Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Chem Biol ; 10(3): 181-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24390428

ABSTRACT

Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases. Treatment of tumor cells with the inhibitor GSK2830371 increases phosphorylation of Wip1 substrates and causes growth inhibition in both hematopoietic tumor cell lines and Wip1-amplified breast tumor cells harboring wild-type TP53. Oral administration of Wip1 inhibitors in mice results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth. To our knowledge, GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase.


Subject(s)
Aminopyridines/chemistry , Dipeptides/chemistry , Enzyme Inhibitors/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Administration, Oral , Allosteric Regulation , Amino Acid Motifs , Aminopyridines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Line, Tumor , Dipeptides/pharmacology , Disease Models, Animal , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Female , Heterografts , Humans , Mice , Mice, SCID , Models, Biological , Neoplasms , Protein Phosphatase 2C
2.
Bioorg Med Chem Lett ; 22(6): 2230-4, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22361133

ABSTRACT

A series of PI3K-beta selective inhibitors, imidazo[1,2-a]-pyrimidin-5(1H)-ones, has been rationally designed based on the docking model of the more potent R enantiomer of TGX-221, identified by a chiral separation, in a PI3K-beta homology model. Synthesis and SAR of this novel chemotype are described. Several compounds in the series demonstrated potent growth inhibition in a PTEN-deficient breast cancer cell line MDA-MB-468 under anchorage independent conditions.


Subject(s)
Antineoplastic Agents/chemical synthesis , Imidazoles/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Pyrimidinones/chemical synthesis , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Gene Deletion , Humans , Imidazoles/pharmacology , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Kinetics , Models, Molecular , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Pyrimidinones/pharmacology , Structure-Activity Relationship
4.
Sci Rep ; 12(1): 14685, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038587

ABSTRACT

8-Oxoguanine DNA glycosylase (OGG1) initiates base excision repair of the oxidative DNA damage product 8-oxoguanine. OGG1 is bifunctional; catalyzing glycosyl bond cleavage, followed by phosphodiester backbone incision via a ß-elimination apurinic lyase reaction. The product from the glycosylase reaction, 8-oxoguanine, and its analogues, 8-bromoguanine and 8-aminoguanine, trigger the rate-limiting AP lyase reaction. The precise activation mechanism remains unclear. The product-assisted catalysis hypothesis suggests that 8-oxoguanine and analogues bind at the product recognition (PR) pocket to enhance strand cleavage as catalytic bases. Alternatively, they may allosterically activate OGG1 by binding outside of the PR pocket to induce an active-site conformational change to accelerate apurinic lyase. Herein, steady-state kinetic analyses demonstrated random binding of substrate and activator. 9-Deazaguanine, which can't function as a substrate-competent base, activated OGG1, albeit with a lower Emax value than 8-bromoguanine and 8-aminoguanine. Random compound screening identified small molecules with Emax values similar to 8-bromoguanine. Paraquat-induced mitochondrial dysfunction was attenuated by several small molecule OGG1 activators; benefits included enhanced mitochondrial membrane and DNA integrity, less cytochrome c translocation, ATP preservation, and mitochondrial membrane dynamics. Our results support an allosteric mechanism of OGG1 and not product-assisted catalysis. OGG1 small molecule activators may improve mitochondrial function in oxidative stress-related diseases.


Subject(s)
DNA Glycosylases , Allosteric Regulation , DNA Glycosylases/metabolism , DNA Repair , Guanine/analogs & derivatives , Mitochondria/metabolism , Substrate Specificity
5.
Bioorg Med Chem Lett ; 20(2): 684-8, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20006500

ABSTRACT

The synthesis and evaluation of tetrasubstituted aminopyridines, bearing novel azaindazole hinge binders, as potent AKT inhibitors are described. Compound 14c was identified as a potent AKT inhibitor that demonstrated reduced CYP450 inhibition and an improved developability profile compared to those of previously described trisubstituted pyridines. It also displayed dose-dependent inhibition of both phosphorylation of GSK3beta and tumor growth in a BT474 tumor xenograft model in mice.


Subject(s)
Aminopyridines/chemistry , Cytochrome P-450 Enzyme System/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrazines/chemistry , Pyridines/chemistry , Aminopyridines/chemical synthesis , Aminopyridines/pharmacokinetics , Animals , Cell Line, Tumor , Dogs , ERG1 Potassium Channel , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Haplorhini , Humans , Mice , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-akt/metabolism , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
6.
Bioorg Med Chem Lett ; 19(5): 1508-11, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19179070

ABSTRACT

AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.


Subject(s)
Oxadiazoles/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Cell Line , Cell Line, Tumor , Crystallography, X-Ray , Humans , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Structure, Secondary/physiology , Proto-Oncogene Proteins c-akt/metabolism , Structure-Activity Relationship
7.
Sci Rep ; 9(1): 13078, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511536

ABSTRACT

Significant resource is spent by drug discovery project teams to generate numerous, yet unique target constructs for the multiple platforms used to drive drug discovery programs including: functional assays, biophysical studies, structural biology, and biochemical high throughput screening campaigns. To improve this process, we developed Modular Protein Ligation (MPL), a combinatorial reagent platform utilizing Expressed Protein Ligation to site-specifically label proteins at the C-terminus with a variety of cysteine-lysine dipeptide conjugates. Historically, such proteins have been chemically labeled non-specifically through surface amino acids. To demonstrate the feasibility of this approach, we first applied MPL to proteins of varying size in different target classes using different recombinant protein expression systems, which were then evaluated in several different downstream assays. A key advantage to the implementation of this paradigm is that one construct can generate multiple final products, significantly streamlining the reagent generation for multiple early drug discovery project teams.


Subject(s)
Drug Discovery/methods , Proteins/metabolism , Animals , Feasibility Studies , Humans , Ligands , Mice , Models, Molecular , Protein Conformation , Proteins/chemistry
8.
Arch Biochem Biophys ; 469(2): 220-31, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17999913

ABSTRACT

The kinesin spindle protein (KSP, also known as Eg5) is essential for the proper separation of spindle poles during mitosis, and inhibition results in mitotic arrest and the formation of characteristic monoaster spindles. Several distinct classes of KSP inhibitors have been described previously in the public and patent literature. However, most appear to share a common induced-fit allosteric binding site, suggesting a common mechanism of inhibition. In a high-throughput screen for inhibitors of KSP, a novel class of thiazole-containing inhibitors was identified. Unlike the previously described allosteric KSP inhibitors, the thiazoles described here show ATP competitive kinetic behavior, consistent with binding within the nucleotide binding pocket. Although they bind to a pocket that is highly conserved across kinesins, these molecules exhibit significant selectivity for KSP over other kinesins and other ATP-utilizing enzymes. Several of these compounds are active in cells and produce a phenotype similar to that observed with previously published allosteric inhibitors of KSP.


Subject(s)
Adenosine Triphosphate/metabolism , Biochemistry/methods , Kinesins/antagonists & inhibitors , Kinesins/chemistry , Mitosis , Adenosine Triphosphate/chemistry , Allosteric Site , Binding, Competitive , Drug Design , Humans , Kinesins/metabolism , Models, Biological , Models, Chemical , Nucleotides/chemistry , Phenotype , Protein Binding , Thiazoles/pharmacology
9.
Cancer Res ; 66(23): 11100-5, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17145850

ABSTRACT

Oncogenic BRAF alleles are both necessary and sufficient for cellular transformation, suggesting that chemical inhibition of the activated mutant protein kinase may reverse the tumor phenotype. Here, we report the characterization of SB-590885, a novel triarylimidazole that selectively inhibits Raf kinases with more potency towards B-Raf than c-Raf. Crystallographic analysis revealed that SB-590885 stabilizes the oncogenic B-Raf kinase domain in an active configuration, which is distinct from the previously reported mechanism of action of the multi-kinase inhibitor, BAY43-9006. Malignant cells expressing oncogenic B-Raf show selective inhibition of mitogen-activated protein kinase activation, proliferation, transformation, and tumorigenicity when exposed to SB-590885, whereas other cancer cell lines and normal cells display variable sensitivities or resistance to similar treatment. These studies support the validation of oncogenic B-Raf as a target for cancer therapy and provide the first evidence of a correlation between the expression of oncogenic BRAF alleles and a positive response to a selective B-Raf inhibitor.


Subject(s)
Imidazoles/therapeutic use , Neoplasms/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Alleles , Animals , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Crystallization , Crystallography, X-Ray , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HT29 Cells , Humans , Imidazoles/chemistry , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Mutation/genetics , Neoplasms/enzymology , Neoplasms/pathology , Phosphorylation/drug effects , Protein Conformation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/genetics , Xenograft Model Antitumor Assays
10.
Mol Cell Biol ; 22(1): 57-68, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11739722

ABSTRACT

CAK1 encodes a protein kinase in Saccharomyces cerevisiae whose sole essential mitotic role is to activate the Cdc28p cyclin-dependent kinase by phosphorylation of threonine-169 in its activation loop. SMK1 encodes a sporulation-specific mitogen-activated protein (MAP) kinase homolog that is required to regulate the postmeiotic events of spore wall assembly. CAK1 was previously identified as a multicopy suppressor of a weakened smk1 mutant and shown to be required for spore wall assembly. Here we show that Smk1p, like other MAP kinases, is phosphorylated in its activation loop and that Smk1p is not activated in a cak1 missense mutant. Strains harboring a hyperactivated allele of CDC28 that is CAK1 independent and that lacks threonine-169 still require CAK1 to activate Smk1p. The data indicate that Cak1p functions upstream of Smk1p by activating a protein kinase other than Cdc28p. We also found that mutants lacking CAK1 are blocked early in meiotic development, as they show substantial delays in premeiotic DNA synthesis and defects in the expression of sporulation-specific genes, including IME1. The early meiotic role of Cak1p, like the postmeiotic role in the Smk1p pathway, is CDC28 independent. The data indicate that Cak1p activates multiple steps in meiotic development through multiple protein kinase targets.


Subject(s)
CDC28 Protein Kinase, S cerevisiae/metabolism , Cyclin-Dependent Kinases , Mitogen-Activated Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Spores, Fungal/physiology , CDC28 Protein Kinase, S cerevisiae/chemistry , DNA, Fungal/biosynthesis , Enzyme Activation , Epitopes/chemistry , Epitopes/metabolism , Genes, Fungal , Meiosis/physiology , Mitogen-Activated Protein Kinases/genetics , Mutagenesis, Site-Directed , Phosphorylation , Protein Structure, Secondary , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Cyclin-Dependent Kinase-Activating Kinase
11.
J Mol Biol ; 335(2): 547-54, 2004 Jan 09.
Article in English | MEDLINE | ID: mdl-14672662

ABSTRACT

We report here the first inhibitor-bound structure of a mitotic motor protein. The 1.9 A resolution structure of the motor domain of KSP, bound with the small molecule monastrol and Mg2+ x ADP, reveals that monastrol confers inhibition by "induced-fitting" onto the protein some 12 A away from the catalytic center of the enzyme, resulting in the creation of a previously non-existing binding pocket. The structure provides new insights into the biochemical and mechanical mechanisms of the mitotic motor domain. Inhibition of KSP provides a novel mechanism to arrest mitotic spindle formation, a target of several approved and investigative anti-cancer agents. The structural information gleaned from this novel pocket offers a new angle for the design of anti-mitotic agents.


Subject(s)
Kinesins/antagonists & inhibitors , Kinesins/chemistry , Pyrimidines/pharmacology , Thiones/pharmacology , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Binding Sites , Crystallization , Crystallography, X-Ray , Humans , Magnesium/metabolism , Microtubules/chemistry , Mitosis , Models, Molecular , Molecular Motor Proteins , Protein Binding/genetics , Protein Conformation , Protein Structure, Tertiary , Structure-Activity Relationship
12.
ACS Med Chem Lett ; 6(5): 531-6, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005528

ABSTRACT

In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein.

13.
PLoS One ; 9(6): e100880, 2014.
Article in English | MEDLINE | ID: mdl-24978597

ABSTRACT

Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss) while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF) were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib) resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Diamines/pharmacology , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Tumor Burden/drug effects , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Blood Glucose/metabolism , Cell Line, Tumor , Diamines/chemical synthesis , Drug Evaluation, Preclinical , Drug Synergism , Female , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, SCID , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyrazoles/chemical synthesis , Ribosomal Protein S6 Kinases/antagonists & inhibitors , Ribosomal Protein S6 Kinases/genetics , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
14.
ACS Med Chem Lett ; 4(2): 230-4, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-24900655

ABSTRACT

A series of novel [3a,4]dihydropyrazolo[1,5a]pyrimidines were identified, which were highly potent and selective inhibitors of PI3Kß. The template afforded the opportunity to develop novel SAR for both the hinge-binding (R3) and back-pocket (R4) substitutents. While cellular potency was relatively modest due to high protein binding, the series displayed low clearance in rat, mouse, and monkey.

15.
ACS Med Chem Lett ; 3(7): 524-9, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-24900504

ABSTRACT

A novel thiazolopyrimidinone series of PI3K-beta selective inhibitors has been identified. This chemotype has provided an excellent tool compound, 18, that showed potent growth inhibition in the PTEN-deficient breast cancer cell line MDA-MB-468 under anchorage-independent conditions, and it also demonstrated pharmacodynamic effects and efficacy in a PTEN-deficient prostate cancer PC-3 xenograft mouse model.

16.
J Med Chem ; 51(18): 5663-79, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18800763

ABSTRACT

Overexpression of AKT has an antiapoptotic effect in many cell types, and expression of dominant negative AKT blocks the ability of a variety of growth factors to promote survival. Therefore, inhibitors of AKT kinase activity might be useful as monotherapy for the treatment of tumors with activated AKT. Herein, we describe our lead optimization studies culminating in the discovery of compound 3g (GSK690693). Compound 3g is a novel ATP competitive, pan-AKT kinase inhibitor with IC 50 values of 2, 13, and 9 nM against AKT1, 2, and 3, respectively. An X-ray cocrystal structure was solved with 3g and the kinase domain of AKT2, confirming that 3g bound in the ATP binding pocket. Compound 3g potently inhibits intracellular AKT activity as measured by the inhibition of the phosphorylation levels of GSK3beta. Intraperitoneal administration of 3g in immunocompromised mice results in the inhibition of GSK3beta phosphorylation and tumor growth in human breast carcinoma (BT474) xenografts.


Subject(s)
Oxadiazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Female , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Mice, SCID , Models, Molecular , Oxadiazoles/chemistry , Oxadiazoles/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Substrate Specificity
17.
J Med Chem ; 51(14): 4239-52, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18578472

ABSTRACT

Inhibition of kinesin spindle protein (KSP) is a novel mechanism for treatment of cancer with the potential to overcome limitations associated with currently employed cytotoxic agents. Herein, we describe a C2-hydroxymethyl dihydropyrrole KSP inhibitor ( 11) that circumvents hERG channel binding and poor in vivo potency, issues that limited earlier compounds from our program. However, introduction of the C2-hydroxymethyl group caused 11 to be a substrate for cellular efflux by P-glycoprotein (Pgp). Utilizing knowledge garnered from previous KSP inhibitors, we found that beta-fluorination modulated the p K a of the piperidine nitrogen and reduced Pgp efflux, but the resulting compound ( 14) generated a toxic metabolite in vivo. Incorporation of fluorine in a strategic, metabolically benign position by synthesis of an N-methyl-3-fluoro-4-(aminomethyl)piperidine urea led to compound 30 that has an optimal in vitro and metabolic profile. Compound 30 (MK-0731) was recently studied in a phase I clinical trial in patients with taxane-refractory solid tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Kinesins/antagonists & inhibitors , Neoplasms/enzymology , Piperidines/pharmacology , Pyrroles/pharmacology , Taxoids/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy , Taxoids/therapeutic use
18.
Arch Biochem Biophys ; 464(1): 130-7, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17490600

ABSTRACT

We have developed a highly sensitive assay of MEK-mediated ATP hydrolysis by coupling the formation of ADP to NADH oxidation through the enzymes pyruvate kinase and lactate dehydrogenase. Robust ATP hydrolysis is catalyzed by phosphorylated MEK in the absence of the protein substrate ERK. This ERK-uncoupled ATPase activity is dependent on the phosphorylation status of MEK and is abrogated by the selective MEK kinase inhibitor U0126. ADP production is concomitant with Raf-mediated phosphorylation of MEK. Based on this finding, a coupled Raf/MEK assay is developed for measuring the Raf activity. A kinetic treatment derived under steady-state assumptions is presented for the analysis of the reaction progress curve generated by this coupled assay. We have shown that inhibitory potency of selective Raf inhibitors can be determined accurately by this assay.


Subject(s)
Adenosine Triphosphatases/metabolism , MAP Kinase Kinase 1/metabolism , Adenosine Triphosphate/chemistry , Animals , Butadienes/pharmacology , Escherichia coli/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Hydrolysis , Kinetics , Nitriles/pharmacology , Phosphates/metabolism , Phosphorylation , Proto-Oncogene Proteins B-raf/metabolism , Rabbits , Signal Transduction , Time Factors
19.
Bioorg Med Chem Lett ; 16(7): 1775-9, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16439123

ABSTRACT

The evolution of 2,4-diaryl-2,5-dihydropyrroles as inhibitors of KSP is described. Introduction of basic amide and urea moieties to the dihydropyrrole nucleus enhanced potency and aqueous solubility, simultaneously, and provided compounds that caused mitotic arrest of A2780 human ovarian carcinoma cells with EC(50)s<10nM. Ancillary hERG activity was evaluated for this series of inhibitors.


Subject(s)
Kinesins/antagonists & inhibitors , Pyrroles/chemistry , Pyrroles/pharmacology , Cell Line, Tumor , Female , Humans , Models, Molecular , Ovarian Neoplasms/pathology , Pyrroles/chemical synthesis , Spindle Apparatus/chemistry
20.
Bioorg Med Chem Lett ; 16(12): 3175-9, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16603356

ABSTRACT

Molecular modeling in combination with X-ray crystallographic information was employed to identify a region of the kinesin spindle protein (KSP) binding site not fully utilized by our first generation inhibitors. We discovered that by appending a propylamine substituent at the C5 carbon of a dihydropyrazole core, we could effectively fill this unoccupied region of space and engage in a hydrogen-bonding interaction with the enzyme backbone. This change led to a second generation compound with increased potency, a 400-fold enhancement in aqueous solubility at pH 4, and improved dog pharmacokinetics relative to the first generation compound.


Subject(s)
Drug Design , Kinesins/antagonists & inhibitors , Pyrazoles/chemistry , Pyrazoles/pharmacology , Alkylation , Allosteric Site , Amination , Animals , Crystallography, X-Ray , Dogs , Hydroxylation , Kinesins/chemistry , Kinesins/metabolism , Mitosis , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Solubility , Structure-Activity Relationship , Water
SELECTION OF CITATIONS
SEARCH DETAIL