Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 19(9): 1035, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29880894

ABSTRACT

In the version of this Article originally published, the asterisks indicating statistical significance were missing from Supplementary Figure 6; the file with the correct figure is now available.

2.
Nat Immunol ; 18(12): 1321-1331, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28991267

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic ß-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I-related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Histocompatibility Antigens Class I/analysis , Intestinal Mucosa/immunology , Minor Histocompatibility Antigens/analysis , Mucosal-Associated Invariant T Cells/immunology , Pancreas/immunology , Animals , Cells, Cultured , Gastrointestinal Microbiome/immunology , Granzymes/biosynthesis , Humans , Insulin-Secreting Cells/immunology , Intestinal Mucosa/cytology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Pancreas/cytology
3.
Diabetologia ; 67(6): 1066-1078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630142

ABSTRACT

AIMS/HYPOTHESIS: Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases. METHODS: We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules. RESULTS: We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors. CONCLUSIONS/INTERPRETATION: This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development.


Subject(s)
Cell Differentiation , Cell Proliferation , Imaging, Three-Dimensional , Pancreas , Humans , Pancreas/embryology , Pancreas/cytology , Pancreas/metabolism , Cell Differentiation/physiology , Female , Stem Cells/cytology , Stem Cells/metabolism , Pregnancy , Insulin/metabolism
4.
Mol Cell Proteomics ; 21(5): 100229, 2022 05.
Article in English | MEDLINE | ID: mdl-35378291

ABSTRACT

Early diabetes research is hampered by limited availability, variable quality, and instability of human pancreatic islets in culture. Little is known about the human ß cell secretome, and recent studies question translatability of rodent ß cell secretory profiles. Here, we verify representativeness of EndoC-ßH1, one of the most widely used human ß cell lines, as a translational human ß cell model based on omics and characterize the EndoC-ßH1 secretome. We profiled EndoC-ßH1 cells using RNA-seq, data-independent acquisition, and tandem mass tag proteomics of cell lysate. Omics profiles of EndoC-ßH1 cells were compared to human ß cells and insulinomas. Secretome composition was assessed by data-independent acquisition proteomics. Agreement between EndoC-ßH1 cells and primary adult human ß cells was ∼90% for global omics profiles as well as for ß cell markers, transcription factors, and enzymes. Discrepancies in expression were due to elevated proliferation rate of EndoC-ßH1 cells compared to adult ß cells. Consistently, similarity was slightly higher with benign nonmetastatic insulinomas. EndoC-ßH1 secreted 783 proteins in untreated baseline state and 3135 proteins when stressed with nontargeting control siRNA, including known ß cell hormones INS, IAPP, and IGF2. Further, EndoC-ßH1 secreted proteins known to generate bioactive peptides such as granins and enzymes required for production of bioactive peptides. EndoC-ßH1 secretome contained an unexpectedly high proportion of predicted extracellular vesicle proteins. We believe that secretion of extracellular vesicles and bioactive peptides warrant further investigation with specialized proteomics workflows in future studies.


Subject(s)
Insulin-Secreting Cells , Insulinoma , Pancreatic Neoplasms , Cell Line , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulinoma/metabolism , Pancreatic Neoplasms/metabolism , Proteome/metabolism , Secretome , Transcriptome
5.
J Biol Chem ; 298(7): 102096, 2022 07.
Article in English | MEDLINE | ID: mdl-35660019

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in the degradation of the low-density lipoprotein receptor. PCSK9 also targets proteins involved in lipid metabolism (very low-density lipoprotein receptor), immunity (major histocompatibility complex I), and viral infection (cluster of differentiation 81). Recent studies have also indicated that PCSK9 loss-of-function mutations are associated with an increased incidence of diabetes; however, the expression and function of PCSK9 in insulin-producing pancreatic beta cells remain unclear. Here, we studied PCSK9 regulation and function by performing loss- and gain-of-function experiments in the human beta cell line EndoC-ßH1. We demonstrate that PCSK9 is expressed and secreted by EndoC-ßH1 cells. We also found that PCSK9 expression is regulated by cholesterol and sterol regulatory element-binding protein transcription factors, as previously demonstrated in other cell types such as hepatocytes. Importantly, we show that PCSK9 knockdown using siRNA results in deregulation of various elements of the transcriptome, proteome, and secretome, and increases insulin secretion. We also observed that PCSK9 decreases low-density lipoprotein receptor and very low-density lipoprotein receptor levels via an extracellular signaling mechanism involving exogenous PCSK9, as well as levels of cluster of differentiation 36, a fatty acid transporter, through an intracellular signaling mechanism. Finally, we found that PCSK9 regulates the cell surface expression of PDL1 and HLA-ABC, proteins involved in cell-lymphocyte interaction, also via an intracellular mechanism. Collectively, these results highlight PCSK9 as a regulator of multiple cell surface receptors in pancreatic beta cells.


Subject(s)
Insulin-Secreting Cells , Membrane Proteins , Proprotein Convertase 9 , CD36 Antigens/metabolism , Cell Line , Gain of Function Mutation , Humans , Insulin-Secreting Cells/metabolism , Lipoproteins, VLDL/metabolism , Loss of Function Mutation , Membrane Proteins/metabolism , Proprotein Convertase 9/metabolism , Receptors, LDL/metabolism
6.
Cell ; 132(2): 197-207, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-18243096

ABSTRACT

Novel strategies in diabetes therapy would obviously benefit from the use of beta (beta) cell stem/progenitor cells. However, whether or not adult beta cell progenitors exist is one of the most controversial issues in today's diabetes research. Guided by the expression of Neurogenin 3 (Ngn3), the earliest islet cell-specific transcription factor in embryonic development, we show that beta cell progenitors can be activated in injured adult mouse pancreas and are located in the ductal lining. Differentiation of the adult progenitors is Ngn3 dependent and gives rise to all islet cell types, including glucose responsive beta cells that subsequently proliferate, both in situ and when cultured in embryonic pancreas explants. Multipotent progenitor cells thus exist in the pancreas of adult mice and can be activated cell autonomously to increase the functional beta cell mass by differentiation and proliferation rather than by self-duplication of pre-existing beta cells only.


Subject(s)
Insulin-Secreting Cells/cytology , Pancreas/cytology , Pancreas/injuries , Stem Cells/cytology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/isolation & purification , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cell Nucleus/metabolism , Cell Proliferation , Gene Expression , Genes, Reporter , Genetic Vectors , Green Fluorescent Proteins/metabolism , Immunohistochemistry , Insulin/analysis , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Keratins/metabolism , Lentivirus/genetics , Ligation , Mice , Mice, Inbred BALB C , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/isolation & purification , Nerve Tissue Proteins/metabolism , Organ Culture Techniques , Pancreatic Ducts/surgery , Stem Cells/metabolism , Time Factors , beta-Galactosidase/metabolism
7.
J Biol Chem ; 297(1): 100839, 2021 07.
Article in English | MEDLINE | ID: mdl-34051232

ABSTRACT

Glucose-mediated signaling regulates the expression of a limited number of genes in human pancreatic ß-cells at the transcriptional level. However, it is unclear whether glucose plays a role in posttranscriptional RNA processing or translational control of gene expression. Here, we asked whether glucose affects posttranscriptional steps and regulates protein synthesis in human ß-cell lines. We first showed the involvement of the mTOR pathway in glucose-related signaling. We also used the surface sensing of translation technique, based on puromycin incorporation into newly translated proteins, to demonstrate that glucose treatment increased protein translation. Among the list of glucose-induced proteins, we identified the proconvertase PCSK1, an enzyme involved in the proteolytic conversion of proinsulin to insulin, whose translation was induced within minutes following glucose treatment. We finally performed global proteomic analysis by mass spectrometry to characterize newly translated proteins upon glucose treatment. We found enrichment in proteins involved in translation, glycolysis, TCA metabolism, and insulin secretion. Taken together, our study demonstrates that, although glucose minorly affects gene transcription in human ß-cells, it plays a major role at the translational level.


Subject(s)
Energy Metabolism/genetics , Glucose/pharmacology , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Protein Biosynthesis/genetics , Cell Line , Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit/metabolism , Energy Metabolism/drug effects , Humans , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Mitogen-Activated Protein Kinases/metabolism , Proprotein Convertase 1/metabolism , Protein Biosynthesis/drug effects , Puromycin/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
8.
Development ; 145(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-30042179

ABSTRACT

To decipher the populations of cells present in the human fetal pancreas and their lineage relationships, we developed strategies to isolate pancreatic progenitors, endocrine progenitors and endocrine cells. Transcriptome analysis of the individual populations revealed a large degree of conservation among vertebrates in the drivers of gene expression changes that occur at different steps of differentiation, although notably, sometimes, different members of the same gene family are expressed. The transcriptome analysis establishes a resource to identify novel genes and pathways involved in human pancreas development. Single-cell profiling further captured intermediate stages of differentiation and enabled us to decipher the sequence of transcriptional events occurring during human endocrine differentiation. Furthermore, we evaluate how well individual pancreatic cells derived in vitro from human pluripotent stem cells mirror the natural process occurring in human fetuses. This comparison uncovers a few differences at the progenitor steps, a convergence at the steps of endocrine induction, and the current inability to fully resolve endocrine cell subtypes in vitro.


Subject(s)
Fetus/embryology , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation, Developmental/physiology , Pancreas/embryology , Transcription, Genetic/physiology , Fetus/cytology , Humans , Pancreas/cytology , Pluripotent Stem Cells/metabolism
9.
Differentiation ; 113: 1-9, 2020.
Article in English | MEDLINE | ID: mdl-32120156

ABSTRACT

The functional maturation of human pancreatic ß-cells remains poorly understood. EndoC-ßH2 is a human ß-cell line with a reversible immortalized phenotype. Removal of the two oncogenes, SV40LT and hTERT introduced for its propagation, stops proliferation, triggers cell size increase and senescence, promotes mitochondrial activity and amplifies several ß-cell traits and functions. Overall, these events recapitulate several aspects of functional ß-cell maturation. We report here that selective depletion of SV40LT, but not of hTERT, is sufficient to revert EndoC-ßH2 immortalization. SV40LT inhibits the activity of the RB family members and of P53. In EndoC-ßH2 cells, the knock-down of RB itself, and, to a lesser extent, of its relative P130, precludes most events triggered by SV40LT depletion. In contrast, the knock-down of P53 does not prevent reversion of immortalization. Thus, an increase in RB and P130 activity, but not in P53 activity, is required for functional maturation of EndoC-ßH2 cells upon SV40LT-depletion. In addition, RB and/or P130 depletion in SV40LT-expressing EndoC-ßH2 cells decreases cell size, stimulates proliferation, and decreases the expression of key ß-cell genes. Thus, despite SV40LT expression, EndoC-ßH2 cells have a residual RB activity, which when suppressed reverts them to a more immature phenotype. These results show that the expression and activity levels of RB family members, especially RB itself, regulate the maturation state of EndoC-ßH2 cells.


Subject(s)
Genes, Retinoblastoma , Insulin-Secreting Cells/metabolism , Retinoblastoma Protein/physiology , Antigens, Polyomavirus Transforming/genetics , Cell Cycle , Cell Line , Cell Proliferation , Cellular Senescence , Gene Knockdown Techniques , Humans , Insulin/biosynthesis , Insulin/genetics , Insulin-Secreting Cells/cytology , Multigene Family , RNA, Small Interfering , Retinoblastoma-Like Protein p130/physiology , Telomerase/genetics , Transcription, Genetic , Tumor Suppressor Protein p53/physiology
10.
Diabetologia ; 63(10): 1974-1980, 2020 10.
Article in English | MEDLINE | ID: mdl-32894307

ABSTRACT

Improving our understanding of mammalian pancreas development is crucial for the development of more effective cellular therapies for diabetes. Most of what we know about mammalian pancreas development stems from mouse genetics. We have learnt that a unique set of transcription factors controls endocrine and exocrine cell differentiation. Transgenic mouse models have been instrumental in studying the function of these transcription factors. Mouse and human pancreas development are very similar in many respects, but the devil is in the detail. To unravel human pancreas development in greater detail, in vitro cellular models (including directed differentiation of stem cells, human beta cell lines and human pancreatic organoids) are used; however, in vivo validation of these results is still needed. The current best 'model' for studying human pancreas development are individuals with monogenic forms of diabetes. In this review, we discuss mammalian pancreas development, highlight some discrepancies between mouse and human, and discuss selected transcription factors that, when mutated, cause permanent neonatal diabetes. Graphical abstract.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Pancreas/embryology , Transcription Factors/genetics , Animals , Cell Line , Diabetes Mellitus/genetics , Humans , In Vitro Techniques , Insulin-Secreting Cells , Mice , Organoids , Pancreas/metabolism , Pluripotent Stem Cells
11.
Diabetologia ; 63(2): 395-409, 2020 02.
Article in English | MEDLINE | ID: mdl-31796987

ABSTRACT

AIMS/HYPOTHESIS: During the onset of type 2 diabetes, excessive dietary intake of saturated NEFA and fructose lead to impaired insulin production and secretion by insulin-producing pancreatic beta cells. The majority of data on the deleterious effects of lipids on functional beta cell mass were obtained either in vivo in rodent models or in vitro using rodent islets and beta cell lines. Translating data from rodent to human beta cells remains challenging. Here, we used the human beta cell line EndoC-ßH1 and analysed its sensitivity to a lipotoxic and glucolipotoxic (high palmitate with or without high glucose) insult, as a way to model human beta cells in a type 2 diabetes environment. METHODS: EndoC-ßH1 cells were exposed to palmitate after knockdown of genes related to saturated NEFA metabolism. We analysed whether and how palmitate induces apoptosis, stress and inflammation and modulates beta cell identity. RESULTS: EndoC-ßH1 cells were insensitive to the deleterious effects of saturated NEFA (palmitate and stearate) unless stearoyl CoA desaturase (SCD) was silenced. SCD was abundantly expressed in EndoC-ßH1 cells, as well as in human islets and human induced pluripotent stem cell-derived beta cells. SCD silencing induced markers of inflammation and endoplasmic reticulum stress and also IAPP mRNA. Treatment with the SCD products oleate or palmitoleate reversed inflammation and endoplasmic reticulum stress. Upon SCD knockdown, palmitate induced expression of dedifferentiation markers such as SOX9, MYC and HES1. Interestingly, SCD knockdown by itself disrupted beta cell identity with a decrease in mature beta cell markers INS, MAFA and SLC30A8 and decreased insulin content and glucose-stimulated insulin secretion. CONCLUSIONS/INTERPRETATION: The present study delineates an important role for SCD in the protection against lipotoxicity and in the maintenance of human beta cell identity. DATA AVAILABILITY: Microarray data and all experimental details that support the findings of this study have been deposited in in the GEO database with the GSE130208 accession code.


Subject(s)
Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Palmitic Acid/pharmacology , Stearoyl-CoA Desaturase/metabolism , Apoptosis/drug effects , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Insulin Secretion/drug effects , Proto-Oncogene Proteins c-myc/metabolism , SOX9 Transcription Factor/metabolism , Transcription Factor HES-1/metabolism
12.
Hum Mol Genet ; 26(3): 599-610, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28025328

ABSTRACT

Congenital hypothyroidism is the most common neonatal endocrine disorder and is primarily caused by developmental abnormalities otherwise known as thyroid dysgenesis (TD). We performed whole exome sequencing (WES) in a consanguineous family with TD and subsequently sequenced a cohort of 134 probands with TD to identify genetic factors predisposing to the disease. We identified the novel missense mutations p.S148F, p.R114Q and p.L177W in the BOREALIN gene in TD-affected families. Borealin is a major component of the Chromosomal Passenger Complex (CPC) with well-known functions in mitosis. Further analysis of the missense mutations showed no apparent effects on mitosis. In contrast, expression of the mutants in human thyrocytes resulted in defects in adhesion and migration with corresponding changes in gene expression suggesting others functions for this mitotic protein. These results were well correlated with the same gene expression pattern analysed in the thyroid tissue of the patient with BOREALIN-p.R114W. These studies open new avenues in the genetics of TD in humans.


Subject(s)
Cell Cycle Proteins/genetics , Genetic Predisposition to Disease , Mutation, Missense/genetics , Thyroid Dysgenesis/genetics , Cell Cycle Proteins/biosynthesis , Cell Movement/genetics , Exome/genetics , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Mitosis/genetics , Pedigree , Thyroid Dysgenesis/pathology
13.
BMC Biotechnol ; 19(1): 35, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31208395

ABSTRACT

BACKGROUND: Viral vectors are invaluable tools to transfer genes and/or regulatory sequences into differentiated cells such as pancreatic cells. To date, several kinds of viral vectors have been used to transduce different pancreatic cell types, including insulin-producing ß cells. However, few studies have used vectors derived from « simple ¼ retroviruses, such as avian α- or mouse γ-retroviruses, despite their high experimental convenience. Moreover, such vectors were never designed to specifically target transgene expression into ß cells. RESULTS: We here describe two novel α- or SIN (Self-Inactivating) γ-retrovectors containing the RIP (Rat Insulin Promoter) as internal promoter. These two retrovectors are easily produced in standard BSL2 conditions, rapidly concentrated if needed, and harbor a large multiple cloning site. For the SIN γ-retrovector, either the VSV-G (pantropic) or the retroviral ecotropic (rodent specific) envelope was used. For the α-retrovector, we used the A type envelope, as its receptor, termed TVA, is only naturally present in avian cells and can efficiently be provided to mammalian ß cells through either exogenous expression upon cDNA transfer or gesicle-mediated delivery of the protein. As expected, the transgenes cloned into the two RIP-containing retrovectors displayed a strong preferential expression in ß over non-ß cells compared to transgenes cloned in their non-RIP (CMV- or LTR-) regulated counterparts. We further show that RIP activity of both retrovectors mirrored fluctuations affecting endogenous INSULIN gene expression in human ß cells. Finally, both α- and SIN γ-retrovectors were extremely poorly mobilized by the BXV1 xenotropic retrovirus, a common invader of human cells grown in immunodeficient mice, and, most notably, of human ß cell lines. CONCLUSION: Our novel α- and SIN γ-retrovectors are safe and convenient tools to stably and specifically express transgene(s) in mammalian ß cells. Moreover, they both reproduce some regulatory patterns affecting INSULIN gene expression. Thus, they provide a helpful tool to both study the genetic control of ß cell function and monitor changes in their differentiation status.


Subject(s)
Genetic Vectors/metabolism , Insulin-Secreting Cells/metabolism , Luminescent Proteins/metabolism , Retroviridae/metabolism , Transduction, Genetic , Animals , Cell Line , Cell Line, Tumor , Gene Expression , Genetic Vectors/genetics , HEK293 Cells , Humans , Insulin-Secreting Cells/cytology , Luminescent Proteins/genetics , Mice , Rats , Retroviridae/classification , Retroviridae/genetics , Transgenes/genetics
14.
Rev Endocr Metab Disord ; 20(2): 129-149, 2019 06.
Article in English | MEDLINE | ID: mdl-31077020

ABSTRACT

In the last 10 years, several studies have shown that the pancreas of patients with type 1 diabetes (T1D), and even of subjects at risk for T1D, was smaller than the pancreas from healthy subjects. This arose the question of the relationships between the endocrine and exocrine parts of the pancreas in T1D pathogenesis. Our review underlines that histological anomalies of the exocrine pancreas are common in patients with T1D: intralobular and interacinar fibrosis, acinar atrophy, fatty infiltration, leucocytic infiltration, and pancreatic arteriosclerosis are all frequent observations. Moreover, 25% to 75% of adult patients with T1D present with pancreatic exocrine dysfunction. Our review summarizes the putative causal factors for these structural and functional anomalies, including: 1/ alterations of insulin, glucagon, somatostatin and pancreatic polypeptide secretion, 2/ global pancreatic inflammation 3/ autoimmunity targeting the exocrine pancreas, 4/ vascular and neural abnormalities, and 5/ the putative involvement of pancreatic stellate cells. These observations have also given rise to new theories on T1D: the primary event of T1D pathogenesis could be non-specific, e.g bacterial or viral or chemical, resulting in global pancreatic inflammation, which in turn could cause beta-cell predominant destruction by the immune system. Finally, this review emphasizes that it is advisable to evaluate pancreatic exocrine function in patients with T1D presenting with gastro-intestinal complaints, as a clinical trial has shown that pancreatic enzymes replacement therapy can reduce the frequency of hypoglycemia and thus might improve quality of life in subjects with T1D and exocrine failure.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Pancreas, Exocrine/metabolism , Humans , Pancreatic Elastase/metabolism
15.
Diabetologia ; 61(3): 641-657, 2018 03.
Article in English | MEDLINE | ID: mdl-29185012

ABSTRACT

AIMS/HYPOTHESIS: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS: Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS: Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION: These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.


Subject(s)
Biological Specimen Banks , Diabetes Mellitus, Type 2/metabolism , Systems Biology/methods , Tissue Donors , Transcriptome/genetics , Aged , Aged, 80 and over , Computational Biology , Female , Humans , Male , Pancreatectomy
16.
Molecules ; 23(9)2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30134599

ABSTRACT

Non-invasive imaging and quantification of human beta cell mass remains a major challenge. We performed pre-clinical in vivo validation of a peptide previously discovered by our group, namely, P88 that targets a beta cell specific biomarker, FXYD2γa. We conjugated P88 with DOTA and then complexed it with GdCl3 to obtain the MRI (magnetic resonance imaging) contrast agent (CA) Gd-DOTA-P88. A scrambled peptide was used as a negative control CA, namely Gd-DOTA-Scramble. The CAs were injected in immunodeficient mice implanted with EndoC-ßH1 cells, a human beta cell line that expresses FXYD2γa similarly to primary human beta cells. The xenograft-bearing mice were analyzed by MRI. At the end, the mice were euthanized and the CA biodistribution was evaluated on the excised tissues by measuring the Gd concentration with inductively coupled plasma mass spectrometry (ICP-MS). The MRI and biodistribution studies indicated that Gd-DOTA-P88 accumulates in EndoC-ßH1 xenografts above the level observed in the background tissue, and that its uptake is significantly higher than that observed for Gd-DOTA-Scramble. In addition, the Gd-DOTA-P88 showed good xenograft-to-muscle and xenograft-to-liver uptake ratios, two potential sites of human islets transplantation. The CA shows good potential for future use to non-invasively image implanted human beta cells.


Subject(s)
Contrast Media , Heterocyclic Compounds , Insulin-Secreting Cells/metabolism , Magnetic Resonance Imaging , Molecular Imaging , Organometallic Compounds , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Biomarkers , CHO Cells , Contrast Media/chemistry , Cricetulus , Gene Expression , Heterocyclic Compounds/chemistry , Heterografts , Humans , Insulin-Secreting Cells/transplantation , Magnetic Resonance Imaging/methods , Male , Mice , Molecular Imaging/methods , Organometallic Compounds/chemistry , Sodium-Potassium-Exchanging ATPase/genetics
17.
Diabetologia ; 59(1): 170-175, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26489735

ABSTRACT

AIMS/HYPOTHESIS: Genetically engineered human beta cell lines provide a novel source of human beta cells to study metabolism, pharmacology and beta cell replacement therapy. Since the immune system is essentially involved in beta cell destruction in type 1 diabetes and after beta cell transplantation, we investigated the interaction of human beta cell lineswith the immune system to resolve their potential for immune intervention protocol studies. METHODS: Human pancreatic beta cell lines (EndoC-ßH1 and ECi50) generated by targeted oncogenesis in fetal pancreas were assessed for viability after innate and adaptive immune challenges. Beta cell lines were pre-conditioned with T helper type 1 (Th1) cytokines or high glucose to mimic inflammatory and hyperglycaemia-stressed conditions. Beta cells were then co-cultured with auto- and alloreactive cytotoxic T cells (CTL), natural killer (NK) cells, supernatant fraction from activated autoreactive Th1 cells, or alloantibodies in the presence of complement or effector cells. RESULTS: Low HLA expression protected human beta cell lines from adaptive immune destruction, but it was associated with direct killing by activated NK cells. Autoreactive Th1 cell inflammation, rather than glucose stress, induced increased beta cell apoptosis and upregulation of HLA, increasing beta cell vulnerability to killing by auto- and alloreactive CTL and alloreactive antibodies. CONCLUSIONS/INTERPRETATION: We demonstrate that genetically engineered human beta cell lines can be used in vitro to assess diverse immune responses that may be involved in the pathogenesis of type 1 diabetes in humans and beta cell transplantation, enabling preclinical evaluation of novel immune intervention strategies protecting beta cells from immune destruction.


Subject(s)
Adaptive Immunity , Immunity, Innate , Insulin-Secreting Cells/immunology , Antibodies/immunology , Cell Line , Cell Transplantation/methods , Complement System Proteins/immunology , Cytokines/metabolism , Diabetes Mellitus, Type 1/immunology , Genetic Engineering/methods , Genotype , HLA Antigens/immunology , HeLa Cells , Humans , Hyperglycemia/metabolism , Immune System , Inflammation , Insulin-Secreting Cells/cytology , Killer Cells, Natural/cytology , Leukocytes, Mononuclear/cytology , T-Lymphocytes, Cytotoxic/cytology , Th1 Cells/cytology
18.
J Cell Sci ; 126(Pt 8): 1763-72, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23444380

ABSTRACT

Patients with myotonic dystrophy type 1 exhibit a diversity of symptoms that affect many different organs. Among these are cognitive dysfunctions, the origin of which has remained elusive, partly because of the difficulty in accessing neural cells. Here, we have taken advantage of pluripotent stem cell lines derived from embryos identified during a pre-implantation genetic diagnosis for mutant-gene carriers, to produce early neuronal cells. Functional characterization of these cells revealed reduced proliferative capacity and increased autophagy linked to mTOR signaling pathway alterations. Interestingly, loss of function of MBNL1, an RNA-binding protein whose function is defective in DM1 patients, resulted in alteration of mTOR signaling, whereas gain-of-function experiments rescued the phenotype. Collectively, these results provide a mechanism by which DM1 mutation might affect a major signaling pathway and highlight the pertinence of using pluripotent stem cells to study neuronal defects.


Subject(s)
Embryonic Stem Cells/cytology , Myotonic Dystrophy/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Cell Line , Cell Proliferation , Cellular Senescence/genetics , Cellular Senescence/physiology , Electrophoresis, Polyacrylamide Gel , Humans , Immunohistochemistry , In Situ Hybridization , Myotonic Dystrophy/genetics , Real-Time Polymerase Chain Reaction , TOR Serine-Threonine Kinases/genetics
19.
Diabetologia ; 57(11): 2348-56, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25186293

ABSTRACT

AIM/HYPOTHESIS: Different studies have linked hypoxia to embryonic development. Specifically, when embryonic pancreases are cultured ex vivo under hypoxic conditions (3% O2), beta cell development is impaired. Different cellular signalling pathways are involved in adaptation to hypoxia, including the ubiquitous hypoxia-inducible-factor 1-α (HIF1-α) pathway. We aimed to analyse the effects of HIF1-α stabilisation on fetal pancreas development in vivo. METHODS: We deleted the Vhl gene, which encodes von Hippel-Lindau protein (pVHL), a factor necessary for HIF1-α degradation, by crossing Vhl-floxed mice with Sox9-Cre mice. RESULTS: HIF1-α was stabilised in pancreatic progenitor cells in which the HIF pathway was induced. The number of neurogenin-3 (NGN3)-expressing cells was reduced and consequently endocrine development was altered in Vhl knockout pancreases. HIF1-α stabilisation induced Vegfa upregulation, leading to increased vascularisation. To investigate the impact of increased vascularisation on NGN3 expression, we used a bioassay in which Vhl mutant pancreases were cultured with or without vascular endothelial growth factor (VEGF) receptor 2 (VEGF-R2) inhibitors (e.g. Ki8751). Ex vivo analysis showed that Vhl knockout pancreases developed fewer NGN3-positive cells compared with controls. Interestingly, this effect was blocked when vascularisation was inhibited in the presence of VEGF-R2 inhibitors. CONCLUSIONS/INTERPRETATION: Our data demonstrate that HIF1-α negatively controls beta cell differentiation in vivo by regulating NGN3 expression, and that this effect is mediated by signals from blood vessels.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pancreas/cytology , Vascular Endothelial Growth Factor A/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/physiology , Female , Flow Cytometry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pancreas/embryology , Pregnancy , Vascular Endothelial Growth Factor A/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics
20.
Diabetologia ; 57(5): 960-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24477974

ABSTRACT

AIMS/HYPOTHESIS: Growth factors and nutrients are important regulators of pancreatic beta cell mass and function. However, the signalling pathways by which these factors modulate these processes have not yet been fully elucidated. DYRK1A (also named minibrain/MNB) is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family that has been conserved across evolution. A significant amount of data implicates DYRK1A in brain growth and function, as well as in neurodegenerative processes in Alzheimer's disease and Down's syndrome. We investigated here whether DYRK1A would be an attractive candidate for beta cell growth modulation. METHODS: To study the role of DYRK1A in beta cell growth, we used Dyrk1a-deficient mice. RESULTS: We show that DYRK1A is expressed in pancreatic islets and provide evidence that changes in Dyrk1a gene dosage in mice strongly modulate glycaemia and circulating insulin levels. Specifically, Dyrk1a-haploinsufficient mice show severe glucose intolerance, reduced beta cell mass and decreased beta cell proliferation. CONCLUSIONS/INTERPRETATION: Taken together, our data indicate that DYRK1A is a critical kinase for beta cell growth as Dyrk1a-haploinsufficient mice show a diabetic profile.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Insulin-Secreting Cells/cytology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , Cell Proliferation , Haploinsufficiency , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/cytology , Male , Mice , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Signal Transduction , Dyrk Kinases
SELECTION OF CITATIONS
SEARCH DETAIL