Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Bioorg Chem ; 143: 107072, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185013

ABSTRACT

Histone deacetylases (HDACs) are a class of enzymes that cleave acyl groups from lysine residues of histone and non-histone proteins. There are 18 human HDAC isoforms with different cellular targets and functions. Among them, HDAC6 was found to be overexpressed in different types of cancer. However, when used in monotherapy, HDAC6 inhibition by selective inhibitors fails to show pronounced anti-cancer effects. The HDAC6 enzyme also addresses non-histone proteins like α-tubulin and cortactin, making it important for cell migration and angiogenesis. Recently, the NLRP3 inflammasome was identified as an important regulator of inflammation and immune responses and, importantly, HDAC6 is critically involved the activation of the inflammasome. We herein report the design, synthesis and biological evaluation of a library of selective HDAC6 inhibitors. Starting from the previously published crystal structure of MAIP-032 in complex with CD2 of zHDAC6, we performed docking studies to evaluate additional possible interactions of the cap group with the L1-loop pocket. Based on the results we synthesized 13 novel HDAC6 inhibitors via the Groebke-Blackburn-Bienaymé three component reaction as the key step. Compounds 8k (HDAC1 IC50: 5.87 µM; HDAC6 IC50: 0.024 µM; selectivity factor (SF1/6): 245) and 8m (HDAC1 IC50: 3.07 µM; HDAC6 IC50: 0.026 µM; SF1/6: 118) emerged as the most potent and selective inhibitors of HDAC6 and outperformed the lead structure MAIP-032 (HDAC1 IC50: 2.20 µM; HDAC6 IC50: 0.058 µM; SF1/6: 38) both in terms of inhibitory potency and selectivity. Subsequent immunoblot analysis confirmed the high selectivity of 8k and 8m for HDAC6 in a cellular environment. While neither 8k and 8m nor the selectivity HDAC6 inhibitor tubastatin A showed antiproliferative effects in the U-87 MG glioblastoma cell line, compound 8m attenuated cell migration significantly in wound healing assays in U-87 MG cells. Moreover, in macrophages compounds 8k and 8m demonstrated significant inhibition of LPS-induced IL1B mRNA expression and TNF release. These findings suggest that our imidazo[1,2-a]pyridine-capped HDAC6 inhibitors may serve as promising candidates for the development of drugs to effectively treat NLRP3 inflammasome-driven inflammatory diseases.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasms , Humans , Histone Deacetylase 6 , Inflammasomes , Histone Deacetylase Inhibitors/chemistry , Anti-Inflammatory Agents/pharmacology , Neoplasms/drug therapy , Cell Line, Tumor
2.
Nat Prod Bioprospect ; 14(1): 51, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177677

ABSTRACT

Apicidins are a class of naturally occurring cyclic tetrapeptides produced by few strains within the Fusarium genus. These secondary metabolites have gained significant attention due to their antiprotozoal activity through HDAC inhibition, thereby highlighting their potential for the treatment of malaria. Predominantly, apicidins have been isolated from Fusarium semitectum, offering a deep insight into the biosynthetic pathway responsible for their formation. A similar biosynthetic gene cluster has also been identified in the rice pathogenic fungus F. fujikuroi, leading the discovery of three additional apicidins through genetic manipulation. Routine mass spectrometric screening of these compound-producing strains revealed another metabolite structurally related to previously studied apicidins. By optimizing culture conditions and developing an effective isolation method, we obtained a highly pure substance, whose chemical structure was fully elucidated using NMR and HRMS fragmentation. Further studies were conducted to determine cytotoxicity, antimalarial activity, and HDAC inhibitory activity of this new secondary metabolite alongside the previously known apicidins. This work not only expands the apicidin class with a new member but also provides extensive insights and comparative analysis of apicidin-like substances produced by F. fujikuroi.

3.
Biochem Pharmacol ; 225: 116257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705532

ABSTRACT

Gastric cancer remains among the deadliest neoplasms worldwide, with limited therapeutic options. Since efficacies of targeted therapies are unsatisfactory, drugs with broader mechanisms of action rather than a single oncogene inhibition are needed. Preclinical studies have identified histone deacetylases (HDAC) as potential therapeutic targets in gastric cancer. However, the mechanism(s) of action of HDAC inhibitors (HDACi) are only partially understood. This is particularly true with regard to ferroptosis as an emerging concept of cell death. In a panel of gastric cancer cell lines with different molecular characteristics, tumor cell inhibitory effects of different HDACi were studied. Lipid peroxidation levels were measured and proteome analysis was performed for the in-depth characterization of molecular alterations upon HDAC inhibition. HDACi effects on important ferroptosis genes were validated on the mRNA and protein level. Upon HDACi treatment, lipid peroxidation was found increased in all cell lines. Class I HDACi (VK1, entinostat) showed the same toxicity profile as the pan-HDACi vorinostat. Proteome analysis revealed significant and concordant alterations in the expression of proteins related to ferroptosis induction. Key enzymes like ACSL4, POR or SLC7A11 showed distinct alterations in their expression patterns, providing an explanation for the increased lipid peroxidation. Results were also confirmed in primary human gastric cancer tissue cultures as a relevant ex vivo model. We identify the induction of ferroptosis as new mechanism of action of class I HDACi in gastric cancer. Notably, these findings were independent of the genetic background of the cell lines, thus introducing HDAC inhibition as a more general therapeutic principle.


Subject(s)
Ferroptosis , Histone Deacetylase Inhibitors , Lipid Peroxidation , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Ferroptosis/drug effects , Ferroptosis/physiology , Lipid Peroxidation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Cell Line, Tumor , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/antagonists & inhibitors , Dose-Response Relationship, Drug
4.
Eur J Med Chem ; 276: 116676, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39067437

ABSTRACT

Our previously reported HDAC6 inhibitor (HDAC6i) Marbostat-100 (4) has provided many arguments for further clinical evaluation. By the substitution of the acidic hydrogen of 4 for different carbon residues, we were able to generate an all-carbon stereocenter, which significantly improves the hydrolytic stability of the inhibitor. Further asymmetric synthesis has shown that the (S)-configured inhibitors preferentially bind to HDAC6. This led to the highly selective and potent methyl-substituted derivative S-29b, which elicited a long-lasting tubulin hyperacetylation in MV4-11 cells. Finally, a crystal structure of the HDAC6/S-29b complex provided mechanistic explanation for the high potency and stereoselectivity of synthesized compound series.


Subject(s)
Carbolines , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Humans , Carbolines/chemistry , Carbolines/pharmacology , Carbolines/chemical synthesis , Cell Line, Tumor , Crystallography, X-Ray , Dose-Response Relationship, Drug , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Morpholines/chemical synthesis , Morpholines/chemistry , Morpholines/pharmacology
5.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36986455

ABSTRACT

Histone deacetylases (HDACs) play a key role in the control of transcription, cell proliferation, and migration. FDA-approved histone deacetylase inhibitors (HDACi) demonstrate clinical efficacy in the treatment of different T-cell lymphomas and multiple myeloma. However, due to unselective inhibition, they display a wide range of adverse effects. One approach to avoiding off-target effects is the use of prodrugs enabling a controlled release of the inhibitor in the target tissue. Herein, we describe the synthesis and biological evaluation of HDACi prodrugs with photo-cleavable protecting groups masking the zinc-binding group of the established HDACi DDK137 (I) and VK1 (II). Initial decaging experiments confirmed that the photocaged HDACi pc-I could be deprotected to its parent inhibitor I. In HDAC inhibition assays, pc-I displayed only low inhibitory activity against HDAC1 and HDAC6. After irradiation with light, the inhibitory activity of pc-I strongly increased. Subsequent MTT viability assays, whole-cell HDAC inhibition assays, and immunoblot analysis confirmed the inactivity of pc-I at the cellular level. Upon irradiation, pc-I demonstrated pronounced HDAC inhibitory and antiproliferative activities which were comparable to the parent inhibitor I. Additionally, only phototreated pc-I was able to induce apoptosis in Annexin V/PI and caspase-Glo 3/7 assays, making pc-I a valuable tool for the development of light-activatable HDACi.

6.
J Med Chem ; 66(19): 13821-13837, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37782298

ABSTRACT

Histone deacetylase 6 (HDAC6) is an important drug target in oncological and non-oncological diseases. Most available HDAC6 inhibitors (HDAC6i) utilize hydroxamic acids as a zinc-binding group, which limits therapeutic opportunities due to its genotoxic potential. Recently, difluoromethyl-1,3,4-oxadiazoles (DFMOs) were reported as potent and selective HDAC6i but their mode of inhibition remained enigmatic. Herein, we report that DFMOs act as mechanism-based and essentially irreversible HDAC6i. Biochemical data confirm that DFMO 6 is a tight-binding HDAC6i capable of inhibiting HDAC6 via a two-step slow-binding mechanism. Crystallographic and mechanistic experiments suggest that the attack of 6 by the zinc-bound water at the sp2 carbon closest to the difluoromethyl moiety followed by a subsequent ring opening of the oxadiazole yields deprotonated difluoroacetylhydrazide 13 as active species. The strong anionic zinc coordination of 13 and the binding of the difluoromethyl moiety in the P571 pocket finally result in an essentially irreversible inhibition of HDAC6.


Subject(s)
Histone Deacetylase Inhibitors , Oxadiazoles , Histone Deacetylase 6/metabolism , Oxadiazoles/pharmacology , Oxadiazoles/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Zinc/chemistry , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry
7.
Chem Commun (Camb) ; 58(79): 11087-11090, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36098075

ABSTRACT

The targeted degradation of histone deacetylase 6 (HDAC6) by heterobifunctional degraders constitutes a promising approach to treat HDAC6-driven diseases. Previous HDAC6 selective degraders utilised a hydroxamic acid as a zinc-binding group (ZBG) which features mutagenic and genotoxic potential. Here we report the development of a new class of selective HDAC6 degraders based on a difluoromethyl-1,3,4-oxadiazole warhead as ZBG.


Subject(s)
Histone Deacetylase Inhibitors , Hydroxamic Acids , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Oxadiazoles , Zinc/metabolism
8.
ChemMedChem ; 17(9): e202100755, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35073610

ABSTRACT

Herein we report the structure-activity and structure-physicochemical property relationships of a series of class I selective ortho-aminoanilides targeting the "foot-pocket" in HDAC1&2. To balance the structural benefits and the physicochemical disadvantages of these substances, we started with a set of HDACi related to tacedinaline (CI-994) and evaluated their solubility, lipophilicity (log D7.4 ) and inhibition of selected HDAC isoforms. Subsequently, we selected the most promising "capless" HDACi and transferred its ZBG to our previously published scaffold featuring a peptoid-based cap group. The resulting hit compound 10 c (LSH-A54) showed favorable physicochemical properties and is a potent, selective HDAC1/2 inhibitor. The following evaluation of its slow binding properties revealed that LSH-A54 binds tightly to HDAC1 in an induced-fit mechanism. The potent HDAC1/2 inhibitory properties were reflected by attenuated cell migration in a modified wound healing assay and reduced cell viability in a clonogenic survival assay in selected breast cancer cell lines.


Subject(s)
Histone Deacetylase Inhibitors , Peptoids , Histone Deacetylase 1 , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Peptoids/chemistry
9.
J Med Chem ; 65(22): 15457-15472, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36351184

ABSTRACT

Using a microwave-assisted protocol, we synthesized 16 peptoid-capped HDAC inhibitors (HDACi) with fluorinated linkers and identified two hit compounds. In biochemical and cellular assays, 10h stood out as a potent unselective HDACi with remarkable cytotoxic potential against different therapy-resistant leukemia cell lines. 10h demonstrated prominent antileukemic activity with low cytotoxic activity toward healthy cells. Moreover, 10h exhibited synergistic interactions with the DNA methyltransferase inhibitor decitabine in AML cell lines. The comparison of crystal structures of HDAC6 complexes with 10h and its nonfluorinated counterpart revealed a similar occupation of the L1 loop pocket but slight differences in zinc coordination. The substitution pattern of the acyl residue turned out to be crucial in terms of isoform selectivity. The introduction of an isopropyl group onto the phenyl ring provided the highly HDAC6-selective inhibitor 10p, which demonstrated moderate synergy with decitabine and exceeded the HDAC6 selectivity of tubastatin A.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Peptoids , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase 6 , Peptoids/pharmacology , Peptoids/chemistry , Decitabine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Leukemia, Myeloid, Acute/drug therapy , Cell Line, Tumor , Histone Deacetylase 1 , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Hydroxamic Acids/chemistry
10.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35337122

ABSTRACT

The degree of acetylation of lysine residues on histones influences the accessibility of DNA and, furthermore, the gene expression. Histone deacetylases (HDACs) are overexpressed in various tumour diseases, resulting in the interest in HDAC inhibitors for cancer therapy. The aim of this work is the development of a novel 18F-labelled HDAC1/2-specific inhibitor with a benzamide-based zinc-binding group to visualize these enzymes in brain tumours by positron emission tomography (PET). BA3, exhibiting high inhibitory potency for HDAC1 (IC50 = 4.8 nM) and HDAC2 (IC50 = 39.9 nM), and specificity towards HDAC3 and HDAC6 (specificity ratios >230 and >2080, respectively), was selected for radiofluorination. The two-step one-pot radiosynthesis of [18F]BA3 was performed in a TRACERlab FX2 N radiosynthesizer by a nucleophilic aliphatic substitution reaction. The automated radiosynthesis of [18F]BA3 resulted in a radiochemical yield of 1%, a radiochemical purity of >96% and a molar activity between 21 and 51 GBq/µmol (n = 5, EOS). For the characterization of BA3, in vitro and in vivo experiments were carried out. The results of these pharmacological and pharmacokinetic studies indicate a suitable inhibitory potency of BA3, whereas the applicability for non-invasive imaging of HDAC1/2 by PET requires further optimization of the properties of this compound.

11.
J Med Chem ; 64(19): 14620-14646, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34582215

ABSTRACT

Multitarget drugs are an emerging alternative to combination therapies. In three iterative cycles of design, synthesis, and biological evaluation, we developed a novel type of potent hybrid inhibitors of bromodomain, and extra-terminal (BET) proteins and histone deacetylases (HDACs) based on the BET inhibitor XD14 and well-established HDAC inhibitors. The most promising new hybrids, 49 and 61, displayed submicromolar inhibitory activity against HDAC1-3 and 6, and BRD4(1), and possess potent antileukemia activity. 49 induced apoptosis more effectively than the combination of ricolinostat and birabresib (1:1). The most balanced dual inhibitor, 61, induced significantly more apoptosis than the related control compounds 62 (no BRD4(1) affinity) and 63 (no HDAC inhibition) as well as the 1:1 combination of both. Additionally, 61 was well tolerated in an in vivo zebrafish toxicity model. Overall, our data suggest an advantage of dual HDAC/BET inhibitors over the combination of two single targeted compounds.


Subject(s)
Antineoplastic Agents/chemistry , Histone Deacetylases/chemistry , Leukemia/drug therapy , Leukemia/pathology , Nuclear Proteins/antagonists & inhibitors , Pyrroles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Drug Screening Assays, Antitumor , Histone Deacetylases/pharmacology , Histone Deacetylases/therapeutic use , Humans , Transcription Factors/antagonists & inhibitors
12.
J Med Chem ; 62(24): 11260-11279, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31762274

ABSTRACT

There is increasing evidence that histone deacetylase (HDAC) inhibitors can (re)sensitize cancer cells for chemotherapeutics via "epigenetic priming". In this work, we describe the synthesis of a series of class I-selective HDAC inhibitors with 2-aminoanilides as zinc-binding groups. Several of the synthesized compounds revealed potent inhibition of the class I HDAC isoforms HDAC1, HDAC2, and/or HDAC3 and promising antiproliferative effects in the human ovarian cancer cell line A2780 and the human squamous carcinoma cell line Cal27. Selected compounds were investigated in a cellular model of platinum resistance. In particular, compound 2a revealed potent chemosensitizing properties and full reversal of cisplatin resistance in Cal27CisR cells. This effect is related to a synergistic increase in caspase 3/7 activation and induction of apoptosis. Thus, this work demonstrates that pan-HDAC inhibition or dual class I/class IIb inhibition is not required for full reversal of cisplatin resistance.


Subject(s)
Aniline Compounds/pharmacology , Apoptosis/drug effects , Benzamides/pharmacology , Carcinoma, Squamous Cell/drug therapy , Drug Resistance, Neoplasm/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/chemistry , Ovarian Neoplasms/drug therapy , Peptoids/chemistry , Aniline Compounds/chemistry , Antineoplastic Agents/pharmacology , Benzamides/chemistry , Carcinoma, Squamous Cell/metabolism , Cell Proliferation/drug effects , Cisplatin/pharmacology , Female , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Models, Molecular , Ovarian Neoplasms/metabolism , Protein Conformation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL