Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Biol Chem ; 300(5): 107286, 2024 May.
Article in English | MEDLINE | ID: mdl-38636657

ABSTRACT

Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.


Subject(s)
Annexin A3 , Hepacivirus , Hepatitis C , SS-B Antigen , Virus Internalization , Humans , Annexin A3/metabolism , Annexin A3/genetics , Autoantigens/metabolism , Autoantigens/genetics , HEK293 Cells , Hepacivirus/metabolism , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , Hepatitis C/genetics , Host-Pathogen Interactions , Lipid Droplets/metabolism , Lipid Droplets/virology , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Viral Core Proteins/metabolism , Viral Core Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics
2.
PLoS Pathog ; 17(4): e1009496, 2021 04.
Article in English | MEDLINE | ID: mdl-33872335

ABSTRACT

LINE-1 (L1) retrotransposons are autonomous transposable elements that can affect gene expression and genome integrity. Potential consequences of exogenous viral infections for L1 activity have not been studied to date. Here, we report that hepatitis C virus (HCV) infection causes a significant increase of endogenous L1-encoded ORF1 protein (L1ORF1p) levels and translocation of L1ORF1p to HCV assembly sites at lipid droplets. HCV replication interferes with retrotransposition of engineered L1 reporter elements, which correlates with HCV RNA-induced formation of stress granules and can be partially rescued by knockdown of the stress granule protein G3BP1. Upon HCV infection, L1ORF1p localizes to stress granules, associates with HCV core in an RNA-dependent manner and translocates to lipid droplets. While HCV infection has a negative effect on L1 mobilization, L1ORF1p neither restricts nor promotes HCV infection. In summary, our data demonstrate that HCV infection causes an increase of endogenous L1 protein levels and that the observed restriction of retrotransposition of engineered L1 reporter elements is caused by sequestration of L1ORF1p in HCV-induced stress granules.


Subject(s)
Carcinoma, Hepatocellular/virology , DNA Helicases/metabolism , Hepacivirus/physiology , Hepatitis C/virology , Liver Neoplasms/virology , Long Interspersed Nucleotide Elements/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Ribonucleoproteins/metabolism , Cell Line, Tumor , Cytoplasmic Granules/virology , DNA Helicases/genetics , Humans , Lipid Droplets/virology , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , Ribonucleoproteins/genetics
3.
J Hepatol ; 75(1): 55-63, 2021 07.
Article in English | MEDLINE | ID: mdl-33484776

ABSTRACT

BACKGROUND & AIMS: Hepatitis E virus (HEV) infections are prevalent worldwide. Various viruses have been detected in the ejaculate and can outlast the duration of viremia, indicating replication beyond the blood-testis barrier. HEV replication in diverse organs, however, is still widely misunderstood. We aimed to determine the occurrence, features and morphology of HEV in the ejaculate. METHODS: The presence of HEV in testis was assessed in 12 experimentally HEV-genotype 3-infected pigs. We further tested ejaculate, urine, stool and blood from 3 chronically HEV genotype 3-infected patients and 6 immunocompetent patients with acute HEV infection by HEV-PCR. Morphology and genomic characterization of HEV particles from various human compartments were determined by HEV-PCR, density gradient measurement, immune-electron microscopy and genomic sequencing. RESULTS: In 2 of the 3 chronically HEV-infected patients, we observed HEV-RNA (genotype 3c) in seminal plasma and semen with viral loads >2 logs higher than in the serum. Genomic sequencing showed significant differences between viral strains in the ejaculate compared to stool. Under ribavirin-treatment, HEV shedding in the ejaculate continued for >9 months following the end of viremia. Density gradient measurement and immune-electron microscopy characterized (enveloped) HEV particles in the ejaculate as intact. CONCLUSIONS: The male reproductive system was shown to be a niche of HEV persistence in chronic HEV infection. Surprisingly, sequence analysis revealed distinct genetic HEV variants in the stool and serum, originating from the liver, compared to variants in the ejaculate originating from the male reproductive system. Enveloped HEV particles in the ejaculate did not morphologically differ from serum-derived HEV particles. LAY SUMMARY: Enveloped hepatitis E virus particles could be identified by PCR and electron microscopy in the ejaculate of immunosuppressed chronically infected patients, but not in immunocompetent experimentally infected pigs or in patients with acute self-limiting hepatitis E.


Subject(s)
Feces/virology , Hepatitis E virus , Hepatitis E , Immunocompetence , Persistent Infection , Semen/virology , Animals , Ejaculation , Genome, Viral , Hematologic Tests/methods , Hepatitis E/blood , Hepatitis E/immunology , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , Humans , Immunocompromised Host , Male , Persistent Infection/immunology , Persistent Infection/virology , Semen Analysis/methods , Swine , Urinalysis/methods , Viral Envelope , Viral Replication Compartments
4.
Int J Mol Sci ; 21(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326151

ABSTRACT

Replication of the hepatitis C virus (HCV) strongly relies on various lipid metabolic processes in different steps of the viral life cycle. In general, HCV changes the cells' lipidomic profile by differentially regulating key pathways of lipid synthesis, remodeling, and utilization. In this review, we sum up the latest data mainly from the past five years, emphasizing the role of lipids in HCV RNA replication, assembly, and egress. In detail, we highlight changes in the fatty acid content as well as alterations of the membrane lipid composition during replication vesicle formation. We address the role of lipid droplets as a lipid provider during replication and as an essential hub for HCV assembly. Finally, we depict different ideas of HCV maturation and egress including lipoprotein association and potential secretory routes.


Subject(s)
Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , Lipid Metabolism , RNA, Viral/genetics , Transcription, Genetic , Virion , Autophagosomes/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Host-Pathogen Interactions , Humans , Lipids , Virion/metabolism
5.
Gastroenterology ; 155(5): 1366-1371.e3, 2018 11.
Article in English | MEDLINE | ID: mdl-30031767

ABSTRACT

Killer-cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer (NK) cells. Binding of KIR3DS1 to its recently discovered ligand, HLA-F, activates NK cells and has been associated with resolution of hepatitis C virus (HCV) infection. We investigated the mechanisms by which KIR3DS1 contributes to the antiviral immune response. Using cell culture systems, mice with humanized livers, and primary liver tissue from HCV-infected individuals, we found that the KIR3DS1 ligand HLA-F is up-regulated on HCV-infected cells, and that interactions between KIR3DS1 and HLA-F contribute to NK cell-mediated control of HCV. Strategies to promote interaction between KIR3DS1 and HLA-F might be developed for treatment of infectious diseases and cancer.


Subject(s)
Hepacivirus/physiology , Histocompatibility Antigens Class I/physiology , Killer Cells, Natural/immunology , Lymphocyte Activation , Receptors, KIR3DS1/physiology , Virus Replication , Cells, Cultured , Hepatitis C/drug therapy , Humans
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1041-1056, 2018 09.
Article in English | MEDLINE | ID: mdl-29885363

ABSTRACT

The hepatitis C virus (HCV) life cycle is tightly linked to the host cell lipid metabolism with the endoplasmic reticulum-derived membranous web harboring viral RNA replication complexes and lipid droplets as virion assembly sites. To investigate HCV-induced changes in the lipid composition, we performed quantitative shotgun lipidomic studies of whole cell extracts and subcellular compartments. Our results indicate that HCV infection reduces the ratio of neutral to membrane lipids. While the amount of neutral lipids and lipid droplet morphology were unchanged, membrane lipids, especially cholesterol and phospholipids, accumulated in the microsomal fraction in HCV-infected cells. In addition, HCV-infected cells had a higher relative abundance of phosphatidylcholines and triglycerides with longer fatty acyl chains and a strikingly increased utilization of C18 fatty acids, most prominently oleic acid (FA [18:1]). Accordingly, depletion of fatty acid elongases and desaturases impaired HCV replication. Moreover, the analysis of free fatty acids revealed increased levels of polyunsaturated fatty acids (PUFAs) caused by HCV infection. Interestingly, inhibition of the PUFA synthesis pathway via knockdown of the rate-limiting Δ6-desaturase enzyme or by treatment with a high dose of a small-molecule inhibitor impaired viral progeny production, indicating that elevated PUFAs are needed for virion morphogenesis. In contrast, pretreatment with low inhibitor concentrations promoted HCV translation and/or early RNA replication. Taken together our results demonstrate the complex remodeling of the host cell lipid metabolism induced by HCV to enhance both virus replication and progeny production.


Subject(s)
Hepacivirus/metabolism , Hepatocytes/metabolism , Host-Pathogen Interactions , Lipid Metabolism/genetics , Metabolome , Virion/metabolism , Virus Replication/physiology , Acetyltransferases/antagonists & inhibitors , Acetyltransferases/genetics , Acetyltransferases/metabolism , Cell Line, Tumor , Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Fatty Acid Desaturases/antagonists & inhibitors , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases , Fatty Acids, Unsaturated/metabolism , Gene Expression Regulation , Hepacivirus/growth & development , Hepatocytes/chemistry , Hepatocytes/virology , Humans , Lipid Droplets/metabolism , Lipid Droplets/virology , Microsomes/metabolism , Microsomes/virology , Oleic Acid/metabolism , Phosphatidylcholines/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Triglycerides/metabolism , Virion/growth & development , Virus Assembly/physiology
7.
Biochem J ; 474(13): 2159-2175, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28515263

ABSTRACT

TRPM2 (transient receptor potential channel, subfamily melastatin, member 2) is a Ca2+-permeable non-selective cation channel activated by the binding of adenosine 5'-diphosphoribose (ADPR) to its cytoplasmic NUDT9H domain (NUDT9 homology domain). Activation of TRPM2 by ADPR downstream of oxidative stress has been implicated in the pathogenesis of many human diseases, rendering TRPM2 an attractive novel target for pharmacological intervention. However, the structural basis underlying this activation is largely unknown. Since ADP (adenosine 5'-diphosphate) alone did not activate or antagonize the channel, we used a chemical biology approach employing synthetic analogues to focus on the role of the ADPR terminal ribose. All novel ADPR derivatives modified in the terminal ribose, including that with the seemingly minor change of methylating the anomeric-OH, abolished agonist activity at TRPM2. Antagonist activity improved as the terminal substituent increasingly resembled the natural ribose, indicating that gating by ADPR might require specific interactions between hydroxyl groups of the terminal ribose and the NUDT9H domain. By mutating amino acid residues of the NUDT9H domain, predicted by modelling and docking to interact with the terminal ribose, we demonstrate that abrogating hydrogen bonding of the amino acids Arg1433 and Tyr1349 interferes with activation of the channel by ADPR. Taken together, using the complementary experimental approaches of chemical modification of the ligand and site-directed mutagenesis of TRPM2, we demonstrate that channel activation critically depends on hydrogen bonding of Arg1433 and Tyr1349 with the terminal ribose. Our findings allow for a more rational design of novel TRPM2 antagonists that may ultimately lead to compounds of therapeutic potential.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Arginine/metabolism , TRPM Cation Channels/metabolism , Tyrosine/metabolism , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/genetics , Amino Acid Sequence , Arginine/chemistry , Arginine/genetics , Calcium/metabolism , Calcium Signaling , HEK293 Cells , Humans , Ion Channel Gating , Mutagenesis, Site-Directed , Mutation/genetics , Patch-Clamp Techniques , Protein Binding , Protein Conformation , Pyrophosphatases/metabolism , Sequence Homology, Amino Acid , TRPM Cation Channels/chemistry , TRPM Cation Channels/genetics , Tyrosine/chemistry , Tyrosine/genetics
8.
J Hepatol ; 64(5): 1033-1040, 2016 May.
Article in English | MEDLINE | ID: mdl-26805671

ABSTRACT

BACKGROUND & AIMS: Hepatitis E virus (HEV) is a major cause of acute hepatitis as well as chronic infection in immunocompromised individuals; however, in vivo infection models are limited. The aim of this study was to establish a small animal model to improve our understanding of HEV replication mechanisms and permit the development of effective therapeutics. METHODS: UPA/SCID/beige mice repopulated with primary human hepatocytes were used for infection experiments with HEV genotype (GT) 1 and 3. Virological parameters were determined at the serological and intrahepatic level by real time PCR, immunohistochemistry and RNA in situ hybridization. RESULTS: Establishment of HEV infection was achieved after intravenous injection of stool-derived virions and following co-housing with HEV-infected animals but not via inoculation of serum-derived HEV. GT 1 infection resulted in a rapid rise of viremia and high stable titres in serum, liver, bile and faeces of infected mice for more than 25 weeks. In contrast, viremia in GT 3 infected mice developed more slowly and displayed lower titres in all analysed tissues as compared to GT 1. HEV-infected human hepatocytes could be visualized using HEV ORF2 and ORF3 specific antibodies and HEV RNA in situ hybridization probes. Finally, six-week administration of ribavirin led to a strong reduction of viral replication in the serum and liver of GT 1 infected mice. CONCLUSION: We established an efficient model of HEV infection to test the efficacy of antiviral agents and to exploit mechanisms of HEV replication and interaction with human hepatocytes in vivo.


Subject(s)
Antiviral Agents/therapeutic use , Hepatitis E virus/genetics , Hepatitis E/drug therapy , Liver/virology , RNA, Viral/analysis , Virus Replication/drug effects , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Hepatitis E/virology , Humans , In Situ Hybridization , Liver/pathology , Mice , Mice, SCID , Real-Time Polymerase Chain Reaction
9.
Commun Biol ; 7(1): 1089, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237833

ABSTRACT

Viruses depend on host metabolic pathways and flaviviruses are specifically linked to lipid metabolism. During dengue virus infection lipid droplets are degraded to fuel replication and Zika virus (ZIKV) infection depends on triglyceride biosynthesis. Here, we systematically investigated the neutral lipid-synthesizing enzymes diacylglycerol O-acyltransferases (DGAT) and the sterol O-acyltransferase (SOAT) 1 in orthoflavivirus infection. Downregulation of DGAT1 and SOAT1 compromises ZIKV infection in hepatoma cells but only SOAT1 and not DGAT inhibitor treatment reduces ZIKV infection. DGAT1 interacts with the ZIKV capsid protein, indicating that protein interaction might be required for ZIKV replication. Importantly, inhibition of SOAT1 severely impairs ZIKV infection in neural cell culture models and cerebral organoids. SOAT1 inhibitor treatment decreases extracellular viral RNA and E protein level and lowers the specific infectivity of virions, indicating that ZIKV morphogenesis is compromised, likely due to accumulation of free cholesterol. Our findings provide insights into the importance of cholesterol and cholesterol ester balance for efficient ZIKV replication and implicate SOAT1 as an antiviral target.


Subject(s)
Organoids , Sterol O-Acyltransferase , Virus Replication , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Zika Virus/physiology , Organoids/virology , Organoids/metabolism , Virus Replication/drug effects , Sterol O-Acyltransferase/metabolism , Sterol O-Acyltransferase/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology
10.
Sci Rep ; 8(1): 3893, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29497123

ABSTRACT

Knowledge of activation and interplay between the hepatitis C virus (HCV) and the hosts' innate immunity is essential to understanding the establishment of chronic HCV infection. Human hepatoma cell lines, widely used as HCV cell culture system, display numerous metabolic alterations and a defective innate immunity, hindering the detailed study of virus-host interactions. Here, we analysed the suitability of induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHLCs) as a physiologically relevant model to study HCV replication in vitro. Density gradients and triglyceride analysis revealed that iHLCs secreted very-low density lipoprotein (VLDL)-like lipoproteins, providing a putative platform for bona fide lipoviroparticles. iHLCs supported the full HCV life cycle, but in contrast to Huh7 and Huh7.5 cells, replication and viral RNA levels decreased continuously. Following HCV infection, interferon-stimulated gene (ISG)-expression significantly increased in iHLCs, whereas induction was almost absent in Huh7/7.5 cells. However, IFNα-stimulation equally induced ISGs in iHLCs and hepatoma cells. JAK-STAT pathway inhibition increased HCV replication in mature iHLCs, but not in Huh7 cells. Additionally, HCV replication levels where higher in STAT2-, but not STAT1-knockdown iHLCs. Our findings support iHLCs as a suitable model for HCV-host interaction regarding a functional innate immunity and lipoprotein synthesis.


Subject(s)
Hepacivirus/immunology , Hepatitis C, Chronic/immunology , Hepatocytes/metabolism , Antiviral Agents/pharmacology , Cell Culture Techniques/methods , Hepacivirus/genetics , Hepacivirus/pathogenicity , Hepatitis C/virology , Host-Pathogen Interactions , Humans , Immunity, Innate/physiology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/virology , Interferon Type I/genetics , Interferon-alpha/metabolism , Lipoproteins, VLDL/metabolism , STAT2 Transcription Factor/metabolism , Signal Transduction/physiology , Virus Diseases , Virus Replication/drug effects
11.
Cell Rep ; 16(12): 3219-3231, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27653686

ABSTRACT

Lipid droplets are vital to hepatitis C virus (HCV) infection as the putative sites of virion assembly, but morphogenesis and egress of virions remain ill defined. We performed quantitative lipid droplet proteome analysis of HCV-infected cells to identify co-factors of that process. Our results demonstrate that HCV disconnects lipid droplets from their metabolic function. Annexin A3 (ANXA3), a protein enriched in lipid droplet fractions, strongly impacted HCV replication and was characterized further: ANXA3 is recruited to lipid-rich fractions in HCV-infected cells by the viral core and NS5A proteins. ANXA3 knockdown does not affect HCV RNA replication but severely impairs virion production with lower specific infectivity and higher density of secreted virions. ANXA3 is essential for the interaction of viral envelope E2 with apolipoprotein E (ApoE) and for trafficking, but not lipidation, of ApoE in HCV-infected cells. Thus, we identified ANXA3 as a regulator of HCV maturation and egress.


Subject(s)
Annexin A3/metabolism , Hepacivirus/physiology , Host-Parasite Interactions/physiology , Lipid Droplets/virology , Virus Assembly/physiology , Cell Line , Humans , Lipid Droplets/metabolism , Proteome/analysis , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL