Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Genome Res ; 26(10): 1342-1354, 2016 10.
Article in English | MEDLINE | ID: mdl-27486082

ABSTRACT

Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mouse embryonic cells, whereas EpiStem cells closely resembled the post-implantation epiblast. Sex-related gene expression varied greatly across distinct developmental states. We also identified novel markers that were highly enriched in each developmental state. Moreover, we revealed that several novel pathways, including PluriNetWork and Focal Adhesion, were responsible for the delayed progression of female EpiStem cells. Importantly, we "digitalized" XCI progression using allelic expression of active and inactive X Chromosomes and surprisingly found that XCI states exhibited profound variability in each developmental state, including the 2i condition. XCI progression was not tightly synchronized with loss of pluripotency and increase of differentiation at the single-cell level, although these processes were globally correlated. In addition, highly expressed genes, including core pluripotency factors, were in general biallelically expressed. Taken together, our study sheds light on the dynamics of XCI progression and the asynchronicity between pluripotency, differentiation, and XCI.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , X Chromosome Inactivation , Animals , Cells, Cultured , Embryonic Stem Cells/metabolism , Female , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred C57BL , Pluripotent Stem Cells/metabolism , Single-Cell Analysis , Transcriptome
2.
Nat Cell Biol ; 23(1): 49-60, 2021 01.
Article in English | MEDLINE | ID: mdl-33420491

ABSTRACT

Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency. We explain how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in mice, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbour increased totipotent potential relative to conventional embryonic stem cells under in vitro and in vivo conditions.


Subject(s)
Blastomeres/cytology , Cell Differentiation , Cell Lineage/genetics , Embryo, Mammalian/cytology , Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Totipotent Stem Cells/cytology , Animals , Blastomeres/metabolism , Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Female , Gene Expression Profiling , Gene Regulatory Networks , Male , Mice , Pluripotent Stem Cells/metabolism , Single-Cell Analysis , Totipotent Stem Cells/metabolism
3.
Elife ; 62017 02 22.
Article in English | MEDLINE | ID: mdl-28226240

ABSTRACT

The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling.


Subject(s)
Ectoderm/embryology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Hippo Signaling Pathway , Mice , Sequence Analysis, RNA
4.
Cell Stem Cell ; 20(6): 874-890.e7, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28343983

ABSTRACT

Human pluripotent stem cells (PSCs) exist in naive and primed states and provide important models to investigate the earliest stages of human development. Naive cells can be obtained through primed-to-naive resetting, but there are no reliable methods to prospectively isolate unmodified naive cells during this process. Here we report comprehensive profiling of cell surface proteins by flow cytometry in naive and primed human PSCs. Several naive-specific, but not primed-specific, proteins were also expressed by pluripotent cells in the human preimplantation embryo. The upregulation of naive-specific cell surface proteins during primed-to-naive resetting enabled the isolation and characterization of live naive cells and intermediate cell populations. This analysis revealed distinct transcriptional and X chromosome inactivation changes associated with the early and late stages of naive cell formation. Thus, identification of state-specific proteins provides a robust set of molecular markers to define the human PSC state and allows new insights into the molecular events leading to naive cell resetting.


Subject(s)
Antigens, Differentiation/biosynthesis , Gene Expression Profiling , Gene Expression Regulation/physiology , Membrane Proteins/biosynthesis , Pluripotent Stem Cells/metabolism , Cell Line , Humans , Pluripotent Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL