Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Nature ; 607(7920): 687-691, 2022 07.
Article in English | MEDLINE | ID: mdl-35896650

ABSTRACT

Device-independent quantum key distribution (DIQKD) enables the generation of secret keys over an untrusted channel using uncharacterized and potentially untrusted devices1-9. The proper and secure functioning of the devices can be certified by a statistical test using a Bell inequality10-12. This test originates from the foundations of quantum physics and also ensures robustness against implementation loopholes13, thereby leaving only the integrity of the users' locations to be guaranteed by other means. The realization of DIQKD, however, is extremely challenging-mainly because it is difficult to establish high-quality entangled states between two remote locations with high detection efficiency. Here we present an experimental system that enables for DIQKD between two distant users. The experiment is based on the generation and analysis of event-ready entanglement between two independently trapped single rubidium atoms located in buildings 400 metre apart14. By achieving an entanglement fidelity of [Formula: see text] and implementing a DIQKD protocol with random key basis15, we observe a significant violation of a Bell inequality of S = 2.578(75)-above the classical limit of 2-and a quantum bit error rate of only 0.078(9). For the protocol, this results in a secret key rate of 0.07 bits per entanglement generation event in the asymptotic limit, and thus demonstrates the system's capability to generate secret keys. Our results of secure key exchange with potentially untrusted devices pave the way to the ultimate form of quantum secure communications in future quantum networks.

2.
Phys Rev Lett ; 130(16): 160201, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37154660

ABSTRACT

We introduce a family of entanglement witnesses for continuous variable systems, which rely on the sole assumption that their dynamics is that of coupled harmonic oscillators at the time of the test. Entanglement is inferred from the Tsirelson nonclassicality test on one of the normal modes, without any knowledge about the state of the other mode. In each round, the protocol requires measuring only the sign of one coordinate (e.g., position) at one among several times. This dynamic-based entanglement witness is more akin to a Bell inequality than to an uncertainty relation: in particular, it does not admit false positives from classical theory. Our criterion detects non-Gaussian states, some of which are missed by other criteria.

3.
Phys Rev Lett ; 131(19): 197103, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38000405

ABSTRACT

The interplay between thermodynamics and information theory has a long history, but its quantitative manifestations are still being explored. We import tools from expected utility theory from economics into stochastic thermodynamics. We prove that, in a process obeying Crooks's fluctuation relations, every α Rényi divergence between the forward process and its reverse has the operational meaning of the "certainty equivalent" of dissipated work (or, more generally, of entropy production) for a player with risk aversion r=α-1. The two known cases α=1 and α=∞ are recovered and receive the new interpretation of being associated with a risk-neutral and an extreme risk-averse player, respectively. Among the new results, the condition for α=0 describes the behavior of a risk-seeking player willing to bet on the transient violations of the second law. Our approach further leads to a generalized Jarzynski equality, and generalizes to a broader class of statistical divergences.

4.
Phys Rev Lett ; 124(10): 100603, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32216402

ABSTRACT

We discuss a self-contained spin-boson model for a measurement-driven engine, in which a demon generates work from thermal excitations of a quantum spin via measurement and feedback control. Instead of granting it full direct access to the spin state and to Landauer's erasure strokes for optimal performance, we restrict this demon's action to pointer measurements, i.e., random or continuous interrogations of a damped mechanical oscillator that assumes macroscopically distinct positions depending on the spin state. The engine can reach simultaneously the power and efficiency benchmarks and operate in temperature regimes where quantum Otto engines would fail.

5.
Phys Rev Lett ; 123(18): 180602, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31763916

ABSTRACT

We introduce a general framework for thermometry based on collisional models, where ancillas probe the temperature of the environment through an intermediary system. This allows for the generation of correlated ancillas even if they are initially independent. Using tools from parameter estimation theory, we show through a minimal qubit model that individual ancillas can already outperform the thermal Cramer-Rao bound. In addition, due to the steady-state nature of our model, when measured collectively the ancillas always exhibit superlinear scalings of the Fisher information. This means that even collective measurements on pairs of ancillas will already lead to an advantage. As we find in our qubit model, such a feature may be particularly valuable for weak system-ancilla interactions. Our approach sets forth the notion of metrology in a sequential interactions setting, and may inspire further advances in quantum thermometry.

6.
Phys Rev Lett ; 121(15): 150402, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30362792

ABSTRACT

We present a violation of the Clauser-Horne-Shimony-Holt inequality without the fair sampling assumption with a continuously pumped photon pair source combined with two high efficiency superconducting detectors. Because of the continuous nature of the source, the choice of the duration of each measurement round effectively controls the average number of photon pairs participating in the Bell test. We observe a maximum violation of S=2.016 02(32) with an average number of pairs per round of ≈0.32, compatible with our system overall detection efficiencies. Systems that violate a Bell inequality are guaranteed to generate private randomness, with the randomness extraction rate depending on the observed violation and on the repetition rate of the Bell test. For our realization, the optimal rate of randomness generation is a compromise between the observed violation and the duration of each measurement round, with the latter realistically limited by the detection time jitter. Using an extractor composably secure against quantum adversary with quantum side information, we calculate an asymptotic rate of ≈1300 random bits/s. With an experimental run of 43 min, we generated 617 920 random bits, corresponding to ≈240 random bits/s.

7.
Phys Rev Lett ; 119(8): 080401, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28952755

ABSTRACT

The Hilbert space dimension of a quantum system is the most basic quantifier of its information content. Lower bounds on the dimension can be certified in a device-independent way, based only on observed statistics. We highlight that some such "dimension witnesses" capture only the presence of systems of some dimension, which in a sense is trivial, not the capacity of performing information processing on them, which is the point of experimental efforts to control high-dimensional systems. In order to capture this aspect, we introduce the notion of irreducible dimension of a quantum behavior. This dimension can be certified, and we provide a witness for irreducible dimension four.

8.
Phys Rev Lett ; 117(25): 250503, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-28036222

ABSTRACT

We extend covert communication to the quantum regime by showing that covert quantum communication is possible over optical channels with noise arising either from the environment or from the sender's lab. In particular, we show that sequences of qubits can be transmitted covertly by using both a single photon and a coherent state encoding. We study the possibility of performing covert quantum key distribution (QKD) and show that positive key rates and covertness can be achieved simultaneously. Covert communication requires a secret key between the sender and receiver, which raises the problem of how this key can be regenerated covertly. We show that covert QKD consumes more secret bits than it can generate and propose instead a hybrid protocol for covert key regeneration that uses pseudorandom number generators (PRNGs) together with covert QKD to regenerate secret keys. The security of the new key is guaranteed by QKD while the security of the covert communication is at least as strong as the security of the PRNG.

9.
Nature ; 461(7267): 1101-4, 2009 Oct 22.
Article in English | MEDLINE | ID: mdl-19847260

ABSTRACT

Quantum physics has remarkable distinguishing characteristics. For example, it gives only probabilistic predictions (non-determinism) and does not allow copying of unknown states (no-cloning). Quantum correlations may be stronger than any classical ones, but information cannot be transmitted faster than light (no-signalling). However, these features do not uniquely define quantum physics. A broad class of theories exist that share such traits and allow even stronger (than quantum) correlations. Here we introduce the principle of 'information causality' and show that it is respected by classical and quantum physics but violated by all no-signalling theories with stronger than (the strongest) quantum correlations. The principle relates to the amount of information that an observer (Bob) can gain about a data set belonging to another observer (Alice), the contents of which are completely unknown to him. Using all his local resources (which may be correlated with her resources) and allowing classical communication from her, the amount of information that Bob can recover is bounded by the information volume (m) of the communication. Namely, if Alice communicates m bits to Bob, the total information obtainable by Bob cannot be greater than m. For m = 0, information causality reduces to the standard no-signalling principle. However, no-signalling theories with maximally strong correlations would allow Bob access to all the data in any m-bit subset of the whole data set held by Alice. If only one bit is sent by Alice (m = 1), this is tantamount to Bob's being able to access the value of any single bit of Alice's data (but not all of them). Information causality may therefore help to distinguish physical theories from non-physical ones. We suggest that information causality-a generalization of the no-signalling condition-might be one of the foundational properties of nature.

10.
Phys Rev Lett ; 113(4): 040401, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25105599

ABSTRACT

Self-testing refers to the fact that, in some quantum devices, both states and measurements can be assessed in a black-box scenario, on the sole basis of the observed statistics, i.e., without reference to any prior device calibration. Only a few examples of self-testing are known, and they just provide nontrivial assessment for devices performing unrealistically close to the ideal case. We overcome these difficulties by approaching self-testing with the semidefinite programing hierarchy for the characterization of quantum correlations. This allows us to improve dramatically the robustness of previous self-testing schemes; e.g., we show that a Clauser-Horne-Shimony-Holt violation larger than 2.57 certifies a singlet fidelity of more than 70%. In addition, the versatility of the tool brings about self-testing of hitherto impossible cases, such as the robust self-testing of nonmaximally entangled two-qutrit states in the Collins-Gisin-Linden-Massar-Popescu scenario.

11.
Phys Rev Lett ; 111(10): 103001, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-25166660

ABSTRACT

We investigate the interaction between a single atom and optical pulses in a coherent state with a controlled temporal envelope. In a comparison between a rising exponential and a square envelope, we show that the rising exponential envelope leads to a higher excitation probability for fixed low average photon numbers, in accordance with a time-reversed Weisskopf-Wigner model. We characterize the atomic transition dynamics for a wide range of the average photon numbers and are able to saturate the optical transition of a single atom with ≈50 photons in a pulse by a strong focusing technique.

12.
Phys Rev Lett ; 108(4): 040402, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22400815

ABSTRACT

We consider Bell tests involving bipartite states shared between three parties. We show that the simple inclusion of a third part may greatly simplify the measurement scenario (in terms of the number of measurement settings per part) and allows the identification of previously unknown nonlocal resources.

13.
Phys Rev Lett ; 109(18): 180401, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23215258

ABSTRACT

In this Letter, we compute an analogue of Tsirelson's bound for Hardy's test of nonlocality, that is, the maximum violation of locality constraints allowed by the quantum formalism, irrespective of the dimension of the system. The value is found to be the same as the one achievable already with two-qubit systems, and we show that only a very specific class of states can lead to such maximal value, thus highlighting Hardy's test as a device-independent self-test protocol for such states. By considering realistic constraints in Hardy's test, we also compute device-independent upper bounds on this violation and show that these bounds are saturated by two-qubit systems, thus showing that there is no advantage in using higher-dimensional systems in experimental implementations of such a test.

14.
Phys Rev Lett ; 109(16): 160404, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23350071

ABSTRACT

With the advent of quantum information, the violation of a Bell inequality is used to witness the absence of an eavesdropper in cryptographic scenarios such as key distribution and randomness expansion. One of the key assumptions of Bell's theorem is the existence of experimental "free will," meaning that measurement settings can be chosen at random and independently by each party. The relaxation of this assumption potentially shifts the balance of power towards an eavesdropper. We consider a no-signaling model with reduced "free will" and bound the adversary's capabilities in the task of randomness expansion.

15.
Phys Rev Lett ; 107(5): 050502, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21867052

ABSTRACT

We present a device-independent protocol to test if a given black-box measurement device is entangled, that is, has entangled eigenstates. Our scheme involves three parties and is inspired by entanglement swapping; the test uses the Clauser-Horne-Shimony-Holt Bell inequality, checked between each pair of parties. In the case where all particles are qubits, we characterize quantitatively the deviation of the measurement device from a perfect Bell-state measurement.

16.
Phys Rev Lett ; 107(17): 170404, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22107491

ABSTRACT

Entanglement witnesses such as Bell inequalities are frequently used to prove the nonclassicality of a light source and its suitability for further tasks. By demonstrating Bell inequality violations using classical light in common experimental arrangements, we highlight why strict locality and efficiency conditions are not optional, particularly in security-related scenarios.

17.
Nature ; 464(7291): 988-9, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20393549
18.
Phys Rev E ; 103(5-1): 052111, 2021 May.
Article in English | MEDLINE | ID: mdl-34134318

ABSTRACT

Quantitative studies of irreversibility in statistical mechanics often involve the consideration of a reverse process, whose definition has been the object of many discussions, in particular for quantum mechanical systems. Here we show that the reverse channel very naturally arises from Bayesian retrodiction, in both classical and quantum theories. Previous paradigmatic results, such as Jarzynski's equality, Crooks' fluctuation theorem, and Tasaki's two-measurement fluctuation theorem for closed driven quantum systems, are all shown to be consistent with retrodictive arguments. Also, various corrections that were introduced to deal with nonequilibrium steady states or open quantum systems are justified on general grounds as remnants of Bayesian retrodiction. More generally, with the reverse process constructed on consistent logical inference, fluctuation relations acquire a much broader form and scope.

19.
Nat Commun ; 12(1): 2880, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001885

ABSTRACT

Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today's loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 108-1010 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.

20.
Phys Rev Lett ; 103(15): 153601, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19905637

ABSTRACT

We report on a direct measurement of a phase shift on a weak coherent beam by a single 87Rb atom in a Mach-Zehnder interferometer. By strongly focusing the probe mode to the location of the atom, a maximum phase shift of about 1 degree is observed experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL