Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
Am J Occup Ther ; 77(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36724789

ABSTRACT

IMPORTANCE: In laboratory settings, dual-tasking is a performance strategy affected by dominance and stroke. However, the volitional use of dual-tasking has not been examined during naturalistic performance of activities of daily living (ADLs). OBJECTIVE: To examine dual-tasking in the context of ADLs and identify whether dominance and stroke influence its use. DESIGN: Cross-sectional, observational. SETTING: Academic medical center. PARTICIPANTS: Forty-three participants with chronic stroke and upper extremity (UE) motor impairment and 19 control participants without stroke. OUTCOMES AND MEASURES: We identified dual-tasking as the performance of dual-object primitives (DOPs), a functional strategy to manage two objects simultaneously. We videotaped participants performing feeding and toothbrushing tasks and identified the initiation and frequency of DOPs. We assessed whether these outcomes were influenced by UE dominance or paresis and whether among participants with stroke these outcomes were influenced by motor impairment (using the Fugl-Meyer Assessment) or cognitive impairment (using the Montreal Cognitive Assessment). RESULTS: DOP initiation was reduced on the nondominant side of control UEs and in the paretic UE of participants with stroke. After DOPs were initiated, however, their frequency was not significantly related to dominance or paresis. Among participants with stroke, DOP initiation but not DOP frequency was influenced by motor impairment, and neither were influenced by cognitive impairment. CONCLUSIONS AND RELEVANCE: The initiation of dual-tasking is curtailed in the nondominant and paretic UEs, extending previous laboratory-based findings to a more naturalistic setting. These results may reflect a demand on neural resources that is exceeded when these limbs are used. What This Article Adds: DOPs, a functional strategy to simultaneously engage two objects during ADLs, could serve as a behavioral marker of dual-tasking in real-world activities, supporting their investigation more broadly. Practicing DOPs in rehabilitation could also train the integration of dual-tasking strategies in activity execution.


Subject(s)
Stroke Rehabilitation , Stroke , Adult , Humans , Activities of Daily Living , Cross-Sectional Studies , Paresis , Recovery of Function , Stroke Rehabilitation/methods , Upper Extremity
2.
J Physiol ; 599(16): 3955-3971, 2021 08.
Article in English | MEDLINE | ID: mdl-34229359

ABSTRACT

KEY POINTS: The corticoreticulospinal tract (CReST) is a descending motor pathway that reorganizes after corticospinal tract (CST) injury in animals. In humans, the pattern of CReST innervation to upper limb muscles has not been carefully examined in healthy individuals or individuals with CST injury. In the present study, we assessed CReST projections to an arm and hand muscle on the same side of the body in healthy and chronic stoke subjects using transcranial magnetic stimulation. We show that CReST connection strength to the muscles differs between healthy and stroke subjects, with stronger connections to the hand than arm in healthy subjects, and stronger connections to the arm than hand in stroke subjects. These results help us better understand CReST innervation patterns in the upper limb, and may point to its role in normal motor function and motor recovery in humans. ABSTRACT: The corticoreticulospinal tract (CReST) is a major descending motor pathway in many animals, but little is known about its innervation patterns in proximal and distal upper extremity muscles in humans. The contralesional CReST furthermore reorganizes after corticospinal tract (CST) injury in animals, but it is less clear whether CReST innervation changes after stroke in humans. We thus examined CReST functional connectivity, connection strength, and modulation in an arm and hand muscle of healthy (n = 15) and chronic stroke (n = 16) subjects. We delivered transcranial magnetic stimulation to the contralesional hemisphere (assigned in healthy subjects) to elicit ipsilateral motor evoked potentials (iMEPs) from the paretic biceps (BIC) and first dorsal interosseous (FDI) muscle. We operationalized CReST functional connectivity as iMEP presence/absence, CReST projection strength as iMEP size and CReST modulation as change in iMEP size by head rotation. We found comparable CReST functional connectivity to the BICs and FDIs in both subject groups. However, the pattern of CReST connection strength to the muscles diverged between groups, with stronger connections to FDIs than BICs in healthy subjects and stronger connections to BICs than FDIs in stroke subjects. Head rotation modulated only FDI iMEPs of healthy subjects. Our findings indicate that the healthy CReST does not have a proximal innervation bias, and its strong FDI connections may have functional relevance to finger individuation. The reversed CReST innervation pattern in stroke subjects confirms its reorganization after CST injury, and its strong BIC connections may indicate upregulation for particular upper extremity muscles or their functional actions.


Subject(s)
Motor Cortex , Stroke , Arm , Evoked Potentials, Motor , Hand , Humans , Muscle, Skeletal , Transcranial Magnetic Stimulation
3.
Curr Neurol Neurosci Rep ; 18(12): 97, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353408

ABSTRACT

PURPOSE OF REVIEW: Repetitive transcranial magnetic stimulation (rTMS) noninvasively modulates brain excitability in humans and influences mediators of plasticity in animals. When applied in humans in the months to years after stroke, potentiation of motor recovery has been limited. Recently, investigators have shifted rTMS administration into the early weeks following stroke, when injury-induced plasticity could be maximally engaged. This article provides an overview of basic mechanisms of rTMS, consideration of its interaction with various forms of neuroplasticity, and a summary of the highest quality clinical evidence for rTMS given early after stroke. RECENT FINDINGS: Studies of repetitive magnetic stimulation in vitro and in vivo have found modulation of excitatory and inhibitory neurotransmission and induction of cellular mechanisms supporting plasticity. A handful of clinical studies have shown sustained improvements in grip strength and UE motor impairment when rTMS is delivered in the first weeks after stroke. Though in its infancy, recent research suggests a plasticity-enhancing influence and modest motor recovery potentiation when rTMS is delivered early after stroke.


Subject(s)
Stroke Rehabilitation/methods , Stroke/therapy , Transcranial Magnetic Stimulation/methods , Animals , Female , Humans , Male , Neuronal Plasticity , Stroke/physiopathology , Treatment Outcome , Upper Extremity/radiation effects
4.
Semin Neurol ; 36(3): 306-12, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27214706

ABSTRACT

About half of patients survive intracerebral hemorrhage (ICH), but most are left with significant disability. Rehabilitation after ICH is the mainstay of treatment to reduce impairment, improve independence in activities, and return patients to meaningful participation in the community. The authors discuss the neuroplastic mechanisms underlying recovery in ICH, preclinical and clinical interventional studies to augment recovery, and the rehabilitative and medical management of post-ICH patients.


Subject(s)
Cerebral Hemorrhage/rehabilitation , Recovery of Function , Humans , Neurosurgical Procedures
5.
Sci Rep ; 14(1): 9094, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643299

ABSTRACT

Transcranial direct current stimulation (tDCS) can be used to non-invasively augment cognitive training. However, the benefits of tDCS may be due in part to placebo effects, which have not been well-characterized. The purpose of this study was to determine whether tDCS can have a measurable placebo effect on cognitive training and to identify potential sources of this effect. Eighty-three right-handed adults were randomly assigned to one of three groups: control (no exposure to tDCS), sham tDCS, or active tDCS. The sham and active tDCS groups were double-blinded. Each group performed 20 min of an adapted Corsi Block Tapping Task (CBTT), a visuospatial working memory task. Anodal or sham tDCS was applied during CBTT training in a right parietal-left supraorbital montage. After training, active and sham tDCS groups were surveyed on expectations about tDCS efficacy. Linear mixed effects models showed that the tDCS groups (active and sham combined) improved more on the CBTT with training than the control group, suggesting a placebo effect of tDCS. Participants' tDCS expectations were significantly related to the placebo effect, as was the belief of receiving active stimulation. This placebo effect shows that the benefits of tDCS on cognitive training can occur even in absence of active stimulation. Future tDCS studies should consider how treatment expectations may be a source of the placebo effect in tDCS research, and identify ways to potentially leverage them to maximize treatment benefit.


Subject(s)
Memory, Short-Term , Transcranial Direct Current Stimulation , Adult , Humans , Memory, Short-Term/physiology , Placebo Effect , Hand , Prefrontal Cortex/physiology , Double-Blind Method
6.
bioRxiv ; 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38645144

ABSTRACT

After corticospinal tract (CST) stroke, several motor deficits in the upper extremity (UE) emerge, including diminished muscle strength, motor control, and muscle individuation. Both the ipsilesional CST and contralesional corticoreticulospinal tract (CReST) innervate the paretic UE and may have different innervation patterns for the proximal and distal UE segments. These patterns may underpin distinct pathway relationships to separable motor behaviors. In this cross-sectional study of 15 chronic stroke patients and 28 healthy subjects, we examined two key questions: (1) whether segmental motor behaviors differentially relate to ipsilesional CST and contralesional CReST projection strengths, and (2) whether motor behaviors segmentally differ in the paretic UE. We measured strength, motor control, and muscle individuation in a proximal (biceps, BIC) and distal muscle (first dorsal interosseous, FDI) of the paretic UE. We measured the projection strengths of the ipsilesional CST and contralesional CReST to these muscles using transcranial magnetic stimulation (TMS). Stroke subjects had abnormal motor control and muscle individuation despite strength comparable to healthy subjects. In stroke subjects, stronger ipsilesional CST projections were linked to superior motor control in both UE segments, whereas stronger contralesional CReST projections were linked to superior muscle strength and individuation in both UE segments. Notably, both pathways also shared associations with behaviors in the proximal segment. Motor control deficits were segmentally comparable, but muscle individuation was worse for distal motor performance. These results suggest that each pathway has specialized contributions to chronic motor behaviors but also work together, with varying levels of success in supporting chronic deficits. Key points summary: Individuals with chronic stroke typically have deficits in strength, motor control, and muscle individuation in their paretic upper extremity (UE). It remains unclear how these altered behaviors relate to descending motor pathways and whether they differ by proximal and distal UE segment.In this study, we used transcranial magnetic stimulation (TMS) to examine projection strengths of the ipsilesional corticospinal tract (CST) and contralesional corticoreticulospinal tract (CReST) with respect to quantitated motor behaviors in chronic stroke.We found that stronger ipsilesional CST projections were associated with better motor control in both UE segments, whereas stronger contralesional CReST projections were associated with better strength and individuation in both UE segments. In addition, projections of both pathways shared associations with motor behaviors in the proximal UE segment.We also found that deficits in strength and motor control were comparable across UE segments, but muscle individuation was worse with controlled movement in the distal UE segment.These results suggest that the CST and CReST have specialized contributions to chronic motor behaviors and also work together, although with different degrees of efficacy.

7.
J Neurol Sci ; 450: 120688, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37224604

ABSTRACT

OBJECTIVE: To determine if the distribution of transcallosal inhibition (TI) acting on proximal and distal upper extremity muscles is altered in chronic stroke. METHODS: We examined thirteen healthy controls and sixteen mildly to moderately impaired chronic stroke patients. We used transcranial magnetic stimulation (TMS) to probe TI from the contralesional onto ipsilesional hemisphere (assigned in controls). We recorded the ipsilateral silent period in the paretic biceps (BIC) and first dorsal interosseous (FDI). We measured TI strength, distribution gradient (TI difference between muscles), and motor impairment (Fugl-Meyer Assessment). RESULTS: Both groups had stronger TI acting on their FDIs than BICs (p < 0.001). However, stroke patients also had stronger TI acting on their BICs than controls (p = 0.034), resulting in a flatter distribution of inhibition (p = 0.028). In patients, stronger FDI inhibition correlated with less hand impairment (p = 0.031); BIC inhibition was not correlated to impairment. CONCLUSION: TI is more evenly distributed to the paretic FDI and BIC in chronic stroke. The relative increase in proximal inhibition does not relate to better function, as it does distally. SIGNIFICANCE: The results expand our knowledge about segment-specific neurophysiology and its relevance to impairment after stroke.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Upper Extremity , Arm , Hand , Transcranial Magnetic Stimulation/methods , Muscle, Skeletal , Evoked Potentials, Motor/physiology
8.
Proc Natl Acad Sci U S A ; 106(5): 1590-5, 2009 Feb 03.
Article in English | MEDLINE | ID: mdl-19164589

ABSTRACT

Motor skills can take weeks to months to acquire and can diminish over time in the absence of continued practice. Thus, strategies that enhance skill acquisition or retention are of great scientific and practical interest. Here we investigated the effect of noninvasive cortical stimulation on the extended time course of learning a novel and challenging motor skill task. A skill measure was chosen to reflect shifts in the task's speed-accuracy tradeoff function (SAF), which prevented us from falsely interpreting variations in position along an unchanged SAF as a change in skill. Subjects practiced over 5 consecutive days while receiving transcranial direct current stimulation (tDCS) over the primary motor cortex (M1). Using the skill measure, we assessed the impact of anodal (relative to sham) tDCS on both within-day (online) and between-day (offline) effects and on the rate of forgetting during a 3-month follow-up (long-term retention). There was greater total (online plus offline) skill acquisition with anodal tDCS compared to sham, which was mediated through a selective enhancement of offline effects. Anodal tDCS did not change the rate of forgetting relative to sham across the 3-month follow-up period, and consequently the skill measure remained greater with anodal tDCS at 3 months. This prolonged enhancement may hold promise for the rehabilitation of brain injury. Furthermore, these findings support the existence of a consolidation mechanism, susceptible to anodal tDCS, which contributes to offline effects but not to online effects or long-term retention.


Subject(s)
Motor Cortex/physiology , Psychomotor Performance , Humans , Task Performance and Analysis
9.
J Am Heart Assoc ; 11(10): e025109, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35574963

ABSTRACT

Background Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper-limb sensorimotor impairment. We investigated associations between non-lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. Methods and Results Cross-sectional T1-weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta-Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA-UE (Fugl-Meyer Assessment of Upper Extremity). Robust mixed-effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; ß=0.16) but not contralesional (P=0.96; ß=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; ß=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; ß=-0.26) and contralesional (P=0.006; ß=-0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; ß=-0.21) and extent of sensorimotor damage (P=0.003; ß=-0.15). Conclusions The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.


Subject(s)
Stroke Rehabilitation , Stroke , Cross-Sectional Studies , Female , Hippocampus/diagnostic imaging , Humans , Male , Quality of Life , Recovery of Function , Stroke/complications , Stroke/diagnostic imaging , Stroke Rehabilitation/methods , Upper Extremity
10.
J Neurophysiol ; 106(2): 652-61, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21613597

ABSTRACT

Convergent findings point to a left-sided specialization for the representation of learned actions in right-handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill learning. In the present study, we explored this question by comparing the effects of anodal transcranial direct current stimulation (tDCS) over either left or right motor cortex (M1) on motor skill learning in either hand, using a tDCS montage to better isolate stimulation to one hemisphere. Results were compared with those previously found with a montage more commonly used in the field. Six groups trained for three sessions on a visually guided sequential pinch force modulation task with their right or left hand and received right M1, left M1, or sham tDCS. A linear mixed-model analysis for motor skill showed a significant main effect for stimulation group (left M1, right M1, sham) but not for hand (right, left) or their interaction. Left M1 tDCS induced significantly greater skill learning than sham when hand data were combined, a result consistent not only with the hypothesized left hemisphere specialization for motor skill learning but also with possible increased left M1 responsiveness to tDCS. The unihemispheric montage effect size was one-half that of the more common montage, and subsequent power analysis indicated that 75 subjects per group would be needed to detect differences seen with only 12 subjects with the customary bihemispheric montage.


Subject(s)
Dominance, Cerebral/physiology , Learning/physiology , Motor Cortex/physiology , Motor Skills/physiology , Psychomotor Performance/physiology , Transcranial Magnetic Stimulation/methods , Adult , Female , Humans , Male , Photic Stimulation/methods , Reaction Time/physiology
11.
Front Neurol ; 10: 996, 2019.
Article in English | MEDLINE | ID: mdl-31620070

ABSTRACT

Recent advances in wearable sensor technology and machine learning (ML) have allowed for the seamless and objective study of human motion in clinical applications, including Parkinson's disease, and stroke. Using ML to identify salient patterns in sensor data has the potential for widespread application in neurological disorders, so understanding how to develop this approach for one's area of inquiry is vital. We previously proposed an approach that combined wearable inertial measurement units (IMUs) and ML to classify motions made by stroke patients. However, our approach had computational and practical limitations. We address these limitations here in the form of a primer, presenting how to optimize a sensor-ML approach for clinical implementation. First, we demonstrate how to identify the ML algorithm that maximizes classification performance and pragmatic implementation. Second, we demonstrate how to identify the motion capture approach that maximizes classification performance but reduces cost. We used previously collected motion data from chronic stroke patients wearing off-the-shelf IMUs during a rehabilitation-like activity. To identify the optimal ML algorithm, we compared the classification performance, computational complexity, and tuning requirements of four off-the-shelf algorithms. To identify the optimal motion capture approach, we compared the classification performance of various sensor configurations (number and location on the body) and sensor type (IMUs vs. accelerometers). Of the algorithms tested, linear discriminant analysis had the highest classification performance, low computational complexity, and modest tuning requirements. Of the sensor configurations tested, seven sensors on the paretic arm and trunk led to the highest classification performance, and IMUs outperformed accelerometers. Overall, we present a refined sensor-ML approach that maximizes both classification performance and pragmatic implementation. In addition, with this primer, we showcase important considerations for appraising off-the-shelf algorithms and sensors for quantitative motion assessment.

12.
Front Neurol ; 10: 857, 2019.
Article in English | MEDLINE | ID: mdl-31481922

ABSTRACT

Background: Functional upper extremity (UE) motion enables humans to execute activities of daily living (ADLs). There currently exists no universal language to systematically characterize this type of motion or its fundamental building blocks, called functional primitives. Without a standardized classification approach, pooling mechanistic knowledge and unpacking rehabilitation content will remain challenging. Methods: We created a taxonomy to characterize functional UE motions occurring during ADLs, classifying them by motion presence, temporal cyclicity, upper body effector, and contact type. We identified five functional primitives by their phenotype and purpose: reach, reposition, transport, stabilize, and idle. The taxonomy was assessed for its validity and interrater reliability in right-paretic chronic stroke patients performing a selection of ADL tasks. We applied the taxonomy to identify the primitive content and motion characteristics of these tasks, and to evaluate the influence of impairment level on these outcomes. Results: The taxonomy could account for all motions in the sampled activities. Interrater reliability was high for primitive identification (Cohen's kappa = 0.95-0.99). Using the taxonomy, the ADL tasks were found to be composed primarily of transport and stabilize primitives mainly executed with discrete, proximal motions. Compared to mildly impaired patients, moderately impaired patients used more repeated reaches and axial-proximal UE motion to execute the tasks. Conclusions: The proposed taxonomy yields objective, quantitative data on human functional UE motion. This new method could facilitate the decomposition and quantification of UE rehabilitation, the characterization of functional abnormality after stroke, and the mechanistic examination of shared behavior in motor studies.

13.
Neurorehabil Neural Repair ; 33(7): 568-580, 2019 07.
Article in English | MEDLINE | ID: mdl-31170880

ABSTRACT

Background. After stroke, recovery of movement in proximal and distal upper extremity (UE) muscles appears to follow different time courses, suggesting differences in their neural substrates. Objective. We sought to determine if presence or absence of motor evoked potentials (MEPs) differentially influences recovery of volitional contraction and strength in an arm muscle versus an intrinsic hand muscle. We also related MEP status to recovery of proximal and distal interjoint coordination and movement fractionation, as measured by the Fugl-Meyer Assessment (FMA). Methods. In 45 subjects in the year following ischemic stroke, we tracked the relationship between corticospinal tract (CST) integrity and behavioral recovery in the biceps (BIC) and first dorsal interosseous (FDI) muscle. We used transcranial magnetic stimulation to probe CST integrity, indicated by MEPs, in BIC and FDI. We used electromyography, dynamometry, and UE FMA subscores to assess muscle-specific contraction, strength, and inter-joint coordination, respectively. Results. Presence of MEPs resulted in higher likelihood of muscle contraction, greater strength, and higher FMA scores. Without MEPs, BICs could more often volitionally contract, were less weak, and had steeper strength recovery curves than FDIs; in contrast, FMA recovery curves plateaued below normal levels for both the arm and hand. Conclusions. There are shared and separate substrates for paretic UE recovery. CST integrity is necessary for interjoint coordination in both segments and for overall recovery. In its absence, alternative pathways may assist recovery of volitional contraction and strength, particularly in BIC. These findings suggest that more targeted approaches might be needed to optimize UE recovery.


Subject(s)
Arm/physiopathology , Brain Ischemia/physiopathology , Evoked Potentials, Motor/physiology , Hand/physiopathology , Motor Activity/physiology , Motor Cortex/physiopathology , Muscle, Skeletal/physiopathology , Recovery of Function/physiology , Stroke Rehabilitation , Stroke/physiopathology , Transcranial Magnetic Stimulation , Adult , Aged , Female , Humans , Male , Middle Aged , Severity of Illness Index , Treatment Outcome , Young Adult
14.
Neurorehabil Neural Repair ; 32(4-5): 295-308, 2018.
Article in English | MEDLINE | ID: mdl-29683030

ABSTRACT

BACKGROUND: Motor training alone or combined with transcranial direct current stimulation (tDCS) positioned over the motor cortex (M1) improves motor function in chronic stroke. Currently, understanding of how tDCS influences the process of motor skill learning after stroke is lacking. OBJECTIVE: To assess the effects of tDCS on the stages of motor skill learning and on generalization to untrained motor function. METHODS: In this randomized, sham-controlled, blinded study of 56 mildly impaired chronic stroke patients, tDCS (anode over the ipsilesional M1 and cathode on the contralesional forehead) was applied during 5 days of training on an unfamiliar, challenging fine motor skill task (sequential visual isometric pinch force task). We assessed online and offline learning during the training period and retention over the following 4 months. We additionally assessed the generalization to untrained tasks. RESULTS: With training alone (sham tDCS group), patients acquired a novel motor skill. This skill improved online, remained stable during the offline periods and was largely retained at follow-up. When tDCS was added to training (real tDCS group), motor skill significantly increased relative to sham, mostly in the online stage. Long-term retention was not affected by tDCS. Training effects generalized to untrained tasks, but those performance gains were not enhanced further by tDCS. CONCLUSIONS: Training of an unfamiliar skill task represents a strategy to improve fine motor function in chronic stroke. tDCS augments motor skill learning, but its additive effect is restricted to the trained skill.


Subject(s)
Generalization, Psychological/physiology , Learning/physiology , Motor Cortex/physiopathology , Motor Skills/physiology , Stroke Rehabilitation/methods , Stroke/physiopathology , Transcranial Direct Current Stimulation , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged , Surveys and Questionnaires , Treatment Outcome
15.
IEEE Int Conf Rehabil Robot ; 2017: 547-554, 2017 07.
Article in English | MEDLINE | ID: mdl-28813877

ABSTRACT

There currently exist no practical tools to identify functional movements in the upper extremities (UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE functional movement primitives, which comprise functional movements. Data were generated from inertial measurement units (IMUs) placed on upper body segments of older healthy individuals and chronic stroke patients. Subjects performed activities commonly trained during rehabilitation after stroke. Data processing involved the use of a sliding window to obtain statistical descriptors, and resulting features were processed by a Hidden Markov Model (HMM). The likelihoods of the states, resulting from the HMM, were segmented by a second sliding window and their averages were calculated. The final predictions were mapped to human functional movement primitives using a Logistic Regression algorithm. Algorithm performance was assessed with a leave-one-out analysis, which determined its sensitivity, specificity, and positive and negative predictive values for all classified primitives. In healthy control and stroke participants, our approach identified functional movement primitives embedded in training activities with, on average, 80% precision. This approach may support functional movement dosing in stroke rehabilitation.


Subject(s)
Monitoring, Physiologic/methods , Stroke Rehabilitation/methods , Stroke/physiopathology , Upper Extremity/physiology , Activities of Daily Living , Aged , Aged, 80 and over , Algorithms , Female , Humans , Male , Middle Aged , Movement/physiology , Task Performance and Analysis , Upper Extremity/physiopathology
16.
Neurorehabil Neural Repair ; 31(6): 552-560, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28506149

ABSTRACT

BACKGROUND: Studies demonstrate that most arm motor recovery occurs within three months after stroke, when measured with standard clinical scales. Improvements on these measures, however, reflect a combination of recovery in motor control, increases in strength, and acquisition of compensatory strategies. OBJECTIVE: To isolate and characterize the time course of recovery of arm motor control over the first year poststroke. METHODS: Longitudinal study of 18 participants with acute ischemic stroke. Motor control was evaluated using a global kinematic measure derived from a 2-dimensional reaching task designed to minimize the need for antigravity strength and prevent compensation. Arm impairment was evaluated with the Fugl-Meyer Assessment of the upper extremity (FMA-UE), activity limitation with the Action Research Arm Test (ARAT), and strength with biceps dynamometry. Assessments were conducted at: 1.5, 5, 14, 27, and 54 weeks poststroke. RESULTS: Motor control in the paretic arm improved up to week 5, with no further improvement beyond this time point. In contrast, improvements in the FMA-UE, ARAT, and biceps dynamometry continued beyond 5 weeks, with a similar magnitude of improvement between weeks 5 and 54 as the one observed between weeks 1.5 and 5. CONCLUSIONS: Recovery after stroke plateaued much earlier for arm motor control, isolated with a global kinematic measure, compared to motor function assessed with clinical scales. This dissociation between the time courses of kinematic and clinical measures of recovery may be due to the contribution of strength improvement to the latter. Novel interventions, focused on the first month poststroke, will be required to exploit the narrower window of spontaneous recovery for motor control.


Subject(s)
Brain Ischemia/rehabilitation , Motor Activity , Paresis/rehabilitation , Recovery of Function , Stroke Rehabilitation , Stroke/complications , Arm/physiopathology , Biomechanical Phenomena , Brain Ischemia/complications , Female , Humans , Longitudinal Studies , Male , Middle Aged , Paresis/physiopathology
17.
Clin Neurophysiol ; 128(4): 589-603, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28231477

ABSTRACT

Motor skills are required for activities of daily living. Transcranial direct current stimulation (tDCS) applied in association with motor skill learning has been investigated as a tool for enhancing training effects in health and disease. Here, we review the published literature investigating whether tDCS can facilitate the acquisition, retention or adaptation of motor skills. Work in multiple laboratories is underway to develop a mechanistic understanding of tDCS effects on different forms of learning and to optimize stimulation protocols. Efforts are required to improve reproducibility and standardization. Overall, reproducibility remains to be fully tested, effect sizes with present techniques vary over a wide range, and the basis of observed inter-individual variability in tDCS effects is incompletely understood. It is recommended that future studies explicitly state in the Methods the exploratory (hypothesis-generating) or hypothesis-driven (confirmatory) nature of the experimental designs. General research practices could be improved with prospective pre-registration of hypothesis-based investigations, more emphasis on the detailed description of methods (including all pertinent details to enable future modeling of induced current and experimental replication), and use of post-publication open data repositories. A checklist is proposed for reporting tDCS investigations in a way that can improve efforts to assess reproducibility.


Subject(s)
Memory , Motor Skills , Transcranial Direct Current Stimulation/adverse effects , Humans , Transcranial Direct Current Stimulation/methods , Transcranial Direct Current Stimulation/standards
19.
Restor Neurol Neurosci ; 34(5): 799-813, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27567756

ABSTRACT

BACKGROUND: Reducing inhibitory neurotransmission with pharmacological agents is a potential approach for augmenting plasticity after stroke. Previous work in healthy subjects showed diminished intracortical inhibition after administration of theophylline. OBJECTIVE: We assessed the effect of single-dose theophylline on intracortical and interhemispheric inhibition in patients with chronic stroke, in a double-blind, placebo-controlled, cross-over study. METHODS: Eighteen subjects were randomly administered 300 mg of extended-release theophylline or placebo. Immediately and 5 hours following administration, transcranial magnetic stimulation was used to assess bihemispheric resting motor threshold, short-interval intracortical inhibition, long-interval intracortical inhibition, and interhemispheric inhibition. Adverse effects on cardiovascular, neurological, and motor performance outcomes were also surveilled. Change between morning and afternoon sessions were compared across conditions. One week later, patients underwent the same assessments after crossing over to the opposite experimental condition. Subjects and investigators were blinded to the experimental condition during data acquisition and analysis. RESULTS: For both hemispheres, changes in intracortical or interhemispheric neurophysiology were comparable under theophylline and placebo conditions. Theophylline induced no adverse neurological, cardiovascular, or motor performance effects. For both conditions and hemipsheres, the baseline level of inhibition inversely correlated with its change between sessions: less baseline inhibition (i.e. disinhibition) was associated with a strengthening in inhibition over the day, and vice versa. CONCLUSION: A single dose of theophylline is well-tolerated by patients with chronic stroke, but does not alter cortical excitability. The inverse relationship between baseline inhibition and its change suggests the existence of a homeostatic process. The lack of effect on cortical inhibition may be related to an insufficiently long exposure to theophylline, or to differential responsiveness of disinhibited neural circuitry in patients with stroke.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/drug effects , Stroke/drug therapy , Stroke/physiopathology , Theophylline/therapeutic use , Vasodilator Agents/therapeutic use , Adult , Aged , Aged, 80 and over , Blood Pressure/drug effects , Chronic Disease , Cross-Over Studies , Double-Blind Method , Female , Fingers/innervation , Functional Laterality/drug effects , Heart Rate/drug effects , Humans , Male , Middle Aged , Motor Cortex/physiopathology , Neural Inhibition/physiology , Psychomotor Performance/physiology , Transcranial Magnetic Stimulation
20.
Neurotoxicol Teratol ; 51: 1-11, 2015.
Article in English | MEDLINE | ID: mdl-26171567

ABSTRACT

Human and animal studies show significant delays in neurobehavioral development in offspring after prolonged prenatal exposure to moderate and high ethanol doses resulting in high blood alcohol concentration (BECs). However, none have investigated the effects of lower ethanol doses given acutely during specific developmental time periods. Here, we sought to create a mouse model for modest and circumscribed human drinking during the 3rd and 4th weeks of pregnancy. We acutely treated mice during embryo gastrulation on gestational day (GD) 7 or neurulation on GD8 with a low or moderate ethanol dose given via gavage that resulted in BECs of 107 and 177 mg/dl, respectively. We assessed neonatal physical development (pinnae unfolding, and eye opening); weight gain from postnatal day (PD) 3-65; and neurobehavioral maturation (pivoting, walking, cliff aversion, surface righting, vertical screen grasp, and rope balance) from PD3 to 17. We used a multiple linear regression model to determine the effects of dose, sex, day of treatment and birth in animals dosed during gastrulation or neurulation, relative to their vehicle controls. We found that ethanol exposure during both time points (GD7 and GD8) resulted in some delays of physical development and significant sensorimotor delays of pivoting, walking, and thick rope balance, as well as additional significant delays in cliff aversion and surface righting after GD8 treatment. We also found that treatment with the low ethanol dose more frequently affected neurobehavioral development of the surviving pups than treatment with the moderate ethanol dose, possibly due to a loss of severely affected offspring. Finally, mice born prematurely were delayed in their physical and sensorimotor development. Importantly, we showed that brief exposure to low dose ethanol, if administered during vulnerable periods of neuroanatomical development, results in significant neurobehavioral delays in neonatal mice. We thus expand concerns about alcohol consumption during the 3rd and 4th weeks of human pregnancy to include occasional light to moderate drinking.


Subject(s)
Central Nervous System Depressants/toxicity , Developmental Disabilities/chemically induced , Ethanol/toxicity , Gastrulation/drug effects , Neurulation/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Age Factors , Animals , Animals, Newborn , Body Weight/drug effects , Central Nervous System Depressants/blood , Disease Models, Animal , Dose-Response Relationship, Drug , Ethanol/blood , Female , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Muscle Strength/drug effects , Pregnancy , Reaction Time/drug effects , Sensation Disorders/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL