Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 342
Filter
Add more filters

Publication year range
1.
Cell ; 178(6): 1493-1508.e20, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474370

ABSTRACT

Clinical benefits of cytokine blockade in ileal Crohn's disease (iCD) are limited to a subset of patients. Here, we applied single-cell technologies to iCD lesions to address whether cellular heterogeneity contributes to treatment resistance. We found that a subset of patients expressed a unique cellular module in inflamed tissues that consisted of IgG plasma cells, inflammatory mononuclear phagocytes, activated T cells, and stromal cells, which we named the GIMATS module. Analysis of ligand-receptor interaction pairs identified a distinct network connectivity that likely drives the GIMATS module. Strikingly, the GIMATS module was also present in a subset of patients in four independent iCD cohorts (n = 441), and its presence at diagnosis correlated with failure to achieve durable corticosteroid-free remission upon anti-TNF therapy. These results emphasize the limitations of current diagnostic assays and the potential for single-cell mapping tools to identify novel biomarkers of treatment response and tailored therapeutic opportunities.


Subject(s)
Crohn Disease/therapy , Cytokines/immunology , Intestines/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Crohn Disease/immunology , Crohn Disease/pathology , Humans , Immunotherapy/methods , Phagocytes/pathology , Single-Cell Analysis , Stromal Cells/pathology , T-Lymphocytes/pathology
2.
Cell ; 159(4): 709-13, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417146

ABSTRACT

Mammalian aging can be delayed with genetic, dietary, and pharmacologic approaches. Given that the elderly population is dramatically increasing and that aging is the greatest risk factor for a majority of chronic diseases driving both morbidity and mortality, it is critical to expand geroscience research directed at extending human healthspan.


Subject(s)
Aging/physiology , Chronic Disease , Aging/pathology , Animals , Biomedical Research , Epigenesis, Genetic , Gene-Environment Interaction , Humans
3.
Nat Rev Genet ; 23(8): 461-466, 2022 08.
Article in English | MEDLINE | ID: mdl-35534711

ABSTRACT

Careers in biomedicine can take many forms, and one common career decision facing scientists is whether to pursue jobs in academia or industry. In this Viewpoint article, four leading scientists who have spent time in both academia and industry provide their perspectives on both types of workplace, such as whether the environments are really as distinct as they are often perceived to be, as well as how academia-industry collaborations can be a driving force in biomedical research and translation.


Subject(s)
Biomedical Research , Industry
4.
Cell ; 153(3): 707-20, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23622250

ABSTRACT

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Gene Regulatory Networks , Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Animals , Bayes Theorem , Brain/pathology , Humans , Membrane Proteins/metabolism , Mice , Microglia/metabolism
5.
Nat Immunol ; 15(2): 118-27, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24448569

ABSTRACT

The immune system is a highly complex and dynamic system. Historically, the most common scientific and clinical practice has been to evaluate its individual components. This kind of approach cannot always expose the interconnecting pathways that control immune-system responses and does not reveal how the immune system works across multiple biological systems and scales. High-throughput technologies can be used to measure thousands of parameters of the immune system at a genome-wide scale. These system-wide surveys yield massive amounts of quantitative data that provide a means to monitor and probe immune-system function. New integrative analyses can help synthesize and transform these data into valuable biological insight. Here we review some of the computational analysis tools for high-dimensional data and how they can be applied to immunology.


Subject(s)
Allergy and Immunology , Immune System , Medical Informatics/methods , Systems Biology/methods , Animals , Genome-Wide Association Study , High-Throughput Screening Assays , Humans , Principal Component Analysis , Research Design
6.
Nat Rev Genet ; 20(3): 157-172, 2019 03.
Article in English | MEDLINE | ID: mdl-30546107

ABSTRACT

Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.


Subject(s)
Bacteria , DNA Methylation , DNA, Bacterial , Genome, Bacterial , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
7.
PLoS Genet ; 18(11): e1010367, 2022 11.
Article in English | MEDLINE | ID: mdl-36327219

ABSTRACT

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Subject(s)
COVID-19 , Exome , Humans , Exome/genetics , Genome-Wide Association Study , COVID-19/genetics , Genetic Predisposition to Disease , Toll-Like Receptor 7/genetics , SARS-CoV-2/genetics
8.
Gut ; 72(7): 1271-1287, 2023 07.
Article in English | MEDLINE | ID: mdl-36109152

ABSTRACT

OBJECTIVE: IBD therapies and treatments are evolving to deeper levels of remission. Molecular measures of disease may augment current endpoints including the potential for less invasive assessments. DESIGN: Transcriptome analysis on 712 endoscopically defined inflamed (Inf) and 1778 non-inflamed (Non-Inf) intestinal biopsies (n=498 Crohn's disease, n=421 UC and 243 controls) in the Mount Sinai Crohn's and Colitis Registry were used to identify genes differentially expressed between Inf and Non-Inf biopsies and to generate a molecular inflammation score (bMIS) via gene set variance analysis. A circulating MIS (cirMIS) score, reflecting intestinal molecular inflammation, was generated using blood transcriptome data. bMIS/cirMIS was validated as indicators of intestinal inflammation in four independent IBD cohorts. RESULTS: bMIS/cirMIS was strongly associated with clinical, endoscopic and histological disease activity indices. Patients with the same histologic score of inflammation had variable bMIS scores, indicating that bMIS describes a deeper range of inflammation. In available clinical trial data sets, both scores were responsive to IBD treatment. Despite similar baseline endoscopic and histologic activity, UC patients with lower baseline bMIS levels were more likely treatment responders compared with those with higher levels. Finally, among patients with UC in endoscopic and histologic remission, those with lower bMIS levels were less likely to have a disease flare over time. CONCLUSION: Transcriptionally based scores provide an alternative objective and deeper quantification of intestinal inflammation, which could augment current clinical assessments used for disease monitoring and have potential for predicting therapeutic response and patients at higher risk of disease flares.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Humans , Colitis, Ulcerative/pathology , Inflammation/genetics , Inflammation/pathology , Crohn Disease/pathology , Biopsy , Biomarkers , Intestinal Mucosa/pathology
9.
Hum Mol Genet ; 30(6): 514-523, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33601420

ABSTRACT

Epidemiological studies have long recognized risky behaviors as potentially modifiable factors for the onset and flares of inflammatory bowel disease (IBD); yet, the underlying mechanisms are largely unknown. Recently, the genetic susceptibilities to cigarette smoking, alcohol and cannabis use [i.e. substance use (SU)] have been characterized by well-powered genome-wide association studies (GWASs). We aimed to assess the impact of genetic determinants of SU on IBD risk. Using Mount Sinai Crohn's and Colitis Registry (MSCCR) cohort of 1058 IBD cases and 188 healthy controls, we computed the polygenic risk score (PRS) for SU and correlated them with the observed IBD diagnoses, while adjusting for genetic ancestry, PRS for IBD and SU behavior at enrollment. The results were validated in a pediatric cohort with no SU exposure. PRS of alcohol consumption (DrnkWk), smoking cessation and age of smoking initiation, were associated with IBD risk in MSCCR even after adjustment for PRSIBD and actual smoking status. One interquartile range decrease in PRSDrnkWk was significantly associated to higher IBD risk (i.e. inverse association) (with odds ratio = 1.65 and 95% confidence interval: 1.32, 2.06). The association was replicated in a pediatric Crohn's disease cohort. Colocalization analysis identified a locus on chromosome 16 with polymorphisms in IL27, SULT1A2 and SH2B1, which reached genome-wide statistical significance in GWAS (P < 7.7e-9) for both alcohol consumption and IBD risk. This study demonstrated that the genetic predisposition to SU was associated with IBD risk, independent of PRSIBD and in the absence of SU behaviors. Our study may help further stratify individuals at risk of IBD.


Subject(s)
Alcohol Drinking/adverse effects , Biomarkers/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Inflammatory Bowel Diseases/diagnosis , Polymorphism, Single Nucleotide , Adolescent , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Male , Risk Factors
10.
Gastroenterology ; 162(3): 828-843.e11, 2022 03.
Article in English | MEDLINE | ID: mdl-34780722

ABSTRACT

BACKGROUND & AIMS: Polygenic and environmental factors are underlying causes of inflammatory bowel disease (IBD). We hypothesized that integration of the genetic loci controlling a metabolite's abundance, with known IBD genetic susceptibility loci, may help resolve metabolic drivers of IBD. METHODS: We measured the levels of 1300 metabolites in the serum of 484 patients with ulcerative colitis (UC) and 464 patients with Crohn's disease (CD) and 365 controls. Differential metabolite abundance was determined for disease status, subtype, clinical and endoscopic disease activity, as well as IBD phenotype including disease behavior, location, and extent. To inform on the genetic basis underlying metabolic diversity, we integrated metabolite and genomic data. Genetic colocalization and Mendelian randomization analyses were performed using known IBD risk loci to explore whether any metabolite was causally associated with IBD. RESULTS: We found 173 genetically controlled metabolites (metabolite quantitative trait loci, 9 novel) within 63 non-overlapping loci (7 novel). Furthermore, several metabolites significantly associated with IBD disease status and activity as defined using clinical and endoscopic indexes. This constitutes a resource for biomarker discovery and IBD biology insights. Using this resource, we show that a novel metabolite quantitative trait locus for serum butyrate levels containing ACADS was not supported as causal for IBD; replicate the association of serum omega-6 containing lipids with the fatty acid desaturase 1/2 locus and identify these metabolites as causal for CD through Mendelian randomization; and validate a novel association of serum plasmalogen and TMEM229B, which was predicted as causal for CD. CONCLUSIONS: An exploratory analysis combining genetics and unbiased serum metabolome surveys can reveal novel biomarkers of disease activity and potential mediators of pathology in IBD.


Subject(s)
Acyl-CoA Dehydrogenase/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Butyrates/blood , Case-Control Studies , Child , Child, Preschool , Colitis, Ulcerative/blood , Colitis, Ulcerative/drug therapy , Crohn Disease/blood , Crohn Disease/drug therapy , Cross-Sectional Studies , Feces/chemistry , Female , Genome-Wide Association Study , Genotype , HEK293 Cells , Humans , Male , Mendelian Randomization Analysis , Metabolome , Middle Aged , Plasmalogens/blood , Plasmalogens/genetics , Quantitative Trait Loci , Severity of Illness Index , Young Adult
11.
Genome Res ; 30(10): 1379-1392, 2020 10.
Article in English | MEDLINE | ID: mdl-32967914

ABSTRACT

Sex differences in adipose tissue distribution and function are associated with sex differences in cardiometabolic disease. While many studies have revealed sex differences in adipocyte cell signaling and physiology, there is a relative dearth of information regarding sex differences in transcript abundance and regulation. We investigated sex differences in subcutaneous adipose tissue transcriptional regulation using omic-scale data from ∼3000 geographically and ethnically diverse human samples. We identified 162 genes with robust sex differences in expression. Differentially expressed genes were implicated in oxidative phosphorylation and adipogenesis. We further determined that sex differences in gene expression levels could be related to sex differences in the genetics of gene expression regulation. Our analyses revealed sex-specific genetic associations, and this finding was replicated in a study of 98 inbred mouse strains. The genes under genetic regulation in human and mouse were enriched for oxidative phosphorylation and adipogenesis. Enrichment analysis showed that the associated genetic loci resided within binding motifs for adipogenic transcription factors (e.g., PPARG and EGR1). We demonstrated that sex differences in gene expression could be influenced by sex differences in genetic regulation for six genes (e.g., FADS1 and MAP1B). These genes exhibited dynamic expression patterns during adipogenesis and robust expression in mature human adipocytes. Our results support a role for adipogenesis-related genes in subcutaneous adipose tissue sex differences in the genetic and environmental regulation of gene expression.


Subject(s)
Adipogenesis/genetics , Adipose Tissue/metabolism , Gene Expression Regulation , Sex Characteristics , Delta-5 Fatty Acid Desaturase , Female , Genotype , Humans , Male , Oxidative Phosphorylation , Transcription Factors/metabolism
12.
Hum Mutat ; 43(11): 1557-1566, 2022 11.
Article in English | MEDLINE | ID: mdl-36057977

ABSTRACT

To determine the phase of NUDT15 sequence variants for more comprehensive star (*) allele diplotyping, we developed a novel long-read single-molecule real-time HiFi amplicon sequencing method. A 10.5 kb NUDT15 amplicon assay was validated using reference material positive controls and additional samples for specimen type and blinded accuracy assessment. Triplicate NUDT15 HiFi sequencing of two reference material samples had nonreference genotype concordances of >99.9%, indicating that the assay is robust. Notably, short-read genome sequencing of a subset of samples was unable to determine the phase of star (*) allele-defining NUDT15 variants, resulting in ambiguous diplotype results. In contrast, long-read HiFi sequencing phased all variants across the NUDT15 amplicons, including a *2/*9 diplotype that previously was characterized as *1/*2 in the 1000 Genomes Project v3 data set. Assay throughput was also tested using 8.5 kb amplicons from 100 Ashkenazi Jewish individuals, which identified a novel NUDT15 *1 suballele (c.-121G>A) and a rare likely deleterious coding variant (p.Pro129Arg). Both novel alleles were Sanger confirmed and assigned as *1.007 and *20, respectively, by the PharmVar Consortium. Taken together, NUDT15 HiFi amplicon sequencing is an innovative method for phased full-gene characterization and novel allele discovery, which could improve NUDT15 pharmacogenomic testing and subsequent phenotype prediction.


Subject(s)
Pharmacogenetics , Alleles , Genotype , Haplotypes , Humans , Sequence Analysis, DNA/methods
13.
Oncologist ; 27(6): 476-486, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35298662

ABSTRACT

INTRODUCTION: Historically, high rates of actionable driver mutations have been reported in never-smokers with lung adenocarcinoma (ADC). In the era of modern, comprehensive cancer mutation sequencing, this relationship necessitates a more detailed analysis. METHODS: All Mount Sinai patients between January 1, 2015, and June 1, 2020, with a diagnosis of ADC of any stage with known smoking status who received genomic testing were included. Most patients were analyzed using the Sema4 hotspot panel or the Oncomine Comprehensive Assay version 3 next-generation sequencing (NGS) panel conducted at Sema4. Patients were considered fully genotyped if they were comprehensively analyzed for alterations in EGFR, KRAS, MET, ALK, RET, ROS1, BRAF, NTRK1-3, and ERBB2, otherwise they were considered partially genotyped. RESULTS: Two hundred and thirty-six never-smokers and 671 smokers met the above criteria. Of the never-smokers, 201 (85%) had a driver mutation with 167 (71%) considered actionable (ie, those with US Food and Drug Administration-approved agents). Among smokers, 439 (65%) had an identified driver mutation with 258 (38%) actionable (P < .0001). When comprehensively sequenced, 95% (70/74) of never-smokers had a driver mutation with 78% (58/74) actionable; whereas, for smokers, 75% (135/180) had a driver with only 47% (74/180) actionable (P < .0001). Within mutations groups, EGFR G719X and KRAS G12Cs were more common to smokers. For stage IV patients harboring EGFR-mutant tumors treated with EGFR-directed therapies, never-smokers had significantly improved OS compared to smokers (hazard ratio = 2.71; P = .025). In multivariable analysis, Asian ancestry and female sex remained significant predictors of (1) OS in stage IV patients and (2) likelihood of harboring a receptor of fusion-based driver. CONCLUSION: Comprehensive NGS revealed driver alterations in 95% of never-smokers, with the majority having an associated therapy available. All efforts should be exhausted to identify or rule out the presence of an actionable driver mutation in all metastatic lung ADC.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/drug therapy , Mutation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Smokers
14.
Gastroenterology ; 161(6): 1953-1968.e15, 2021 12.
Article in English | MEDLINE | ID: mdl-34480882

ABSTRACT

BACKGROUND AND AIMS: Disease extent varies in ulcerative colitis (UC) from proctitis to left-sided colitis to pancolitis and is a major prognostic factor. When the extent of UC is limited there is often a sharp demarcation between macroscopically involved and uninvolved areas and what defines this or subsequent extension is unknown. We characterized the demarcation site molecularly and determined genes associated with subsequent disease extension. METHODS: We performed RNA sequence analysis of biopsy specimens from UC patients with endoscopically and histologically confirmed limited disease, of which a subset later extended. Biopsy specimens were obtained from the endoscopically inflamed upper (proximal) limit of disease, immediately adjacent to the uninvolved colon, as well as at more proximal, endoscopically uninflamed colonic segments. RESULTS: Differentially expressed genes were identified in the endoscopically inflamed biopsy specimens taken at each patient's most proximal diseased site relative to healthy controls. Expression of these genes in the more proximal biopsy specimens transitioned back to control levels abruptly or gradually, the latter pattern supporting the concept that disease exists beyond the endoscopic disease demarcation site. The gradually transitioning genes were associated with inflammation, angiogenesis, glucuronidation, and homeodomain pathways. A subset of these genes in inflamed biopsy specimens was found to predict disease extension better than clinical features and were responsive to biologic therapies. Network analysis revealed critical roles for interferon signaling in UC inflammation and poly(ADP-ribose) polymerase 14 (PARP14) was a predicted key driver gene of extension. Higher PARP14 protein levels were found in inflamed biopsy specimens of patients with limited UC that subsequently extended. CONCLUSION: Molecular predictors of disease extension reveal novel strategies for disease prognostication and potential therapeutic targeting.


Subject(s)
Colitis, Ulcerative/genetics , Colon/metabolism , Gene Expression Profiling , Poly(ADP-ribose) Polymerases/genetics , Sequence Analysis, RNA , Transcriptome , Bayes Theorem , Biopsy , Case-Control Studies , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/pathology , Cross-Sectional Studies , Gene Expression Regulation , Gene Regulatory Networks , Humans , Patient Acuity , Poly(ADP-ribose) Polymerases/metabolism , Predictive Value of Tests , Signal Transduction
15.
Gastroenterology ; 160(1): 287-301.e20, 2021 01.
Article in English | MEDLINE | ID: mdl-32980345

ABSTRACT

BACKGROUND AND AIMS: The presence of gastrointestinal symptoms and high levels of viral RNA in the stool suggest active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within enterocytes. METHODS: Here, in multiple, large cohorts of patients with inflammatory bowel disease (IBD), we have studied the intersections between Coronavirus Disease 2019 (COVID-19), intestinal inflammation, and IBD treatment. RESULTS: A striking expression of ACE2 on the small bowel enterocyte brush border supports intestinal infectivity by SARS-CoV-2. Commonly used IBD medications, both biologic and nonbiologic, do not significantly impact ACE2 and TMPRSS2 receptor expression in the uninflamed intestines. In addition, we have defined molecular responses to COVID-19 infection that are also enriched in IBD, pointing to shared molecular networks between COVID-19 and IBD. CONCLUSIONS: These data generate a novel appreciation of the confluence of COVID-19- and IBD-associated inflammation and provide mechanistic insights supporting further investigation of specific IBD drugs in the treatment of COVID-19. Preprint doi: https://doi.org/10.1101/2020.05.21.109124.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , Inflammatory Bowel Diseases/enzymology , Intestinal Mucosa/enzymology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Case-Control Studies , Clinical Trials as Topic , Cross-Sectional Studies , Disease Models, Animal , Female , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/virology , Longitudinal Studies , Male , Mice , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Signal Transduction , COVID-19 Drug Treatment
16.
Nature ; 536(7614): 86-90, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27437576

ABSTRACT

Atherosclerosis is the disease process that underlies heart attack and stroke. Advanced lesions at risk of rupture are characterized by the pathological accumulation of diseased vascular cells and apoptotic cellular debris. Why these cells are not cleared remains unknown. Here we show that atherogenesis is associated with upregulation of CD47, a key anti-phagocytic molecule that is known to render malignant cells resistant to programmed cell removal, or 'efferocytosis'. We find that administration of CD47-blocking antibodies reverses this defect in efferocytosis, normalizes the clearance of diseased vascular tissue, and ameliorates atherosclerosis in multiple mouse models. Mechanistic studies implicate the pro-atherosclerotic factor TNF-α as a fundamental driver of impaired programmed cell removal, explaining why this process is compromised in vascular disease. Similar to recent observations in cancer, impaired efferocytosis appears to play a pathogenic role in cardiovascular disease, but is not a fixed defect and may represent a novel therapeutic target.


Subject(s)
Antibodies, Blocking/immunology , Antibodies, Blocking/pharmacology , Atherosclerosis/prevention & control , CD47 Antigen/immunology , Phagocytosis/drug effects , Animals , Apoptosis , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/therapy , CD47 Antigen/biosynthesis , CD47 Antigen/metabolism , Carotid Arteries/pathology , Coronary Vessels/pathology , Disease Models, Animal , Female , Humans , Male , Mice , NF-kappa B/metabolism , Protein Biosynthesis , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
17.
BMC Pregnancy Childbirth ; 22(1): 904, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471280

ABSTRACT

BACKGROUND: In 2016, the American College of Obstetricians and Gynecologists recommended antenatal corticosteroids in the late preterm period for women at risk for preterm delivery. Limited real-world evidence exists on neonatal outcomes, particularly for twin gestations, following the guideline change. The study objective is to determine the association of antenatal corticosteroids in late preterm singleton and twin pregnancies with respiratory complications and hypoglycemia in a real-world clinical setting. METHODS: This is a retrospective cohort study comprising late preterm deliveries (4,341 mother-child pairs) within the Mount Sinai Health System, 2012-2018. The exposure of interest is antenatal corticosteroid administration of betamethasone during pregnancy between 34 0/7 and 36 6/7 weeks. Our primary outcomes are neonatal respiratory complications and hypoglycemia. Multivariable logistic regression was used to estimate the association between antenatal corticosteroid exposure and these two outcomes. We stratified the study population by singleton gestations and twins to minimize the potential confounding from different obstetric management between the two groups. RESULTS: Among a total of 4,341 mother-child pairs (3,309 singleton and 1,032 twin mother-child pairs), 745 mothers received betamethasone, of which 40.94% (305/745) received the full course. Relative to no treatment, a full course of betamethasone was associated with reduced odds of respiratory complications (OR = 0.53, 95% CI:[0.31-0.85], p < 0.01) and increased odds of hypoglycemia (OR = 1.86, 95%CI:[1.34-2.56], p < 0.01) in singletons; however, the association with respiratory complications was not significant in twins (OR = 0.42, 95% CI:[0.11-1.23], p = 0.16), but was associated with increased odds of hypoglycemia (OR = 2.18, 95% CI:[1.12-4.10], p = 0.02). A partial course of betamethasone (relative to no treatment) was not significantly associated with any of the outcomes, other than respiratory complications in twins (OR = 0.34, 95% CI:[0.12-0.82], p = 0.02). CONCLUSIONS: Exposure to antenatal corticosteroids in singletons and twins is associated with increased odds of hypoglycemia. Among singletons, exposure to the full dosage (i.e. two doses) was associated with decreased odds of respiratory complications but this was only the case for partial dose among twins. Twin gestations were not studied by the Antenatal Late Preterm Steroids trial. Therefore, our study findings will contribute to the paucity of evidence on the benefit of antenatal corticosteroids in this group. Health systems should systematically monitor guideline implementations to improve patient outcomes.


Subject(s)
Adrenal Cortex Hormones , Hypoglycemia , Respiratory Distress Syndrome, Newborn , Female , Humans , Infant, Newborn , Pregnancy , Adrenal Cortex Hormones/adverse effects , Betamethasone/adverse effects , Hypoglycemia/chemically induced , Hypoglycemia/epidemiology , Hypoglycemia/prevention & control , Pregnancy, Twin , Premature Birth/epidemiology , Premature Birth/prevention & control , Premature Birth/drug therapy , Respiratory Distress Syndrome, Newborn/epidemiology , Respiratory Distress Syndrome, Newborn/prevention & control , Respiratory Distress Syndrome, Newborn/drug therapy , Retrospective Studies
18.
J Allergy Clin Immunol ; 147(3): 879-893, 2021 03.
Article in English | MEDLINE | ID: mdl-32828590

ABSTRACT

BACKGROUND: Nasal transcriptomics can provide an accessible window into asthma pathobiology. OBJECTIVE: Our goal was to move beyond gene signatures of asthma to identify master regulator genes that causally regulate genes associated with asthma phenotypes. METHODS: We recruited 156 children with severe persistent asthma and controls for nasal transcriptome profiling and applied network-based and probabilistic causal methods to identify severe asthma genes and their master regulators. We then took the same approach in an independent cohort of 190 adults with mild/moderate asthma and controls to identify mild/moderate asthma genes and their master regulators. Comparative analysis of the master regulator genes followed by validation testing in independent children with severe asthma (n = 21) and mild/moderate asthma (n = 154) was then performed. RESULTS: Nasal gene signatures for severe persistent asthma and for mild/moderate persistent asthma were identified; both were found to be enriched in coexpression network modules for ciliary function and inflammatory response. By applying probabilistic causal methods to these gene signatures and validation testing in independent cohorts, we identified (1) a master regulator gene common to asthma across severity and ages (FOXJ1); (2) master regulator genes of severe persistent asthma in children (LRRC23, TMEM231, CAPS, PTPRC, and FYB); and (3) master regulator genes of mild/moderate persistent asthma in children and adults (C1orf38 and FMNL1). The identified master regulators were statistically inferred to causally regulate the expression of downstream genes that modulate ciliary function and inflammatory response to influence asthma. CONCLUSION: The identified master regulator genes of asthma provide a novel path forward to further uncovering asthma mechanisms and therapy.


Subject(s)
Asthma/genetics , Nose/physiology , Adolescent , Child , Cohort Studies , Female , Forkhead Transcription Factors/genetics , Formins/genetics , Gene Expression Profiling , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Models, Statistical , Phenotype , Transcriptome
19.
Hum Mutat ; 42(6): 685-693, 2021 06.
Article in English | MEDLINE | ID: mdl-33783914

ABSTRACT

De novo, heterozygous, loss-of-function variants were identified in Pou domain, class 4, transcription factor 1 (POU4F1) via whole-exome sequencing in four independent probands presenting with ataxia, intention tremor, and hypotonia. POU4F1 is expressed in the developing nervous system, and mice homozygous for null alleles of Pou4f1 exhibit uncoordinated movements with newborns being unable to successfully right themselves to feed. Head magnetic resonance imaging of the four probands was reviewed and multiple abnormalities were noted, including significant cerebellar vermian atrophy and hypertrophic olivary degeneration in one proband. Transcriptional activation of the POU4F1 p.Gln306Arg protein was noted to be decreased when compared with wild type. These findings suggest that heterozygous, loss-of-function variants in POU4F1 are causative of a novel ataxia syndrome.


Subject(s)
Ataxia/genetics , Muscle Hypotonia/genetics , Transcription Factor Brn-3A/genetics , Tremor/genetics , Adult , Ataxia/complications , Ataxia/diagnosis , Ataxia/pathology , Child , Child, Preschool , Female , Haploinsufficiency , Humans , Magnetic Resonance Imaging , Male , Muscle Hypotonia/complications , Muscle Hypotonia/diagnosis , Mutation, Missense , Retrospective Studies , Syndrome , Tremor/complications , Tremor/diagnosis , United States , Exome Sequencing , Young Adult
20.
Oncologist ; 26(7): e1226-e1239, 2021 07.
Article in English | MEDLINE | ID: mdl-33829580

ABSTRACT

BACKGROUND: Racial disparities among clinical trial participants present a challenge to assess whether trial results can be generalized into patients representing diverse races and ethnicities. The objective of this study was to evaluate the impact of race and ethnicity on treatment response in patients with advanced non-small cell lung cancer (aNSCLC) treated with programmed cell death-1 (PD-1) or programmed cell death-ligand 1 (PD-L1) inhibitors through analysis of real-world data (RWD). MATERIALS AND METHODS: A retrospective cohort study of 11,138 patients with lung cancer treated at hospitals within the Mount Sinai Health System was performed. Patients with confirmed aNSCLC who received anti-PD-1/PD-L1 treatment were analyzed for clinical outcomes. Our cohort included 249 patients with aNSCLC who began nivolumab, pembrolizumab, or atezolizumab treatment between November 2014 and December 2018. Time-to-treatment discontinuation (TTD) and overall survival (OS) were the analyzed clinical endpoints. RESULTS: After a median follow-up of 14.8 months, median TTD was 7.8 months (95% confidence interval, 5.4-not estimable [NE]) in 75 African American patients versus 4.6 (2.4-7.2) in 110 White patients (hazard ratio [HR], 0.63). Median OS was not reached (18.4-NE) in African American patients versus 11.6 months (9.7-NE) in White patients (HR, 0.58). Multivariable Cox regression conducted with potential confounders confirmed longer TTD (adjusted HR, 0.65) and OS (adjusted HR, 0.60) in African American versus White patients. Similar real-world response rate (42.6% vs. 43.5%) and disease control rate (59.6% vs. 56.5%) were observed in the African American and White patient populations. Further investigation revealed the African American patient group had lower incidence (14.7%) of putative hyperprogressive diseases (HPD) upon anti-PD-1/PD-L1 treatment than the White patient group (24.5%). CONCLUSION: Analysis of RWD showed longer TTD and OS in African American patients with aNSCLC treated with anti-PD-1/PD-L1 inhibitors. Lower incidence of putative HPD is a possible reason for the favorable outcomes in this patient population. IMPLICATIONS FOR PRACTICE: There is a significant underrepresentation of minority patients in randomized clinical trials, and this study demonstrates that real-world data can be used to investigate the impact of race and ethnicity on treatment response. In retrospective analysis of patients with advanced non-small cell lung cancer treated with programmed cell death-1 or programmed cell death-ligand 1 inhibitors, African American patients had significantly longer time-to-treatment discontinuation and longer overall survival. Analysis of real-world data can yield clinical insights and establish a more complete picture of medical interventions in routine clinical practice.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Apoptosis , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung/drug therapy , Ethnicity , Humans , Immune Checkpoint Inhibitors , Ligands , Lung Neoplasms/drug therapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL