Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 597(7874): 92-96, 2021 09.
Article in English | MEDLINE | ID: mdl-34433968

ABSTRACT

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Heparan Sulfate Proteoglycans/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Animals , B-Cell Maturation Antigen/metabolism , Binding Sites , Cardiovascular Diseases/blood , Cardiovascular Diseases/mortality , Female , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding , Transmembrane Activator and CAML Interactor Protein/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/blood , Tumor Necrosis Factor Ligand Superfamily Member 13/deficiency
2.
Hum Mol Genet ; 31(6): 999-1011, 2022 03 21.
Article in English | MEDLINE | ID: mdl-34590679

ABSTRACT

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player in lipid metabolism, as it degrades low-density lipoprotein (LDL) receptors from hepatic cell membranes. So far, only variants of the PCSK9 gene locus were found to be associated with PCSK9 levels. Here we aimed to identify novel genetic loci that regulate PCSK9 levels and how they relate to other lipid traits. Additionally, we investigated to what extend the causal effect of PCSK9 on coronary artery disease (CAD) is mediated by low-density lipoprotein-cholesterol (LDL-C). METHODS AND RESULTS: We performed a genome-wide association study meta-analysis of PCSK9 levels in up to 12 721 samples of European ancestry. The estimated heritability was 10.3%, which increased to 12.6% using only samples from patients without statin treatment. We successfully replicated the known PCSK9 hit consisting of three independent signals. Interestingly, in a study of 300 African Americans, we confirmed the locus with a different PCSK9 variant. Beyond PCSK9, our meta-analysis detected three novel loci with genome-wide significance. Co-localization analysis with cis-eQTLs and lipid traits revealed biologically plausible candidate genes at two of them: APOB and TM6SF2. In a bivariate Mendelian Randomization analysis, we detected a strong effect of PCSK9 on LDL-C, but not vice versa. LDL-C mediated 63% of the total causal effect of PCSK9 on CAD. CONCLUSION: Our study identified novel genetic loci with plausible candidate genes affecting PCSK9 levels. Ethnic heterogeneity was observed at the PCSK9 locus itself. Although the causal effect of PCSK9 on CAD is mainly mediated by LDL-C, an independent direct effect also occurs.


Subject(s)
Coronary Artery Disease , Proprotein Convertase 9 , Apolipoproteins B/genetics , Cholesterol, LDL/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Humans , Membrane Proteins/genetics , Proprotein Convertase 9/genetics , Receptors, LDL/genetics
3.
Cardiovasc Diabetol ; 23(1): 145, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678253

ABSTRACT

BACKGROUND: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have been suggested to exert cardioprotective effects in patients with heart failure, possibly by improving the metabolism of ketone bodies in the myocardium. METHODS: This post hoc analysis of the EMMY trial investigated the changes in serum ß-hydroxybutyrate (3-ßOHB) levels after acute myocardial infarction (AMI) in response to 26-week of Empagliflozin therapy compared to the usual post-MI treatment. In addition, the association of baseline and repeated measurements of 3-ßOHB with cardiac parameters and the interaction effects of Empagliflozin were investigated. Cardiac parameters included N-terminal pro-B-type natriuretic peptide (NT-proBNP), left ventricular ejection fraction (LVEF), left ventricle end-systolic volume (LVESV), left ventricle end-diastolic volume (LVEDV), and left ventricular filling pressure (E/é ratio). RESULTS: The mean 3-ßOHB levels increased from baseline (46.2 ± 3.0 vs. 51.7 ± 2.7) to 6 weeks (48.8 ± 2.2 vs. 42.0 ± 2.3) and 26 weeks (49.3 ± 2.2 vs. 35.8 ± 1.9) in the Empagliflozin group compared to a consistent decline in placebo over 26 weeks (pinteraction < 0.001). Baseline and longitudinal measurements of 3-ßOHB were not significantly associated with NT-proBNP and E/é ratio. Baseline 3-ßOHB value was negatively associated with LVEF (coefficient: - 0.464, 95%CI - 0.863;- 0.065, p = 0.023), while an increase in its levels over time was positively associated with LVEF (0.595, 0.156;1.035, 0.008). The baseline 3-ßOHB was positively associated with LVESV (1.409, 0.186;2.632, 0.024) and LVEDV (0.640, - 1.170;- 2.449, 0.488), while an increase in its levels over time was negatively associated with these cardiac parameters (LVESV: - 2.099, - 3.443;- 0.755, 0.002; LVEDV: - 2.406, - 4.341;- 0.472, 0.015). Empagliflozin therapy appears to modify the association between 3-ßOHB, LVEF (pinteraction = 0.090), LVESV (pinteraction = 0.134), and LVEDV (pinteraction = 0.168), particularly at 26 weeks; however, the results were not statistically significant. CONCLUSION: This post hoc analysis showed that SGLT2i increased 3-ßOHB levels after AMI compared to placebo. Higher baseline 3-ßOHB levels were inversely associated with cardiac function at follow-up, whereas a sustained increase in 3-ßOHB levels over time improved these markers. This highlights the importance of investigating ketone body metabolism in different post-MI phases. Although more pronounced effect of 3-ßOHB on cardiac markers was observed in the SGLT2i group, further research is required to explore this interaction effect.


Subject(s)
3-Hydroxybutyric Acid , Benzhydryl Compounds , Biomarkers , Glucosides , Natriuretic Peptide, Brain , Peptide Fragments , Sodium-Glucose Transporter 2 Inhibitors , Ventricular Function, Left , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Biomarkers/blood , Male , Female , Benzhydryl Compounds/therapeutic use , Ventricular Function, Left/drug effects , Glucosides/therapeutic use , Middle Aged , Time Factors , Aged , Treatment Outcome , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , 3-Hydroxybutyric Acid/blood , Stroke Volume/drug effects
4.
Clin Chem Lab Med ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890759

ABSTRACT

OBJECTIVES: The role of vitamin D deficiency in cardiovascular disease (CVD) is controversial. Inherent biological and analytical limitations compromise the specificity of widely used 25-hydroxyvitamin D [25(OH)D] cut-offs. Simultaneous determination of 25(OH)D and 24,25-dihydroxyvitamin D [24,25(OH)2D] permits a functional assessment of vitamin D metabolism. The present study compared the associations of functional vitamin D deficiency and low vitamin D reservoirs with CVD mortality and CVD burden. METHODS: 25(OH)D, 24,25(OH)2D, the degree of coronary obstruction on angiography, high-sensitive cardiac troponin T (hs-cTnT), N-terminal brain natriuretic peptide (NT-proBNP), and 10-year CVD mortality were obtained from 2,456 participants of the LURIC (Ludwigshafen Risk and Cardiovascular Health) study. RESULTS: Neither low 25(OH)D concentrations nor functional vitamin D deficiency were associated with the number of atherosclerotic coronary arteries or the degree of coronary obstruction. Over a median follow-up of 9.9 years, 454 participants died (23.6 %) due to CVD. CVD mortality was doubled in individuals with 25(OH)D concentrations below the widely used cut-off for deficiency of <50 nmol/L [20 ng/mL] (21.6 vs. 11.5 %). In individuals with and without functional vitamin D deficiency, CVD mortality was 25.0 and 16.7 %, respectively. NT-proBNP and heart failure prevalence were also higher in vitamin D deficient individuals. CONCLUSIONS: Vitamin D deficient individuals have markedly higher CVD mortality, but only marginally higher hs-cTnT concentrations. A higher prevalence of heart failure and higher NT-proBNP concentrations suggest a link between vitamin D deficiency and cardiac function. The traditional and metabolic assessment of vitamin D status showed comparable associations for the different parameters of cardiac health.

5.
Eur Heart J ; 44(25): 2335-2345, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37155355

ABSTRACT

AIMS: Apolipoprotein C-II (ApoC-II) is thought to activate lipoprotein lipase (LPL) and is therefore a possible target for treating hypertriglyceridemia. Its relationship with cardiovascular risk has not been investigated in large-scale epidemiologic studies, particularly allowing for apolipoprotein C-III (ApoC-III), an LPL antagonist. Furthermore, the exact mechanism of ApoC-II-mediated LPL activation is unclear. METHODS AND RESULTS: ApoC-II was measured in 3141 LURIC participants of which 590 died from cardiovascular diseases during a median (inter-quartile range) follow-up of 9.9 (8.7-10.7) years. Apolipoprotein C-II-mediated activation of the glycosylphosphatidylinositol high-density lipoprotein binding protein 1 (GPIHBP1)-LPL complex was studied using enzymatic activity assays with fluorometric lipase and very low-density lipoprotein (VLDL) substrates. The mean ApoC-II concentration was 4.5 (2.4) mg/dL. The relationship of ApoC-II quintiles with cardiovascular mortality exhibited a trend toward an inverse J-shape, with the highest risk in the first (lowest) quintile and lowest risk in the middle quintile. Compared with the first quintile, all other quintiles were associated with decreased cardiovascular mortality after multivariate adjustments including ApoC-III as a covariate (all P < 0.05). In experiments using fluorometric substrate-based lipase assays, there was a bell-shaped relationship for the effect of ApoC-II on GPIHBP1-LPL activity when exogenous ApoC-II was added. In ApoC-II-containing VLDL substrate-based lipase assays, GPIHBP1-LPL enzymatic activity was almost completely blocked by a neutralizing anti-ApoC-II antibody. CONCLUSION: The present epidemiologic data suggest that increasing low circulating ApoC-II levels may reduce cardiovascular risk. This conclusion is supported by the observation that optimal ApoC-II concentrations are required for maximal GPIHBP1-LPL enzymatic activity.


Subject(s)
Cardiovascular Diseases , Lipoprotein Lipase , Humans , Apolipoprotein C-III , Lipase , Lipoprotein Lipase/metabolism , Lipoproteins, VLDL/metabolism , Triglycerides/metabolism , Apolipoprotein C-II
6.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732266

ABSTRACT

Metabolic syndrome (MS) is a widespread disease in developed countries, accompanied, among others, by decreased adiponectin serum levels and perturbed lipoprotein metabolism. The associations between the serum levels of adiponectin and lipoproteins have been extensively studied in the past under healthy conditions, yet it remains unexplored whether the observed associations also exist in patients with MS. Therefore, in the present study, we analyzed the serum levels of lipoprotein subclasses using nuclear magnetic resonance spectroscopy and examined their associations with the serum levels of adiponectin in patients with MS in comparison with healthy volunteers (HVs). In the HVs, the serum levels of adiponectin were significantly negatively correlated with the serum levels of large buoyant-, very-low-density lipoprotein, and intermediate-density lipoprotein, as well as small dense low-density lipoprotein (LDL) and significantly positively correlated with large buoyant high-density lipoprotein (HDL). In patients with MS, however, adiponectin was only significantly correlated with the serum levels of phospholipids in total HDL and large buoyant LDL. As revealed through logistic regression and orthogonal partial least-squares discriminant analyses, high adiponectin serum levels were associated with low levels of small dense LDL and high levels of large buoyant HDL in the HVs as well as high levels of large buoyant LDL and total HDL in patients with MS. We conclude that the presence of MS weakens or abolishes the strong associations between adiponectin and the lipoprotein parameters observed in HVs and disturbs the complex interplay between adiponectin and lipoprotein metabolism.


Subject(s)
Adiponectin , Lipoproteins , Metabolic Syndrome , Adult , Female , Humans , Male , Middle Aged , Adiponectin/blood , Case-Control Studies , Healthy Volunteers , Lipoproteins/blood , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Magnetic Resonance Spectroscopy , Metabolic Syndrome/blood
7.
Clin Chem ; 69(11): 1307-1316, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37798100

ABSTRACT

BACKGROUND: Determining serum 25-hydroxyvitamin D [25(OH)D], 24,25-dihydroxyvitamin D [24,25(OH)2D] and the vitamin D metabolite ratio (VMR) allows the identification of individuals with a low vitamin D metabolite profile. Here, we evaluated if such a functional approach provides superior diagnostic information to serum 25(OH)D alone. METHODS: 25(OH)D, 24,25(OH)2D, and the VMR were determined in participants of the DESIRE (Desirable Vitamin D Concentrations, n = 2010) and the LURIC (Ludwigshafen Risk and Cardiovascular Health, n = 2456) studies. A low vitamin D metabolite profile (vitamin D insufficiency) was defined by a 24,25(OH)2D concentration <1.2 ng/mL (<3 nmol/L) and a VMR <4%. Parathyroid hormone (PTH) and bone turnover markers were measured in both cohorts, whereas 10-year mortality data was recorded in LURIC only. RESULTS: The median age in DESIRE and LURIC was 43.3 and 63.8 years, respectively. Median 25(OH)D concentrations were 27.2 ng/mL (68.0 nmol/L) and 15.5 ng/mL (38.8 nmol/L), respectively. Serum 25(OH)D deficiency, defined as <20.2 ng/mL (<50 nmol/L), was present in 483 (24.0%) and 1701 (69.3%) participants of DESIRE and LURIC, respectively. In contrast, only 77 (3.8%) and 521 (21.2%) participants had a low vitamin D metabolite profile. Regardless of the serum 25(OH)D concentration, a low vitamin D metabolite profile was associated with a significantly higher PTH, accelerated bone metabolism, and higher all-cause mortality than an unremarkable vitamin D metabolite profile. CONCLUSIONS: The personalized assessment of vitamin D status using a functional approach better identifies patients with accelerated bone metabolism and increased mortality than the use of a fixed 25(OH)D cutoff of 20 ng/mL (50 nmol/L).


Subject(s)
Vitamin D Deficiency , Humans , Adult , Middle Aged , Vitamin D , Parathyroid Hormone
8.
Clin Chem ; 69(3): 262-272, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36644921

ABSTRACT

BACKGROUND: Elevated concentrations of lipoprotein(a) [Lp(a)] are directly related to an increased risk of cardiovascular diseases, making it a relevant biomarker for clinical risk assessment. However, the lack of global standardization of current Lp(a) measurement procedures (MPs) leads to inconsistent patient care. The International Federation for Clinical Chemistry and Laboratory Medicine working group on quantitating apolipoproteins by mass spectrometry (MS) aims to develop a next-generation SI (International system of units)-traceable reference measurement system consisting of a MS-based, peptide-calibrated reference measurement procedure (RMP) and secondary serum-based reference materials (RMs) certified for their apolipoprotein(a) [apo(a)] content. To reach measurement standardization through this new measurement system, 2 essential requirements need to be fulfilled: a sufficient correlation among the MPs and appropriate commutability of future serum-based RMs. METHODS: The correlation among the candidate RMP (cRMP) and immunoassay-based MPs was assessed by measuring a panel of 39 clinical samples (CS). In addition, the commutability of 14 different candidate RMs was investigated. RESULTS: Results of the immunoassay-based MPs and the cRMPs demonstrated good linear correlations for the CS but some significant sample-specific differences were also observed. The results of the commutability study show that RMs based on unspiked human serum pools can be commutable with CS, whereas human pools spiked with recombinant apo(a) show different behavior compared to CS. CONCLUSIONS: The results of this study show that unspiked human serum pools are the preferred candidate secondary RMs in the future SI-traceable Lp(a) Reference Measurement System.


Subject(s)
Chemistry, Clinical , Lipoprotein(a) , Humans , Immunoassay , Mass Spectrometry , Reference Standards
9.
Hepatology ; 75(1): 125-139, 2022 01.
Article in English | MEDLINE | ID: mdl-34387896

ABSTRACT

BACKGROUND AND AIMS: Increased fatty acid (FA) flux from adipose tissue to the liver contributes to the development of NAFLD. Because free FAs are key lipotoxic triggers accelerating disease progression, inhibiting adipose triglyceride lipase (ATGL)/patatin-like phospholipase domain containing 2 (PNPLA2), the main enzyme driving lipolysis, may attenuate steatohepatitis. APPROACH AND RESULTS: Hepatocyte-specific ATGL knockout (ATGL LKO) mice were challenged with methionine-choline-deficient (MCD) or high-fat high-carbohydrate (HFHC) diet. Serum biochemistry, hepatic lipid content and liver histology were assessed. Mechanistically, hepatic gene and protein expression of lipid metabolism, inflammation, fibrosis, apoptosis, and endoplasmic reticulum (ER) stress markers were investigated. DNA binding activity for peroxisome proliferator-activated receptor (PPAR) α and PPARδ was measured. After short hairpin RNA-mediated ATGL knockdown, HepG2 cells were treated with lipopolysaccharide (LPS) or oleic acid:palmitic acid 2:1 (OP21) to explore the direct role of ATGL in inflammation in vitro. On MCD and HFHC challenge, ATGL LKO mice showed reduced PPARα and increased PPARδ DNA binding activity when compared with challenged wild-type (WT) mice. Despite histologically and biochemically pronounced hepatic steatosis, dietary-challenged ATGL LKO mice showed lower hepatic inflammation, reflected by the reduced number of Galectin3/MAC-2 and myeloperoxidase-positive cells and low mRNA expression levels of inflammatory markers (such as IL-1ß and F4/80) when compared with WT mice. In line with this, protein levels of the ER stress markers protein kinase R-like endoplasmic reticulum kinase and inositol-requiring enzyme 1α were reduced in ATGL LKO mice fed with MCD diet. Accordingly, pretreatment of LPS-treated HepG2 cells with the PPARδ agonist GW0742 suppressed mRNA expression of inflammatory markers. Additionally, ATGL knockdown in HepG2 cells attenuated LPS/OP21-induced expression of proinflammatory cytokines and chemokines such as chemokine (C-X-C motif) ligand 5, chemokine (C-C motif) ligand (Ccl) 2, and Ccl5. CONCLUSIONS: Low hepatic lipolysis and increased PPARδ activity in ATGL/PNPLA2 deficiency may counteract hepatic inflammation and ER stress despite increased steatosis. Therefore, lowering hepatocyte lipolysis through ATGL inhibition represents a promising therapeutic strategy for the treatment of steatohepatitis.


Subject(s)
Lipase/metabolism , Lipolysis/immunology , Liver/pathology , Non-alcoholic Fatty Liver Disease/immunology , Adult , Animals , Diet, Carbohydrate Loading/adverse effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Nonesterified/metabolism , Female , Hep G2 Cells , Humans , Lipase/genetics , Lipolysis/genetics , Liver/enzymology , Liver/immunology , Male , Mice , Mice, Knockout , Middle Aged , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology
10.
Hepatology ; 75(5): 1095-1109, 2022 05.
Article in English | MEDLINE | ID: mdl-34927748

ABSTRACT

BACKGROUND AND AIMS: Lipopolysaccharide (LPS) clearance is delayed in cholestatic liver diseases. While compromised clearance by Kupffer cells (KCs) is involved, the role of LPS uptake into hepatocytes and canalicular excretion remains unclear. APPROACH AND RESULTS: Wild-type (WT) and bile salt export pump (Bsep) knockout (KO) mice were challenged i.p. with LPS. Liver injury was assessed by serum biochemistry, histology, molecular inflammation markers, and immune cell infiltration. LPS concentrations were determined in liver tissue and bile. Subcellular kinetics of fluorescently labeled LPS was visualized by intravital two-photon microscopy, and the findings in Bsep KO mice were compared to common bile duct-ligated (BDL) and multidrug resistance protein 2 (Mdr2) KO mice. Changes in gut microbiota composition were evaluated by 16S ribosomal RNA gene amplicon sequencing analysis. Bsep KO mice developed more pronounced LPS-induced liver injury and inflammatory signaling, with subsequently enhanced production of proinflammatory cytokines and aggravated hepatic immune cell infiltration. After LPS administration, its concentrations were higher in liver but lower in bile of Bsep KO compared to WT mice. Intravital imaging of LPS showed a delayed clearance from sinusoidal blood with a basolateral uptake block into hepatocytes and reduced canalicular secretion. Moreover, LPS uptake into KCs was reduced. Similar findings with respect to hepatic LPS clearance were obtained in BDL and Mdr2 KO mice. Pretreatment with the microtubule inhibitor colchicine inhibited biliary excretion of LPS in WT mice, indicating that LPS clearance is microtubule-dependent. Microbiota analysis showed no change of the gut microbiome between WT and Bsep KO mice at baseline but major changes upon LPS challenge in WT mice. CONCLUSIONS: Absence of Bsep and cholestasis in general impair LPS clearance by a basolateral uptake block into hepatocytes and consequently less secretion into canaliculi. Impaired LPS removal aggravates hepatic inflammation in cholestasis.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Cholestasis , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Animals , Bile Acids and Salts/metabolism , Cholestasis/pathology , Endotoxins , Inflammation/metabolism , Kinetics , Lipopolysaccharides/metabolism , Liver/pathology , Mice , Mice, Knockout
11.
Liver Int ; 43(11): 2469-2478, 2023 11.
Article in English | MEDLINE | ID: mdl-37641872

ABSTRACT

BACKGROUND AND AIMS: Schistosoma mansoni infection is one of the worldwide leading causes of liver fibrosis and portal hypertension. The objective of this study was to evaluate whether polyhydroxylated bile acids (BAs), known to protect mice from the development of acquired cholestatic liver injury, counteract S. mansoni-induced inflammation and fibrosis. METHODS: Adult FVB/N wild type (WT) and Abcb11/Bsep-/- mice were infected with either 25 or 50 S. mansoni cercariae. Eight weeks post infection, effects on liver histology, serum biochemistry, gene expression profile of proinflammatory cytokines and fibrotic markers, hepatic hydroxyproline content and FACS analysis were performed. RESULTS: Bsep-/- mice infected with S. mansoni showed significantly less hepatic inflammation and tendentially less fibrosis compared to infected WT mice. Despite elevated alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase levels in infected Bsep-/- mice, inflammatory cells such as M2 macrophages and Mac-2/galectin-3+ cells were reduced in these animals. Accordingly, mRNA-expression levels of anti-inflammatory cytokines (IL-4 and IL-13) were increased in Bsep-/- mice upon infection. Furthermore, infected Bsep-/- mice exhibited decreased hepatic egg load and parasite fecundity, consequently affecting the worm reproduction rate. This outcome could arise from elevated serum BA levels and lower blood pH in Bsep-/- mice. CONCLUSIONS: The loss of Bsep and the resulting changes in bile acid composition and blood pH are associated with the reduction of parasite fecundity, thus attenuating the development of S. mansoni-induced hepatic inflammation and fibrosis.


Subject(s)
Parasites , Schistosomiasis mansoni , Animals , Mice , Bile Acids and Salts/metabolism , Cytokines/metabolism , Fertility , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/prevention & control , Liver Cirrhosis/etiology , Schistosoma mansoni , Schistosomiasis mansoni/complications
12.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958516

ABSTRACT

Lipoprotein(a) (Lp(a)) is considered an independent risk factor for cardiovascular diseases. The plasma concentration of Lp(a) is largely genetically determined but varies over a wide range within the population. This study investigated changes in Lp(a) levels after an acute myocardial infarction. Patients who underwent coronary angiography due to an ST elevation myocardial infarction were enrolled (n = 86), and Lp(a) levels were measured immediately after the intervention, one day, two days, and at a post-discharge follow-up visit at 3 to 6 months after the acute myocardial infarction. Median Lp(a) levels increased from a median of 7.9 mg/dL (3.8-37.1) at hospital admission to 8.4 mg/dL (3.9-35.4) on the following day, then to 9.3 mg/dL (3.7-39.1) on day two (p < 0.001), and to 11.2 mg/dL (4.4-59.6) at the post-discharge follow-up (p < 0.001). Lp(a) levels were the lowest during the acute myocardial infarction and started to increase significantly immediately thereafter, with the highest levels at the post-discharge follow-up. The moderate but significant increase in Lp(a) in people with acute myocardial infarction appears to be clinically relevant on an individual basis, especially when specific Lp(a) cut-off levels are supposed to determine the initiation of future treatment. Hence, a repeated measurement of Lp(a) after myocardial infarction should be performed.


Subject(s)
Myocardial Infarction , ST Elevation Myocardial Infarction , Humans , Lipoprotein(a) , Aftercare , Biomarkers , Patient Discharge , Risk Factors
13.
J Lipid Res ; 63(12): 100307, 2022 12.
Article in English | MEDLINE | ID: mdl-36511335

ABSTRACT

The HDL proteome has been widely recognized as an important mediator of HDL function. While a variety of HDL isolation methods exist, their impact on the HDL proteome and its associated function remain largely unknown. Here, we compared three of the most common methods for HDL isolation, namely immunoaffinity (IA), density gradient ultracentrifugation (UC), and dextran-sulfate precipitation (DS), in terms of their effects on the HDL proteome and associated functionalities. We used state-of-the-art mass spectrometry to identify 171 proteins across all three isolation methods. IA-HDL contained higher levels of paraoxonase 1, apoB, clusterin, vitronectin, and fibronectin, while UC-HDL had higher levels of apoA2, apoC3, and α-1-antytrypsin. DS-HDL was enriched with apoA4 and complement proteins, while the apoA2 content was very low. Importantly, size-exclusion chromatography analysis showed that IA-HDL isolates contained subspecies in the size range above 12 nm, which were entirely absent in UC-HDL and DS-HDL isolates. Analysis of these subspecies indicated that they primarily consisted of apoA1, IGκC, apoC1, and clusterin. Functional analysis revealed that paraoxonase 1 activity was almost completely lost in IA-HDL, despite high paraoxonase content. We observed that the elution conditions, using 3M thiocyanate, during IA resulted in an almost complete loss of paraoxonase 1 activity. Notably, the cholesterol efflux capacity of UC-HDL and DS-HDL was significantly higher compared to IA-HDL. Together, our data clearly demonstrate that the isolation procedure has a substantial impact on the composition, subclass distribution, and functionality of HDL. In summary, our data show that the isolation procedure has a significant impact on the composition, subclass distribution and functionality of HDL. Our data can be helpful in the comparison, replication and analysis of proteomic datasets of HDL.


Subject(s)
Clusterin , Lipoproteins, HDL , Lipoproteins, HDL/metabolism , Aryldialkylphosphatase , Proteome , Proteomics , Ultracentrifugation , Cholesterol, HDL/metabolism
14.
EMBO Rep ; 21(12): e50893, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33225610

ABSTRACT

Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi-protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome-induced p53-activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro-tumorigenic effect of PIDDosome-mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence-free survival in HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/genetics , Mice , Ploidies , Tumor Suppressor Protein p53/genetics
15.
Eur J Nutr ; 61(1): 255-268, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34319428

ABSTRACT

PURPOSE: Regular exercise reduces obesity and the risk of cardiovascular disease. However, health-promoting benefits of physical activity are commonly associated with increased inflammation and oxidative stress. Here, we tested whether constant moderate exercise is able to prevent or attenuate the oxidative/nitrosative stress, inflammation, and serum lipids in lean and obese rats. METHODS: Four-month-old female Sprague Dawley rats received standard or a high-fat diet. Animals were subjected to a physical activity protocol, consisting of 30 min forced treadmill exercise for 5 consecutive days per week during 10 months. Baseline and sedentary (non-exercised) rats were used as controls. Lipids, oxidized low-density lipoprotein cholesterol, nitric oxide metabolites, and pro- and anti-inflammatory markers were measured in blood collected upon euthanasia. RESULTS: At variance to young baseline control rats, 14-month-old animals fed normal diet had increased plasma lipid levels, including total cholesterol and triglycerides, which were further elevated in rats that consumed a high-fat diet. While treadmill exercise did not lower the amount of serum lipids in standard diet group, forced physical activity reduced non-high-density lipoprotein cholesterol in response to high-fat diet feeding. Exercised rats fed standard diet or high-fat diet had lower abundancy of nitric oxide metabolites, which coincided with increased levels of oxidized low-density lipoprotein cholesterol. Accordingly, the amount of nitric oxide metabolites correlated inversely with oxidized low-density lipoprotein cholesterol and homo-arginine. Exercise significantly reduced inflammatory cytokines in high-fat diet fed rats only. CONCLUSION: Our study suggests that regular exercise alters the equilibrium between oxidative and anti-oxidative compounds and reduces pro-inflammatory cytokines.


Subject(s)
Cytokines , Nitrosative Stress , Animals , Diet, High-Fat/adverse effects , Diet, Western , Female , Lipids , Oxidative Stress , Rats , Rats, Sprague-Dawley
16.
J Hepatol ; 75(5): 1164-1176, 2021 11.
Article in English | MEDLINE | ID: mdl-34242699

ABSTRACT

BACKGROUND & AIMS: 24-Norursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid used to treat immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC), where dysregulated T cells including CD8+ T cells contribute to hepatobiliary immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell function thus contributing to its therapeutic efficacy. METHODS: NorUDCA's immunomodulatory effects were first studied in Mdr2-/- mice, as a cholestatic model of PSC. To differentiate NorUDCA's immunomodulatory effects on CD8+ T cell function from its anticholestatic actions, we also used a non-cholestatic model of hepatic injury induced by an excessive CD8+ T cell immune response upon acute non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Studies included molecular and biochemical approaches, flow cytometry and metabolic assays in murine CD8+ T cells in vitro. Mass spectrometry was used to identify potential CD8+ T cell targets modulated by NorUDCA. The signaling effects of NorUDCA observed in murine cells were validated in circulating T cells from patients with PSC. RESULTS: NorUDCA demonstrated immunomodulatory effects by reducing hepatic innate and adaptive immune cells, including CD8+ T cells in the Mdr2-/- model. In the non-cholestatic model of CD8+ T cell-driven immunopathology induced by acute LCMV infection, NorUDCA ameliorated hepatic injury and systemic inflammation. Mechanistically, NorUDCA demonstrated strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, expansion, glycolysis and mTORC1 signaling. Mass spectrometry identified that NorUDCA regulates CD8+ T cells by targeting mTORC1. NorUDCA's impact on mTORC1 signaling was further confirmed in circulating PSC CD8+ T cells. CONCLUSIONS: NorUDCA has a direct modulatory impact on CD8+ T cells and attenuates excessive CD8+ T cell-driven hepatic immunopathology. These findings are relevant for treatment of immune-mediated liver diseases such as PSC. LAY SUMMARY: Elucidating the mechanisms by which 24-norursodeoxycholic acid (NorUDCA) works for the treatment of immune-mediated liver diseases, such as primary sclerosing cholangitis, is of considerable clinical interest. Herein, we uncovered an unrecognized property of NorUDCA in the immunometabolic regulation of CD8+ T cells, which has therapeutic relevance for immune-mediated liver diseases, including PSC.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Inflammation/drug therapy , Liver/drug effects , Ursodeoxycholic Acid/analogs & derivatives , Animals , CD8-Positive T-Lymphocytes/drug effects , Disease Models, Animal , Inflammation/physiopathology , Liver/physiopathology , Mice , Mice, Inbred C57BL , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use
17.
Hepatology ; 71(5): 1750-1765, 2020 05.
Article in English | MEDLINE | ID: mdl-31505038

ABSTRACT

BACKGROUND AND AIMS: Monoacylglycerol lipase (MGL) is the last enzymatic step in triglyceride degradation, hydrolyzing monoglycerides into glycerol and fatty acids (FAs) and converting 2-arachidonoylglycerol into arachidonic acid, thus providing ligands for nuclear receptors as key regulators of hepatic bile acid (BA)/lipid metabolism and inflammation. We aimed to explore the role of MGL in the development of cholestatic liver and bile duct injury in mouse models of sclerosing cholangitis, a disease so far lacking effective pharmacological therapy. APPROACH AND RESULTS: To this aim we analyzed the effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding to induce sclerosing cholangitis in wild-type (WT) and knockout (MGL-/- ) mice and tested pharmacological inhibition with JZL184 in the multidrug resistance protein 2 knockout (Mdr2-/- ) mouse model of sclerosing cholangitis. Cholestatic liver injury and fibrosis were assessed by serum biochemistry, liver histology, gene expression, and western blot characterization of BA and FA synthesis/transport. Moreover, intestinal FAs and fecal microbiome were analyzed. Transfection and silencing were performed in Caco2 cells. MGL-/- mice were protected from DDC-induced biliary fibrosis and inflammation with reduced serum liver enzymes and increased FA/BA metabolism and ß-oxidation. Notably, pharmacological (JZL184) inhibition of MGL ameliorated cholestatic injury in DDC-fed WT mice and protected Mdr2-/- mice from spontaneous liver injury, with improved liver enzymes, inflammation, and biliary fibrosis. In vitro experiments confirmed that silencing of MGL decreases prostaglandin E2 accumulation in the intestine and up-regulates peroxisome proliferator-activated receptors alpha and gamma activity, thus reducing inflammation. CONCLUSIONS: Collectively, our study unravels MGL as a metabolic target, demonstrating that MGL inhibition may be considered as potential therapy for sclerosing cholangitis.


Subject(s)
Benzodioxoles/therapeutic use , Cholangitis, Sclerosing/drug therapy , Cholestasis/drug therapy , Enzyme Inhibitors/therapeutic use , Liver Cirrhosis, Biliary/prevention & control , Monoacylglycerol Lipases/antagonists & inhibitors , Piperidines/therapeutic use , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Bile Acids and Salts/metabolism , Caco-2 Cells , Cholangitis, Sclerosing/complications , Cholestasis/complications , Disease Models, Animal , Fatty Acids/metabolism , Humans , Liver Cirrhosis, Biliary/etiology , Male , Mice, Inbred C57BL , Mice, Knockout , Pyridines/toxicity , ATP-Binding Cassette Sub-Family B Member 4
18.
Nutr Metab Cardiovasc Dis ; 31(11): 3202-3209, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34629245

ABSTRACT

BACKGROUND AND AIMS: Animal and cell models indicated that vitamin D modulates inflammatory activity, which is considered relevant in the pathogenesis of arterial hypertension and cardiovascular diseases. We therefore aimed to investigate the effect of vitamin D supplementation on systemic markers of inflammation in a cohort of hypertensive patients. METHODS AND RESULTS: The Styrian Vitamin D Hypertension Trial is a single-centre, double-blind, placebo-controlled study conducted from 2011 to 2014 in Austria. We enrolled 200 study participants with arterial hypertension and 25-hydroxy-vitamin-D (25(OH)D) concentration below 30 ng/mL. Study participants were randomized to receive either 2800 IU of vitamin D3 per day or placebo for 8 weeks. The present investigation is a post-hoc analysis using analysis of co-variance (ANCOVA). Outcome measures were biomarkers of inflammation including CRP, leukocytes including subtypes and leukocyte-to-lymphocyte ratio, leucine and kynurenic acid. A total of 187 participants (mean age 60.1 ± 11.3years; 47% women; mean baseline 25(OH)D 21.1 ± 5.6 ng/mL) completed the trial. ANCOVA revealed a mean treatment effect for none of the respective outcomes and no significant results were detected in various subgroup analyses. CONCLUSION: Vitamin D3 supplementation in hypertensive patients with insufficient 25(OH)D concentrations has no significant effect on lowering markers of systemic inflammation. Further studies investigating the effect of vitamin D on other inflammatory pathways and in populations with severe vitamin D deficiency and a significant inflammatory burden are required. REGISTRATION: ClinicalTrials.gov Identifier: NCT02136771; EudraCT No. 2009-018,125-70. Start Date: 2011-04-06.


Subject(s)
Cholecalciferol/therapeutic use , Dietary Supplements , Hypertension/drug therapy , Inflammation Mediators/blood , Vitamin D Deficiency/drug therapy , Vitamin D/analogs & derivatives , Vitamins/therapeutic use , Aged , Austria , Biomarkers/blood , Cholecalciferol/adverse effects , Dietary Supplements/adverse effects , Double-Blind Method , Female , Humans , Hypertension/blood , Hypertension/diagnosis , Hypertension/immunology , Male , Middle Aged , Time Factors , Treatment Outcome , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/diagnosis , Vitamins/adverse effects
19.
Int J Mol Sci ; 22(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672787

ABSTRACT

Altered lipid metabolic pathways including hydrolysis of triglycerides are key players in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Whether adiponutrin (patatin-like phospholipase domain containing protein-3-PNPLA3) and monoacylglycerol lipase (MGL) synergistically contribute to disease progression remains unclear. We generated double knockout (DKO) mice lacking both Mgl and Pnpla3; DKO mice were compared to Mgl-/- after a challenge by high-fat diet (HFD) for 12 weeks to induce steatosis. Serum biochemistry, liver transaminases as well as histology were analyzed. Fatty acid (FA) profiling was assessed in liver and adipose tissue by gas chromatography. Markers of inflammation and lipid metabolism were analyzed. Bone marrow derived macrophages (BMDMs) were isolated and treated with oleic acid. Combined deficiency of Mgl and Pnpla3 resulted in weight gain on a chow diet; when challenged by HFD, DKO mice showed increased hepatic FA synthesis and diminished beta-oxidation compared to Mgl-/-.DKO mice exhibited more pronounced hepatic steatosis with inflammation and recruitment of immune cells to the liver associated with accumulation of saturated FAs. Primary BMDMs isolated from the DKO mice showed increased inflammatory activities, which could be reversed by oleic acid supplementation. Pnpla3 deficiency aggravates the effects of Mgl deletion on steatosis and inflammation in the liver under HFD challenge.


Subject(s)
Membrane Proteins/deficiency , Monoacylglycerol Lipases/deficiency , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/pathology , Weight Gain , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Cells, Cultured , Fatty Acids/metabolism , Humans , Inflammation/pathology , Lipid Metabolism , Liver/pathology , Macrophages/metabolism , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Monoacylglycerol Lipases/metabolism , Oleic Acid , Phenotype , U937 Cells
20.
J Hepatol ; 73(1): 113-120, 2020 07.
Article in English | MEDLINE | ID: mdl-32061870

ABSTRACT

BACKGROUND & AIMS: High-density lipoprotein cholesterol (HDL-C) levels are reduced in patients with chronic liver disease and inversely correlate with disease severity. During acute conditions such as sepsis, HDL-C levels decrease rapidly and HDL particles undergo profound changes in their composition and function. We aimed to determine whether indices of HDL quantity and quality associate with progression and survival in patients with advanced liver disease. METHODS: HDL-related biomarkers were studied in 508 patients with compensated or decompensated cirrhosis (including acute-on-chronic liver failure [ACLF]) and 40 age- and gender-matched controls. Specifically, we studied levels of HDL-C, its subclasses HDL2-C and HDL3-C, and apolipoprotein A1 (apoA-I), as well as HDL cholesterol efflux capacity as a metric of HDL functionality. RESULTS: Baseline levels of HDL-C and apoA-I were significantly lower in patients with stable cirrhosis compared to controls and were further decreased in patients with acute decompensation (AD) and ACLF. In stable cirrhosis (n = 228), both HDL-C and apoA-I predicted the development of liver-related complications independently of model for end-stage liver disease (MELD) score. In patients with AD, with or without ACLF (n = 280), both HDL-C and apoA-I were MELD-independent predictors of 90-day mortality. On ROC analysis, both HDL-C and apoA-I had high diagnostic accuracy for 90-day mortality in patients with AD (AUROCs of 0.79 and 0.80, respectively, similar to that of MELD 0.81). On Kaplan-Meier analysis, HDL-C <17 mg/dl and apoA-I <50 mg/dl indicated poor short-term survival. The prognostic accuracy of HDL-C was validated in a large external validation cohort of 985 patients with portal hypertension due to advanced chronic liver disease (AUROCs HDL-C: 0.81 vs. MELD: 0.77). CONCLUSION: HDL-related biomarkers are robust predictors of disease progression and survival in chronic liver failure. LAY SUMMARY: People who suffer from cirrhosis (scarring of the liver) have low levels of cholesterol carried by high-density lipoproteins (HDL-C). These alterations are connected to inflammation, which is a problem in severe liver disease. Herein, we show that reduced levels of HDL-C and apolipoprotein A-I (apoA-I, the main protein carried by HDL) are closely linked to the severity of liver failure, its complications and survival. Both HDL-C and apoA-I can be easily measured in clinical laboratories and are as good as currently used prognostic scores calculated from several laboratory values by complex formulas.


Subject(s)
Acute-On-Chronic Liver Failure , Apolipoprotein A-I , Cholesterol, HDL , Lipoproteins, HDL2 , Lipoproteins, HDL3 , Liver Cirrhosis , Acute-On-Chronic Liver Failure/blood , Acute-On-Chronic Liver Failure/diagnosis , Acute-On-Chronic Liver Failure/epidemiology , Acute-On-Chronic Liver Failure/metabolism , Apolipoprotein A-I/blood , Apolipoprotein A-I/metabolism , Biomarkers , Cholesterol, HDL/blood , Cholesterol, HDL/metabolism , Cross-Sectional Studies , Disease Progression , Europe/epidemiology , Female , Humans , Lipoproteins, HDL2/blood , Lipoproteins, HDL2/metabolism , Lipoproteins, HDL3/blood , Lipoproteins, HDL3/metabolism , Liver Cirrhosis/blood , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology , Male , Middle Aged , Organ Dysfunction Scores , Predictive Value of Tests , Prognosis , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL