the ZIKV protease's ability to cleave a cyclised firefly luciferase fused to a natural cleavage sequence between NS2B and NS3 protease within living cells. We evaluated the performance of our assay in HTS setting using the pharmacologic controls (JNJ-40418677 and MK-591) and by screening a Library of Pharmacologically Active Compounds (LOPAC). The results confirmed the feasibility of our assay for compound library screening to identify potential ZIKV protease inhibitors.


Subject(s)
Antiviral Agents , Drug Discovery , High-Throughput Screening Assays , Protease Inhibitors , Zika Virus Infection , Zika Virus , Zika Virus/drug effects , High-Throughput Screening Assays/methods , Protease Inhibitors/pharmacology , Humans , Antiviral Agents/pharmacology , Drug Discovery/methods , Zika Virus Infection/virology , Zika Virus Infection/drug therapy , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Animals , Viral Proteases , Nucleoside-Triphosphatase , DEAD-box RNA Helicases
13.
J Med Chem ; 67(3): 1949-1960, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38252624

ABSTRACT

The suppressor of T cell receptor signaling (Sts) proteins are negative regulators of immune signaling. Genetic inactivation of these proteins leads to significant resistance to infection. From a 590,000 compound high-throughput screen, we identified the 2-(1H)-quinolinone derivative, rebamipide, as a putative inhibitor of Sts phosphatase activity. Rebamipide, and a small library of derivatives, are competitive, selective inhibitors of Sts-1 with IC50 values from low to submicromolar. SAR analysis indicates that the quinolinone, the acid, and the amide moieties are all essential for activity. A crystal structure confirmed the SAR and reveals key interactions between this class of compound and the protein. Although rebamipide has poor cell permeability, we demonstrated that a liposomal preparation can inactivate the phosphatase activity of Sts-1 in cells. These studies demonstrate that Sts-1 enzyme activity can be pharmacologically inactivated and provide foundational tools and insights for the development of immune-enhancing therapies that target the Sts proteins.


Subject(s)
Alanine/analogs & derivatives , Histidine , Quinolones , Receptors, Antigen, T-Cell , Quinolones/pharmacology , Phosphoric Monoester Hydrolases/chemistry , Enzyme Inhibitors
14.
Nat Struct Mol Biol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714890

ABSTRACT

Diseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases-for example, the parasitic blood fluke infection schistosomiasis-are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus Fasciola because of a single amino acid change within the target of PZQ, a transient receptor potential ion channel in the melastatin family (TRPMPZQ), in Fasciola species. Here, we identify benzamidoquinazolinone analogs that are active against Fasciola TRPMPZQ. Structure-activity studies define an optimized ligand (BZQ) that caused protracted paralysis and tegumental damage to these liver flukes. BZQ also retained activity against Schistosoma mansoni comparable to PZQ and was active against TRPMPZQ orthologs in all profiled species of parasitic fluke. This broad-spectrum activity manifests as BZQ adopts a pose within the binding pocket of TRPMPZQ that is dependent on a ubiquitously conserved residue. BZQ therefore acts as a universal activator of trematode TRPMPZQ and a first-in-class, broad-spectrum flukicide.

15.
SLAS Discov ; : 100180, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173831

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for nearly 7 million deaths worldwide since its outbreak in late 2019. Even with the rapid development and production of vaccines and intensive research, there is still a huge need for specific anti-viral drugs that address the rapidly arising new variants. To address this concern, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) Centers, tasked with exploring approaches to target pathogens with pandemic potential, including SARS-CoV-2. In this study, we sought inhibitors of SARS-CoV2 non-structural protein 13 (nsP13) as potential antivirals, first developing a HTS-compatible assay to measure SARS-CoV2 nsP13 helicase activity. Here we present our effort in implementing the assay in a 1,536 well-plate format and in identifying nsP13 inhibitor hit compounds from a ∼650,000 compound library. The primary screen was robust (average Z' = 0.86 ± 0.05) and resulted in 7,009 primary hits. 1,763 of these compounds upon repeated retests were further confirmed, showing consistent inhibition. Following in-silico analysis, an additional orthogonal assay and titration assays, we identified 674 compounds with IC50 <10 µM. We confirmed activity of independent compound batches from de novo powders while also incorporating multiple counterscreen assays. Our study highlights the potential of this assay for use on HTS platforms to discover novel compounds inhibiting SARS-CoV2 nsP13, which merit further development as an effective SARS-CoV2 antiviral.

16.
SLAS Discov ; : 100181, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173830

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, SARS2) is responsible for the COVID-19 pandemic and infections that continue to affect the lives of millions of people worldwide, especially those who are older and/or immunocompromised. The SARS2 main protease enzyme, Mpro (also called 3C-like protease, 3CLpro), is a bona fide drug target as evidenced by potent inhibition with nirmatrelvir and ensitrelvir, the active components of the drugs Paxlovid and Xocova, respectively. However, the existence of nirmatrelvir and ensitrelvir-resistant isolates underscores the need to develop next-generation drugs with different resistance profiles and/or distinct mechanisms of action. Here, we report the results of a high-throughput screen of 649,568 compounds using a cellular gain-of-signal assay. In this assay, Mpro inhibits expression of a luciferase reporter, and 8,777 small molecules were considered hits by causing a gain in luciferase activity 3x SD above the sample field activity (6.8% gain-of-signal relative to 100 µM GC376). Single concentration and dose-response gain-of-signal experiments confirmed 3,522/8,762 compounds as candidate inhibitors. In parallel, all initial high-throughput screening hits were tested in a peptide cleavage assay with purified Mpro and only 39/8,762 showed inhibition. Importantly, 19/39 compounds (49%) re-tested positive in both SARS2 assays, including two previously reported Mpro inhibitors, demonstrating the efficacy of the overall screening strategy. This approach led to the rediscovery of known Mpro inhibitors such as calpain inhibitor II, as well as to the discovery of novel compounds that provide chemical information for future drug development efforts.

17.
SLAS Discov ; 28(3): 88-94, 2023 04.
Article in English | MEDLINE | ID: mdl-36842668

ABSTRACT

Deficiencies in brain-derived neurotrophic factor (BDNF) have been linked to several brain disorders, making compounds that can boost neuronal BDNF synthesis attractive as potential therapeutics. However, a sensitive and quantitative BDNF assay for high-throughput screening (HTS) is still missing. Here we report the generation of a new mouse Bdnf allele, BdnfNLuc, in which the sequence encoding nano luciferase (NLuc) is inserted into the Bdnf locus immediately before the stop codon so that the allele will produce a BDNF-NLuc fusion protein. BDNF-NLuc protein appears to function like BDNF as BdnfNLuc/NLuc homozygous mice grew and behaved almost normally. We were able to establish and optimize cultures of cortical and hippocampal BdnfNLuc/+ neurons isolated from mouse embryos in 384-well plates. We used the cultures as a phenotypic assay to detect the ability of 10 mM KCl to stimulate BDNF synthesis and achieved a reproducible Z' factor > 0.50 for the assay, a measure considered suitable for HTS. We successfully scaled up the assay to screen the 1280-compound LOPAC library (Library of Pharmacologically Active Compounds). The screen identified several BDNF-boosting compounds, one of which is Bay K8644, a L-type voltage-gated calcium channel (L-VGCC) agonist, which was previously shown to stimulate BDNF synthesis. These results indicate that our phenotypic neuronal assay is ready for HTS to identify novel BDNF-boosting compounds.


Subject(s)
Brain-Derived Neurotrophic Factor , High-Throughput Screening Assays , Mice , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Neurons/metabolism , Calcium Channels, L-Type/metabolism , Brain/metabolism
18.
SLAS Discov ; 28(3): 95-101, 2023 04.
Article in English | MEDLINE | ID: mdl-36646172

ABSTRACT

The SARS coronavirus 2 (SARS-CoV-2) pandemic remains a major problem in many parts of the world and infection rates remain at extremely high levels. This high prevalence drives the continued emergence of new variants, and possibly ones that are more vaccine-resistant and that can drive infections even in highly vaccinated populations. The high rate of variant evolution makes clear the need for new therapeutics that can be clinically applied to minimize or eliminate the effects of COVID-19. With a hurdle of 10 years, on average, for first in class small molecule therapeutics to achieve FDA approval, the fastest way to identify therapeutics is by drug repurposing. To this end, we developed a high throughput cell-based screen that incorporates the essential viral 3C-like protease and its peptide cleavage site into a luciferase complementation assay to evaluate the efficacy of known drugs encompassing approximately 15,000 clinical-stage or FDA-approved small molecules. Confirmed inhibitors were also tested to determine their cytotoxic properties. Medicinal chemistry efforts to optimize the hits identified Tranilast as a potential lead. Here, we report the rapid screening and identification of potentially relevant drugs that exhibit selective inhibition of the SARS-CoV-2 viral 3C-like protease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , High-Throughput Screening Assays , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/chemistry
19.
SLAS Discov ; 28(2): 20-28, 2023 03.
Article in English | MEDLINE | ID: mdl-36681384

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for ∼84% of all lung cancer cases. NSCLC remains one of the leading causes of cancer-associated death, with a 5-year survival rate less than 25%. This type of cancer begins with healthy cells that change and start growing out of control, leading to the formation of lesions or tumors. Understanding the dynamics of how the tumor microenvironment promotes cancer initiation and progression that leads to cancer metastasis is crucial to help identify new molecular therapies. 3D primary cell tumor models have received renewed recognition due to their ability to better mimic the complexity of in vivo tumors and as a potential bridge between traditional 2D culture and in vivo studies. Vast improvements in 3D cell culture technologies make them much more cost effective and efficient largely because of the use of a cell-repellent surfaces and a novel angle plate adaptor technology. To exploit this technology, we accessed the Natural Products Library (NPL) at UF Scripps, which consists of crude extracts, partially purified fractions, and pure natural products (NPs). NPs generally are not very well represented in most drug discovery libraries and thus provide new insights to discover leads that could potentially emerge as novel molecular therapies. Herein we describe how we combined these technologies for 3D screening in 1536 well format using a panel of ten NSCLC cells lines (5 wild type and 5 mutant) against ∼1280 selected members of the NPL. After further evaluation, the selected active hits were prioritized to be screened against all 10 NSCLC cell lines as concentration response curves to determine the efficacy and selectivity of the compounds between wild type and mutant 3D cell models. Here, we demonstrate the methods needed for automated 3D screening using microbial NPs, exemplified by crude extracts, partially purified fractions, and pure NPs, that may lead to future use targeting human cancer.


Subject(s)
Antineoplastic Agents , Biological Products , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Biological Products/pharmacology , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Spheroids, Cellular , Early Detection of Cancer , Tumor Microenvironment
20.
bioRxiv ; 2023 May 31.
Article in English | MEDLINE | ID: mdl-37398312

ABSTRACT

Pancreatic cancer is one of the deadliest diseases in human malignancies. Among total pancreatic cancer patients, ∼10% of patients are categorized as familial pancreatic cancer (FPC) patients, carrying germline mutations of the genes involved in DNA repair pathways ( e.g., BRCA2 ). Personalized medicine approaches tailored toward patients' mutations would improve patients' outcome. To identify novel vulnerabilities of BRCA2 -deficient pancreatic cancer, we generated isogenic Brca2 -deficient murine pancreatic cancer cell lines and performed high-throughput drug screens. High-throughput drug screening revealed that Brca2 -deficient cells are sensitive to Bromodomain and Extraterminal Motif (BET) inhibitors, suggesting that BET inhibition might be a potential therapeutic approach. We found that BRCA2 deficiency increased autophagic flux, which was further enhanced by BET inhibition in Brca2 -deficient pancreatic cancer cells, resulting in autophagy-dependent cell death. Our data suggests that BET inhibition can be a novel therapeutic strategy for BRCA2 -deficient pancreatic cancer.

SELECTION OF CITATIONS
SEARCH DETAIL