Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35037942

ABSTRACT

Generating comprehensive image maps, while preserving spatial three-dimensional (3D) context, is essential in order to locate and assess quantitatively specific cellular features and cell-cell interactions during organ development. Despite recent advances in 3D imaging approaches, our current knowledge of the spatial organization of distinct cell types in the embryonic pancreatic tissue is still largely based on two-dimensional histological sections. Here, we present a light-sheet fluorescence microscopy approach to image the pancreas in three dimensions and map tissue interactions at key time points in the mouse embryo. We demonstrate the utility of the approach by providing volumetric data, 3D distribution of three main cellular components (epithelial, mesenchymal and endothelial cells) within the developing pancreas, and quantification of their relative cellular abundance within the tissue. Interestingly, our 3D images show that endocrine cells are constantly and increasingly in contact with endothelial cells forming small vessels, whereas the interactions with mesenchymal cells decrease over time. These findings suggest distinct cell-cell interaction requirements for early endocrine cell specification and late differentiation. Lastly, we combine our image data in an open-source online repository (referred to as the Pancreas Embryonic Cell Atlas).


Subject(s)
Imaging, Three-Dimensional/methods , Pancreas/anatomy & histology , Animals , Embryo, Mammalian/anatomy & histology , Embryonic Development , Endothelial Cells/cytology , Endothelial Cells/metabolism , Epithelium/anatomy & histology , Homeobox Protein Nkx-2.5/deficiency , Homeobox Protein Nkx-2.5/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence
2.
Development ; 148(9)2021 05 01.
Article in English | MEDLINE | ID: mdl-33946098

ABSTRACT

During lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown. Here, we show that biased epithelial outgrowth occurs independent of the surrounding mesenchyme, of preferential turnover of the extracellular matrix at the bud tips and of FGF signalling. There is also no evidence for actin-rich filopodia at the bud tips. Rather, we find epithelial tubes to be collapsed during early lung and kidney development, and we observe fluid flow in the narrow tubes. By simulating the measured fluid flow inside segmented narrow epithelial tubes, we show that the shear stress levels on the apical surface are sufficient to explain the reported bias in cell shape and outgrowth. We use a cell-based vertex model to confirm that apical shear forces, unlike constricting forces, can give rise to both the observed bias in cell shapes and tube elongation. We conclude that shear stress may be a more general driver of biased tube elongation beyond its established role in angiogenesis. This article has an associated 'The people behind the papers' interview.


Subject(s)
Biomechanical Phenomena , Kidney/growth & development , Lung/growth & development , Organogenesis , Animals , Biophysics , Cell Shape , Epithelial Cells/cytology , Extracellular Matrix , Female , Male , Mesoderm/metabolism , Mice , Models, Biological , Morphogenesis , Pseudopodia
SELECTION OF CITATIONS
SEARCH DETAIL