Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 52(7): 3667-3681, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38321961

ABSTRACT

The Wnt/ß-Catenin pathway plays a key role in cell fate determination during development and in adult tissue regeneration by stem cells. These processes involve profound gene expression and epigenome remodeling and linking Wnt/ß-Catenin signaling to chromatin modifications has been a challenge over the past decades. Functional studies of the lysine demethylase LSD1/KDM1A converge to indicate that this epigenetic regulator is a key regulator of cell fate, although the extracellular cues controlling LSD1 action remain largely unknown. Here we show that ß-Catenin is a substrate of LSD1. Demethylation by LSD1 prevents ß-Catenin degradation thereby maintaining its nuclear levels. Consistently, in absence of LSD1, ß-Catenin transcriptional activity is reduced in both MuSCs and ESCs. Moreover, inactivation of LSD1 in mouse muscle stem cells and embryonic stem cells shows that LSD1 promotes mitotic spindle orientation via ß-Catenin protein stabilization. Altogether, by inscribing LSD1 and ß-Catenin in the same molecular cascade linking extracellular factors to gene expression, our results provide a mechanistic explanation to the similarity of action of canonical Wnt/ß-Catenin signaling and LSD1 on stem cell fate.


Subject(s)
Cell Self Renewal , Histone Demethylases , Wnt Signaling Pathway , beta Catenin , Animals , Histone Demethylases/metabolism , Histone Demethylases/genetics , beta Catenin/metabolism , beta Catenin/genetics , Mice , Cell Self Renewal/genetics , Cell Nucleus/metabolism , Spindle Apparatus/metabolism , Cell Differentiation/genetics , Humans , Stem Cells/metabolism , Stem Cells/cytology
2.
Nucleic Acids Res ; 52(6): 3031-3049, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38281187

ABSTRACT

Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.


Subject(s)
Aging, Premature , Histones , Muscle Fibers, Skeletal , Animals , Mice , Aging, Premature/genetics , DNA , DNA Breaks, Double-Stranded , Histones/genetics , Histones/metabolism , Muscle Fibers, Skeletal/metabolism , Nucleosomes
3.
Brain ; 146(8): 3470-3483, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36454683

ABSTRACT

Distal hereditary motor neuropathy represents a group of motor inherited neuropathies leading to distal weakness. We report a family of two brothers and a sister affected by distal hereditary motor neuropathy in whom a homozygous variant c.3G>T (p.1Met?) was identified in the COQ7 gene. This gene encodes a protein required for coenzyme Q10 biosynthesis, a component of the respiratory chain in mitochondria. Mutations of COQ7 were previously associated with severe multi-organ disorders characterized by early childhood onset and developmental delay. Using patient blood samples and fibroblasts derived from a skin biopsy, we investigated the pathogenicity of the variant of unknown significance c.3G>T (p.1Met?) in the COQ7 gene and the effect of coenzyme Q10 supplementation in vitro. We showed that this variation leads to a severe decrease in COQ7 protein levels in the patient's fibroblasts, resulting in a decrease in coenzyme Q10 production and in the accumulation of 6-demethoxycoenzyme Q10, the COQ7 substrate. Interestingly, such accumulation was also found in the patient's plasma. Normal coenzyme Q10 and 6-demethoxycoenzyme Q10 levels were restored in vitro by using the coenzyme Q10 precursor 2,4-dihydroxybenzoic acid, thus bypassing the COQ7 requirement. Coenzyme Q10 biosynthesis deficiency is known to impair the mitochondrial respiratory chain. Seahorse experiments showed that the patient's cells mainly rely on glycolysis to maintain sufficient ATP production. Consistently, the replacement of glucose by galactose in the culture medium of these cells reduced their proliferation rate. Interestingly, normal proliferation was restored by coenzyme Q10 supplementation of the culture medium, suggesting a therapeutic avenue for these patients. Altogether, we have identified the first example of recessive distal hereditary motor neuropathy caused by a homozygous variation in the COQ7 gene, which should thus be included in the gene panels used to diagnose peripheral inherited neuropathies. Furthermore, 6-demethoxycoenzyme Q10 accumulation in the blood can be used to confirm the pathogenic nature of the mutation. Finally, supplementation with coenzyme Q10 or derivatives should be considered to prevent the progression of COQ7-related peripheral inherited neuropathy in diagnosed patients.


Subject(s)
Mitochondrial Diseases , Ubiquinone , Male , Humans , Child, Preschool , Ubiquinone/therapeutic use , Mutation/genetics , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Ataxia/genetics
4.
Brain ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079474

ABSTRACT

TDP-43-positive inclusions in neurons are a hallmark of several neurodegenerative diseases including familial amyotrophic lateral sclerosis (fALS) caused by pathogenic TARDBP variants as well as more common non-Mendelian sporadic ALS (sALS). Here we report a G376V-TDP-43 missense variant in the C-terminal prion-like domain of the protein in two French families affected by an autosomal dominant myopathy but not fulfilling diagnostic criteria for ALS. Patients from both families presented with progressive weakness and atrophy of distal muscles, starting in their 5th-7th decade. Muscle biopsies revealed a degenerative myopathy characterized by accumulation of rimmed (autophagic) vacuoles, disruption of sarcomere integrity and severe myofibrillar disorganization. The G376 V variant altered a highly conserved amino acid residue and was absent in databases on human genome variation. Variant pathogenicity was supported by in silico analyses and functional studies. The G376 V mutant increased the formation of cytoplasmic TDP-43 condensates in cell culture models, promoted assembly into high molecular weight oligomers and aggregates in vitro, and altered morphology of TDP-43 condensates arising from phase separation. Moreover, the variant led to the formation of cytoplasmic TDP-43 condensates in patient-derived myoblasts and induced abnormal mRNA splicing in patient muscle tissue. The identification of individuals with TDP-43-related myopathy but not ALS implies that TARDBP missense variants may have more pleiotropic effects than previously anticipated and support a primary role for TDP-43 in skeletal muscle pathophysiology. We propose to include TARDBP screening in the genetic work-up of patients with late-onset distal myopathy. Further research is warranted to examine the precise pathogenic mechanisms of TARDBP variants causing either a neurodegenerative or myopathic phenotype.

5.
Cell Mol Life Sci ; 80(2): 47, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36658409

ABSTRACT

Histone H3 trimethylation on lysine 9 (H3K9me3) is a defining feature of mammalian pericentromeres, loss of which results in genome instability. Here we show that CDYL2 is recruited to pericentromeres in an H3K9me3-dependent manner and is required for faithful mitosis and genome stability. CDYL2 RNAi in MCF-7 breast cancer cells and Hela cervical cancer cells inhibited their growth, induced apoptosis, and provoked both nuclear and mitotic aberrations. Mass spectrometry analysis of CDYL2-interacting proteins identified the neurodevelopmental disease-linked mitotic regulators CHAMP1 and POGZ, which are associated with a central non-conserved region of CDYL2. RNAi rescue assays identified both the CDYL2 chromodomain and the CHAMP1-POGZ interacting region as required and, together, sufficient for CDYL2 regulation of mitosis and genome stability. CDYL2 RNAi caused loss of CHAMP1 localization at pericentromeres. We propose that CDYL2 functions as an adaptor protein that connects pericentromeric H3K9me3 with CHAMP1 and POGZ to ensure mitotic fidelity and genome stability.


Subject(s)
Chromosomal Proteins, Non-Histone , Co-Repressor Proteins , Histones , Mitosis , Humans , Chromosomal Proteins, Non-Histone/metabolism , Genomic Instability , Histones/genetics , Histones/metabolism , Lysine/metabolism , Mitosis/genetics , Phosphoproteins/metabolism , RNA Interference , MCF-7 Cells , Co-Repressor Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism
6.
Neuropathol Appl Neurobiol ; 49(1): e12876, 2023 02.
Article in English | MEDLINE | ID: mdl-36575942

ABSTRACT

AIMS: Myotonic dystrophy type I (DM1) is one of the most frequent muscular dystrophies in adults. Although DM1 has long been considered mainly a muscle disorder, growing evidence suggests the involvement of peripheral nerves in the pathogenicity of DM1 raising the question of whether motoneurons (MNs) actively contribute to neuromuscular defects in DM1. METHODS: By using micropatterned 96-well plates as a coculture platform, we generated a functional neuromuscular model combining DM1 and muscleblind protein (MBNL) knock-out human-induced pluripotent stem cells-derived MNs and human healthy skeletal muscle cells. RESULTS: This approach led to the identification of presynaptic defects which affect the formation or stability of the neuromuscular junction at an early developmental stage. These neuropathological defects could be reproduced by the loss of RNA-binding MBNL proteins, whose loss of function in vivo is associated with muscular defects associated with DM1. These experiments indicate that the functional defects associated with MNs can be directly attributed to MBNL family proteins. Comparative transcriptomic analyses also revealed specific neuronal-related processes regulated by these proteins that are commonly misregulated in DM1. CONCLUSIONS: Beyond the application to DM1, our approach to generating a robust and reliable human neuromuscular system should facilitate disease modelling studies and drug screening assays.


Subject(s)
Induced Pluripotent Stem Cells , Myotonic Dystrophy , Adult , Humans , Myotonic Dystrophy/pathology , RNA-Binding Proteins/metabolism , Neuromuscular Junction/pathology , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/pathology
7.
Nanomedicine ; 47: 102623, 2023 01.
Article in English | MEDLINE | ID: mdl-36309185

ABSTRACT

In a context of drug repurposing, pentamidine (PTM), an FDA-approved antiparasitic drug, has been proposed to reverse the splicing defects associated in myotonic dystrophy type 1 (DM1). However, clinical use of PTM is hinder by substantial toxicity, leading to find alternative delivery strategies. In this work we proposed hyaluronic acid-based nanoparticles as a novel encapsulation strategy to efficiently deliver PTM to skeletal muscles cells. In vitro studies on C2C12 myoblasts and myotubes showed an efficient nanoparticles' internalization with minimal toxicity. More interestingly, our findings evidenced for the first time the endosomal escape of hyaluronic acid-based nanocarriers. Ex vivo studies showed an efficient nanoparticles' internalization within skeletal muscle fibers. Finally, the therapeutic efficacy of PTM-loaded nanosystems to reduce the number of nuclear foci has been demonstrated in a novel DM1 in vitro model. So far, current data demonstrated the potency of hyaluronic acid-based nanosystems as efficient nanocarrier for delivering PTM into skeletal muscle and mitigate DM1 pathology.


Subject(s)
Myotonic Dystrophy , Humans , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , Pentamidine , Hyaluronic Acid , Muscle, Skeletal
8.
Hum Mutat ; 43(12): 1898-1908, 2022 12.
Article in English | MEDLINE | ID: mdl-35904125

ABSTRACT

MORC2 gene encodes a ubiquitously expressed nuclear protein involved in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous mutations in MORC2 gene have been associated with a spectrum of disorders affecting the peripheral nervous system such as Charcot-Marie-Tooth (CMT2Z), spinal muscular atrophy-like with or without cerebellar involvement, and a developmental syndrome associated with impaired growth, craniofacial dysmorphism and axonal neuropathy (DIGFAN syndrome). Such variability in clinical manifestations associated with the increasing number of variants of unknown significance detected by next-generation sequencing constitutes a serious diagnostic challenge. Here we report the characterization of an in vitro model to evaluate the pathogenicity of variants of unknown significance based on MORC2 overexpression in a neuroblastoma cell line SH-EP or cortical neurons. Likewise, we show that MORC2 mutants affect survival and trigger apoptosis over time in SH-EP cell line. Furthermore, overexpression in primary cortical neurons increases apoptotic cell death and decreases neurite outgrowth. Altogether, these approaches establish the pathogenicity of two new variants p.Gly444Arg and p.His446Gln in three patients from two families. These new mutations in MORC2 gene are associated with autosomal dominant CMT and with adult late onset proximal motor neuropathy, further increasing the spectrum of clinical manifestations associated with MORC2 mutations.


Subject(s)
Arthrogryposis , Charcot-Marie-Tooth Disease , Adult , Humans , Charcot-Marie-Tooth Disease/genetics , Mutation , Heterozygote , Chromatin Assembly and Disassembly , Phenotype , Transcription Factors/genetics
9.
Acta Neuropathol ; 144(4): 707-731, 2022 10.
Article in English | MEDLINE | ID: mdl-35948834

ABSTRACT

Congenital myasthenic syndromes (CMS) are predominantly characterized by muscle weakness and fatigability and can be caused by a variety of mutations in genes required for neuromuscular junction formation and maintenance. Among them, AGRN encodes agrin, an essential synaptic protein secreted by motoneurons. We have identified severe CMS patients with uncharacterized p.R1671Q, p.R1698P and p.L1664P mutations in the LG2 domain of agrin. Overexpression in primary motoneurons cultures in vitro and in chick spinal motoneurons in vivo revealed that the mutations modified agrin trafficking, leading to its accumulation in the soma and/or in the axon. Expression of mutant agrins in cultured cells demonstrated accumulation of agrin in the endoplasmic reticulum associated with induction of unfolded protein response (UPR) and impaired secretion in the culture medium. Interestingly, evaluation of the specific activity of individual agrins on AChR cluster formation indicated that when secreted, mutant agrins retained a normal capacity to trigger the formation of AChR clusters. To confirm agrin accumulation and secretion defect, iPS cells were derived from a patient and differentiated into motoneurons. Patient iPS-derived motoneurons accumulated mutant agrin in the soma and increased XBP1 mRNA splicing, suggesting UPR activation. Moreover, co-cultures of patient iPS-derived motoneurons with myotubes confirmed the deficit in agrin secretion and revealed a reduction in motoneuron survival. Altogether, we report the first mutations in AGRN gene that specifically affect agrin secretion by motoneurons. Interestingly, the three patients carrying these mutations were initially suspected of spinal muscular atrophy (SMA). Therefore, in the presence of patients with a clinical presentation of SMA but without mutation in the SMN1 gene, it can be worth to look for mutations in AGRN.


Subject(s)
Agrin , Myasthenic Syndromes, Congenital , Agrin/genetics , Humans , Motor Neurons/metabolism , Mutation , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Neuromuscular Junction/metabolism
10.
Nucleic Acids Res ; 48(9): 4601-4613, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32266374

ABSTRACT

While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.


Subject(s)
Histones/physiology , Muscle, Skeletal/metabolism , Transcription, Genetic , Transcriptional Activation , Animals , Cell Differentiation , Cells, Cultured , Chromatin , Chromatin Immunoprecipitation Sequencing , Histones/genetics , Histones/metabolism , Mice , Muscle Fibers, Skeletal , Muscle, Skeletal/cytology , RNA-Seq , Repetitive Sequences, Nucleic Acid , Transcription Initiation Site
11.
Cell Mol Life Sci ; 76(13): 2615-2632, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30863908

ABSTRACT

The Tar DNA-Binding Protein 43 (TDP-43) and its phosphorylated isoform (pTDP-43) are the major components associated with ubiquitin positive/Tau-negative inclusions found in neurons and glial cells of patients suffering of amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration-TDP-43 (FTLD-TDP). Many studies have revealed that TDP-43 is also in the protein inclusions associated with neurodegenerative conditions other than ALS and FTLD-TDP, thus suggesting that this protein may be involved in the pathogenesis of a variety of neurological disorders. In brains of Huntington-affected patients, pTDP-43 aggregates were shown to co-localize with mutant Huntingtin (mHtt) inclusions. Here, we show that expression of mHtt carrying 80-97 polyglutamines repeats in human cell cultures induces the aggregation and the phosphorylation of endogenous TDP-43, whereas non-pathological Htt with 25 polyglutamines repeats has no effect. Mutant Htt aggregation precedes accumulation of pTDP-43 and pTDP-43 co-localizes with mHtt inclusions reminding what it was previously described in brains of Huntington-affected patients. Detergent-insoluble fractions from cells expressing mHtt and containing mHtt-pTDP-43 co-aggregates can function as seeds for further TDP-43 aggregation in human cell culture. The human cellular prion protein PrPC was previously identified as a negative modulator of mHtt aggregation; here, we show that PrPC-mediated reduction of mHtt aggregation is tightly correlated with a decrease of TDP-43 aggregation and phosphorylation, thus confirming the close relationships between TDP-43 and mHtt.


Subject(s)
DNA-Binding Proteins/metabolism , Huntingtin Protein/metabolism , Mutation , Neuroblastoma/pathology , Peptides/metabolism , Prion Proteins/metabolism , Protein Aggregates , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Humans , Huntingtin Protein/genetics , Inclusion Bodies , Neuroblastoma/genetics , Neuroblastoma/metabolism , Phosphorylation , Prion Proteins/genetics , Tumor Cells, Cultured
13.
Cell Mol Life Sci ; 75(14): 2557-2574, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29761205

ABSTRACT

Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.


Subject(s)
Prions/metabolism , Animals , Extracellular Vesicles/metabolism , Humans , Nanotubes , PrPC Proteins/metabolism , PrPSc Proteins/metabolism , Prion Diseases/etiology , Protein Aggregates , Protein Folding , Protein Transport
14.
Cell Mol Life Sci ; 75(14): 2575, 2018 07.
Article in English | MEDLINE | ID: mdl-29907937

ABSTRACT

In the original publication, part of acknowledgement text was missing. The complete acknowledgement section should read as follows.

15.
Hum Mol Genet ; 25(15): 3341-3360, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27329763

ABSTRACT

Mutations in the charged multivesicular body protein 2B (CHMP2B) are associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and with a mixed ALS-FTD syndrome. To model this syndrome, we generated a transgenic mouse line expressing the human CHMP2Bintron5 mutant in a neuron-specific manner. These mice developed a dose-dependent disease phenotype. A longitudinal study revealed progressive gait abnormalities, reduced muscle strength and decreased motor coordination. CHMP2Bintron5 mice died due to generalized paralysis. When paralyzed, signs of denervation were present as attested by altered electromyographic profiles, by decreased number of fully innervated neuromuscular junctions, by reduction in size of motor endplates and by a decrease of sciatic nerve axons area. However, spinal motor neurons cell bodies were preserved until death. In addition to the motor dysfunctions, CHMP2Bintron5 mice progressively developed FTD-relevant behavioural modifications such as disinhibition, stereotypies, decrease in social interactions, compulsivity and change in dietary preferences. Furthermore, neurons in the affected spinal cord and brain regions showed accumulation of p62-positive cytoplasmic inclusions associated or not with ubiquitin and CHMP2Bintron5 As observed in FTD3 patients, these inclusions were negative for TDP-43 and FUS. Moreover, astrogliosis and microgliosis developed with age. Altogether, these data indicate that the neuronal expression of human CHMP2Bintron5 in areas involved in motor and cognitive functions induces progressive motor alterations associated with dementia symptoms and with histopathological hallmarks reminiscent of both ALS and FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Behavior, Animal , Endosomal Sorting Complexes Required for Transport/biosynthesis , Frontotemporal Dementia/metabolism , Gene Expression Regulation , Introns , Mutation , Neurons/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Axons/metabolism , Axons/pathology , Endosomal Sorting Complexes Required for Transport/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Humans , Mice , Mice, Transgenic , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neurons/pathology , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology
16.
PLoS Pathog ; 12(9): e1005834, 2016 09.
Article in English | MEDLINE | ID: mdl-27618691

ABSTRACT

Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely "multiple-acute"). Viral genomes in the "multiple-acute" pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the "multiple-latency" pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably during the entire life of an individual.


Subject(s)
Genome, Viral/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Promyelocytic Leukemia Protein/metabolism , Virus Latency/genetics , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Female , Herpesvirus 1, Human/physiology , Humans , Interferon Type I/genetics , Interferon Type I/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Mutation , Promyelocytic Leukemia Protein/genetics , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Trigeminal Ganglion/virology
18.
Brain Behav Immun ; 74: 277-290, 2018 11.
Article in English | MEDLINE | ID: mdl-30244035

ABSTRACT

Epigenetic modifications of DNA and histone proteins are emerging as fundamental mechanisms by which neural cells adapt their transcriptional response to environmental cues, such as, immune stimuli or stress. In particular, histone H3 phospho(Ser10)-acetylation(Lys14) (H3S10phK14ac) has been linked to activation of specific gene expression. The purpose of this study was to investigate the role of H3S10phK14ac in a neuroinflammatory condition. Adult male rats received a intraperitoneal injection of lipopolysaccharide (LPS) (830 µg/Kg/i.p., n = 6) or vehicle (saline 1 mL/kg/i.p., n = 6) and were sacrificed 2 or 6 h later. We showed marked region- and time-specific increases in H3S10phK14ac in the hypothalamus and hippocampus, two principal target regions of LPS. These changes were accompanied by a marked transcriptional activation of interleukin (IL) 1ß, IL-6, Tumour Necrosis Factor (TNF) α, the inducible nitric oxide synthase (iNOS) and the immediate early gene c-Fos. By means of chromatin immunoprecipitation, we demonstrated an increased region- and time-specific association of H3S10phK14ac with the promoters of IL-6, c-Fos and iNOS genes, suggesting that part of the LPS-induced transcriptional activation of these genes is regulated by H3S10phK14ac. Finally, by means of multiple immunofluorescence approach, we showed that increased H3S10phK14ac is cell type-specific, being neurons and reactive microglia, the principal histological types involved in this response. Present data point to H3S10phK14ac as a principal epigenetic regulator of neural cell response to systemic LPS and underline the importance of distinct time-, region- and cell-specific epigenetic mechanisms that regulate gene transcription to understand the mechanistic complexity of neuroinflammatory response to immune challenges.


Subject(s)
Histones/metabolism , Neuroimmunomodulation/drug effects , Acetylation/drug effects , Animals , Brain/metabolism , Epigenesis, Genetic/physiology , Gene Expression/drug effects , Hippocampus/metabolism , Hypothalamus/metabolism , Lipopolysaccharides/pharmacology , Male , Microglia/metabolism , Microglia/physiology , Neuroimmunomodulation/physiology , Neurons/metabolism , Neurons/physiology , Nitric Oxide Synthase Type II/metabolism , Phosphorylation/drug effects , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/metabolism
19.
J Neurosci ; 35(12): 4926-41, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25810523

ABSTRACT

The muscle-specific kinase MuSK is one of the key molecules orchestrating neuromuscular junction (NMJ) formation. MuSK interacts with the Wnt morphogens, through its Frizzled-like domain (cysteine-rich domain [CRD]). Dysfunction of MuSK CRD in patients has been recently associated with the onset of myasthenia, common neuromuscular disorders mainly characterized by fatigable muscle weakness. However, the physiological role of Wnt-MuSK interaction in NMJ formation and function remains to be elucidated. Here, we demonstrate that the CRD deletion of MuSK in mice caused profound defects of both muscle prepatterning, the first step of NMJ formation, and synapse differentiation associated with a drastic deficit in AChR clusters and excessive growth of motor axons that bypass AChR clusters. Moreover, adult MuSKΔCRD mice developed signs of congenital myasthenia, including severe NMJs dismantlement, muscle weakness, and fatigability. We also report, for the first time, the beneficial effects of lithium chloride, a reversible inhibitor of the glycogen synthase kinase-3, that rescued NMJ defects in MuSKΔCRD mice and therefore constitutes a novel therapeutic reagent for the treatment of neuromuscular disorders linked to Wnt-MuSK signaling pathway deficiency. Together, our data reveal that MuSK CRD is critical for NMJ formation and plays an unsuspected role in NMJ maintenance in adulthood.


Subject(s)
Glycoproteins/chemistry , Muscle Weakness/drug therapy , Neuromuscular Junction/growth & development , Neuromuscular Junction/physiology , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/physiology , Acetylcholinesterase/metabolism , Animals , Animals, Newborn , Fatigue/genetics , Fatigue/physiopathology , Female , Hand Strength/physiology , Intracellular Signaling Peptides and Proteins , Lithium Chloride/pharmacology , Lithium Chloride/therapeutic use , Male , Mice , Mice, Transgenic , Motor Neurons/drug effects , Motor Neurons/physiology , Muscle Weakness/genetics , Muscle Weakness/physiopathology , Mutation , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/physiopathology , Neuromuscular Junction/drug effects , Neuromuscular Junction/ultrastructure , Pregnancy , Primary Cell Culture , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Cholinergic/metabolism
20.
J Mol Cell Cardiol ; 97: 213-25, 2016 08.
Article in English | MEDLINE | ID: mdl-27133769

ABSTRACT

Mechanistic target of rapamycin (mTOR) is a central regulator of cell growth, proliferation, survival and metabolism, as part of mTOR complex 1 (mTORC1) and mTORC2. While partial inhibition of mTORC1 using rapamycin was shown to be cardioprotective, genetic studies in mouse models revealed that mTOR is essential for embryonic heart development and cardiac function in adults. However, the physiological role of mTOR during postnatal cardiac maturation is not fully elucidated. We have therefore generated a mouse model in which cardiac mTOR was inactivated at an early postnatal stage. Mutant mTORcmKO mice rapidly developed a dilated cardiomyopathy associated with cardiomyocyte growth defects, apoptosis and fibrosis, and died during their third week. Here, we show that reduced cardiomyocyte growth results from impaired protein translation efficiency through both 4E-BP1-dependent and -independent mechanisms. In addition, infant mTORcmKO hearts displayed markedly increased apoptosis linked to stretch-induced ANKRD1 (Ankyrin repeat-domain containing protein 1) up-regulation, JNK kinase activation and p53 accumulation. Pharmacological inhibition of p53 with pifithrin-α attenuated caspase-3 activation. Cardiomyocyte death did not result from activation of the MST1/Hippo pro-apoptotic pathway as reported in adult rictor/mTORC2 KO hearts. As well, mTORcmKO hearts showed a strong downregulation of myoglobin content, thereby leading to a hypoxic environment. Nevertheless, they lacked a HIF1α-mediated adaptive response, as mTOR is required for hypoxia-induced HIF-1α activation. Altogether, our results demonstrate that mTOR is critically required for cardiomyocyte growth, viability and oxygen supply in early postnatal myocardium and provide insight into the molecular mechanisms involved in apoptosis of mTOR-depleted cardiomyocytes.


Subject(s)
Apoptosis/genetics , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , Protein Biosynthesis , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Biomarkers , Biopsy , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Cardiopulmonary Bypass , Disease Models, Animal , Echocardiography , Energy Metabolism/genetics , Gene Expression Profiling , Gene Expression Regulation , Heart Function Tests , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Mice, Knockout , Muscle Proteins/metabolism , Myoglobin/metabolism , Nuclear Proteins/metabolism , Proteolysis , Repressor Proteins/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL