Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Immunol ; 25(9): 1663-1677, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39179932

ABSTRACT

Early B cell lymphopoiesis depends on E2A, Ebf1, Pax5 and Ikaros family members. In the present study, we used acute protein degradation in mice to identify direct target genes of these transcription factors in pro-B, small pre-B and immature B cells. E2A, Ebf1 and Pax5 predominantly function as transcriptional activators by inducing open chromatin at their target genes, have largely unique functions and are essential for early B cell maintenance. Ikaros and Aiolos act as dedicated repressors to cooperatively control early B cell development. The surrogate light-chain genes Igll1 and Vpreb1 are directly activated by Ebf1 and Pax5 in pro-B cells and directly repressed by Ikaros and Aiolos in small pre-B cells. Pax5 and E2A contribute to V(D)J recombination by activating Rag1, Rag2, Dntt, Irf4 and Irf8. Similar to Pax5, Ebf1 also represses the cohesin-release factor gene Wapl to mediate prolonged loop extrusion across the Igh locus. In summary, in vivo protein degradation has provided unprecedented insight into the control of early B cell lymphopoiesis by five transcription factors.


Subject(s)
B-Lymphocytes , Basic Helix-Loop-Helix Transcription Factors , Ikaros Transcription Factor , Lymphopoiesis , PAX5 Transcription Factor , Trans-Activators , Animals , Ikaros Transcription Factor/metabolism , Ikaros Transcription Factor/genetics , PAX5 Transcription Factor/metabolism , PAX5 Transcription Factor/genetics , Mice , Trans-Activators/metabolism , Trans-Activators/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Lymphopoiesis/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Proteolysis , Precursor Cells, B-Lymphoid/metabolism , Precursor Cells, B-Lymphoid/immunology , Mice, Inbred C57BL , Mice, Knockout , Cell Differentiation , Transcription Factor 7-Like 1 Protein/metabolism , Transcription Factor 7-Like 1 Protein/genetics , Transcription Factor 3/metabolism , Transcription Factor 3/genetics , V(D)J Recombination , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Immunoglobulin Light Chains, Surrogate/metabolism , Immunoglobulin Light Chains, Surrogate/genetics , Transcription, Genetic
2.
Biochem Biophys Res Commun ; 482(3): 459-469, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28212732

ABSTRACT

In 1988, the BCL-2 protein was found to promote cancer by limiting cell death rather than enhancing proliferation. This discovery set the wheels in motion for an almost 30 year journey involving many international research teams that has recently culminated in the approval for a drug, ABT-199/venetoclax/Venclexta that targets this protein in the treatment of cancer. This review will describe the long and winding path from the discovery of this protein and understanding the fundamental process of apoptosis that BCL-2 and its numerous homologues control, through to its exploitation as a drug target that is set to have significant benefit for cancer patients.


Subject(s)
Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/physiology , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Design , Drug Discovery , Genes, bcl-2 , Humans , Neoplasms/drug therapy , Neoplasms/etiology , Protein Interaction Maps , Proto-Oncogene Proteins c-bcl-2/chemistry , Sulfonamides/pharmacology
3.
Proc Natl Acad Sci U S A ; 111(17): E1759-67, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24728833

ABSTRACT

Mutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have given rise to CQ resistance in different parts of the world. Here we present a detailed molecular analysis of the number of mutations (and the order of addition) required to confer CQ transport activity upon the PfCRT as well as a kinetic characterization of diverse forms of PfCRT. We measured the ability of more than 100 variants of PfCRT to transport CQ when expressed at the surface of Xenopus laevis oocytes. Multiple mutational pathways led to saturable CQ transport via PfCRT, but these could be separated into two main lineages. Moreover, the attainment of full activity followed a rigid process in which mutations had to be added in a specific order to avoid reductions in CQ transport activity. A minimum of two mutations sufficed for (low) CQ transport activity, and as few as four conferred full activity. The finding that diverse PfCRT variants are all limited in their capacity to transport CQ suggests that resistance could be overcome by reoptimizing the CQ dosage.


Subject(s)
Chloroquine/metabolism , Drug Resistance , Malaria, Falciparum/metabolism , Membrane Transport Proteins/genetics , Mutation/genetics , Parasites/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Amino Acid Sequence , Animals , Biological Transport , Haplotypes , Kinetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oocytes , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Recombinant Proteins/metabolism , Structure-Activity Relationship , Transfection , Xenopus laevis
4.
Nat Cancer ; 5(9): 1352-1370, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39103541

ABSTRACT

Combination approaches are needed to strengthen and extend the clinical response to KRASG12C inhibitors (KRASG12Ci). Here, we assessed the antitumor responses of KRASG12C mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRASG12C inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling. BI-3406 plus adagrasib treatment also delayed the emergence of acquired resistance and elicited antitumor responses from adagrasib-resistant models. Resistance to KRASG12Ci seemed to be driven by upregulation of MRAS activity, which both SOS1i and SHP2i were found to potently inhibit. Knockdown of SHOC2, a MRAS complex partner, partially restored response to KRASG12Ci treatment. These results suggest KRASG12C plus SOS1i to be a promising strategy for treating both KRASG12Ci naive and relapsed KRASG12C-mutant tumors.


Subject(s)
Drug Resistance, Neoplasm , Proto-Oncogene Proteins p21(ras) , SOS1 Protein , SOS1 Protein/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Humans , Drug Resistance, Neoplasm/drug effects , Animals , Mice , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Xenograft Model Antitumor Assays , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Female , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Acetonitriles , Piperazines , Pyrimidines
5.
Cell Death Differ ; 29(1): 96-104, 2022 01.
Article in English | MEDLINE | ID: mdl-34304242

ABSTRACT

Inflammation is a natural defence mechanism of the body to protect against pathogens. It is induced by immune cells, such as macrophages and neutrophils, which are rapidly recruited to the site of infection, mediating host defence. The processes for eliminating inflammatory cells after pathogen clearance are critical in preventing sustained inflammation, which can instigate diverse pathologies. During chronic inflammation, the excessive and uncontrollable activity of the immune system can cause extensive tissue damage. New therapies aimed at preventing this over-activity of the immune system could have major clinical benefits. Here, we investigated the role of the pro-survival Bcl-2 family member A1 in the survival of inflammatory cells under normal and inflammatory conditions using murine models of lung and peritoneal inflammation. Despite the robust upregulation of A1 protein levels in wild-type cells upon induction of inflammation, the survival of inflammatory cells was not impacted in A1-deficient mice compared to wild-type controls. These findings indicate that A1 does not play a major role in immune cell homoeostasis during inflammation and therefore does not constitute an attractive therapeutic target for such morbidities.


Subject(s)
Peritonitis , Pneumonia , Animals , Apoptosis/physiology , Cell Survival , Inflammation/pathology , Mice
6.
Blood Adv ; 5(11): 2550-2562, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34100903

ABSTRACT

Neutrophils help to clear pathogens and cellular debris, but can also cause collateral damage within inflamed tissues. Prolonged neutrophil residency within an inflammatory niche can exacerbate tissue pathology. Using both genetic and pharmacological approaches, we show that BCL-XL is required for the persistence of neutrophils within inflammatory sites in mice. We demonstrate that a selective BCL-XL inhibitor (A-1331852) has therapeutic potential by causing apoptosis in inflammatory human neutrophils ex vivo. Moreover, in murine models of acute and chronic inflammatory disease, it reduced inflammatory neutrophil numbers and ameliorated tissue pathology. In contrast, there was minimal effect on circulating neutrophils. Thus, we show a differential survival requirement in activated neutrophils for BCL-XL and reveal a new therapeutic approach to neutrophil-mediated diseases.


Subject(s)
Neutropenia , Neutrophils , Animals , Apoptosis , Longevity , Mice , Neutropenia/drug therapy
7.
Cell Death Differ ; 25(4): 797-808, 2018 03.
Article in English | MEDLINE | ID: mdl-29339775

ABSTRACT

The transcription factor c-MYC regulates a multiplicity of genes involved in cellular growth, proliferation, metabolism and DNA damage response and its overexpression is a hallmark of many tumours. Since MYC promotes apoptosis under conditions of stress, such as limited availability of nutrients or cytokines, MYC-driven cells are very much dependent on signals that inhibit cell death. Stress signals trigger apoptosis via the pathway regulated by opposing fractions of the BCL-2 protein family and previous genetic studies have shown that the development of B lymphoid tumours in Eµ-Myc mice is critically dependent on expression of pro-survival BCL-2 relatives MCL-1, BCL-W and, to a lesser extent, BCL-XL, but not BCL-2 itself, and that sustained growth of these lymphomas is dependent on MCL-1. Using recently developed mice that lack expression of all three functional pro-survival A1 genes, we show here that the kinetics of lymphoma development in Eµ-Myc mice and the competitive repopulation capacity of Eµ-Myc haemopoietic stem and progenitor cells is unaffected by the absence of A1. However, conditional loss of a single remaining functional A1 gene from transplanted A1-a-/-A1-b fl/fl A1-c-/- Eµ-Myc lymphomas slowed their expansion, significantly extending the life of the transplant recipients. Thus, A1 contributes to the survival of malignant Eµ-Myc-driven B lymphoid cells. These results strengthen the case for BFL-1, the human homologue of A1, being a valid target for drug development for MYC-driven tumours.


Subject(s)
Lymphoma, B-Cell/metabolism , Minor Histocompatibility Antigens/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Female , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Male , Mice , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Neoplasm Transplantation , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/genetics
8.
Front Immunol ; 9: 1922, 2018.
Article in English | MEDLINE | ID: mdl-30210491

ABSTRACT

GM-CSF promotes myeloid differentiation of cultured bone marrow cells into cells of the granulocytic and monocytic lineage; the latter can further differentiate into monocytes/macrophages and dendritic cells. How GM-CSF selects for these different myeloid fates is unresolved. GM-CSF levels can change either iatrogenically (e.g., augmenting leukopoiesis after radiotherapy) or naturally (e.g., during infection or inflammation) resulting in different immunological outcomes. Therefore, we asked whether the dose of GM-CSF may regulate the development of three types of myeloid cells. Here, we showed that GM-CSF acted as a molecular rheostat where the quantity determined which cell type was favored; moreover, the cellular process by which this was achieved was different for each cell type. Thus, low quantities of GM-CSF promoted the granulocytic lineage, mainly through survival. High quantities promoted the monocytic lineage, mainly through proliferation, whereas moderate quantities promoted moDCs, mainly through differentiation. Finally, we demonstrated that monocytes/macrophages generated with different doses of GM-CSF differed in function. We contend that this selective effect of GM-CSF dose on myeloid differentiation and function should be taken into consideration during pathophysiological states that may alter GM-CSF levels and during GM-CSF agonistic or antagonistic therapy.


Subject(s)
Cell Differentiation/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocytes/metabolism , Macrophages/metabolism , Monocytes/metabolism , Animals , Dose-Response Relationship, Drug , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocytes/cytology , Macrophages/cytology , Mice , Mice, Knockout , Monocytes/cytology
9.
Nat Med ; 24(7): 947-953, 2018 07.
Article in English | MEDLINE | ID: mdl-29892060

ABSTRACT

It has long been assumed that p53 suppresses tumor development through induction of apoptosis, possibly with contributions by cell cycle arrest and cell senescence1,2. However, combined deficiency in these three processes does not result in spontaneous tumor formation as observed upon loss of p53, suggesting the existence of additional mechanisms that are critical mediators of p53-dependent tumor suppression function3-5. To define such mechanisms, we performed in vivo shRNA screens targeting p53-regulated genes in sensitized genetic backgrounds. We found that knockdown of Zmat3, Ctsf and Cav1, promoted lymphoma/leukemia development only when PUMA and p21, the critical effectors of p53-driven apoptosis, cell cycle arrest and senescence, were also absent. Notably, loss of the DNA repair gene Mlh1 caused lymphoma in a wild-type background, and its enforced expression was able to delay tumor development driven by loss of p53. Further examination of direct p53 target genes implicated in DNA repair showed that knockdown of Mlh1, Msh2, Rnf144b, Cav1 and Ddit4 accelerated MYC-driven lymphoma development to a similar extent as knockdown of p53. Collectively, these findings demonstrate that extensive functional overlap of several p53-regulated processes safeguards against cancer and that coordination of DNA repair appears to be an important process by which p53 suppresses tumor development.


Subject(s)
DNA Repair , Tumor Suppressor Protein p53/metabolism , Animals , DNA Repair/genetics , Hematopoietic Stem Cells/metabolism , Kaplan-Meier Estimate , Mice, Inbred C57BL , MutL Protein Homolog 1/metabolism , RNA, Small Interfering/metabolism , Reproducibility of Results
10.
Cell Death Differ ; 24(3): 523-533, 2017 03.
Article in English | MEDLINE | ID: mdl-28085151

ABSTRACT

The physiological role of the pro-survival BCL-2 family member A1 has been debated for a long time. Strong mRNA induction in T cells on T cell receptor (TCR)-engagement suggested a major role of A1 in the survival of activated T cells. However, the investigation of the physiological roles of A1 was complicated by the quadruplication of the A1 gene locus in mice, making A1 gene targeting very difficult. Here, we used the recently generated A1-/- mouse model to examine the role of A1 in T cell immunity. We confirmed rapid and strong induction of A1 protein in response to TCR/CD3 stimulation in CD4+ as well as CD8+ T cells. Surprisingly, on infection with the acute influenza HKx31 or the lymphocytic choriomeningitis virus docile strains mice lacking A1 did not show any impairment in the expansion, survival, or effector function of cytotoxic T cells. Furthermore, the ability of A1-/- mice to generate antigen-specific memory T cells or to provide adequate CD4-dependent help to B cells was not impaired. These results suggest functional redundancy of A1 with other pro-survival BCL-2 family members in the control of T cell-dependent immune responses.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Influenza A virus/physiology , Lymphocytic choriomeningitis virus/physiology , Minor Histocompatibility Antigens/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , CD3 Complex/metabolism , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Proto-Oncogene Proteins c-bcl-2/deficiency , Proto-Oncogene Proteins c-bcl-2/genetics , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism
12.
Cell Death Differ ; 24(3): 534-545, 2017 03.
Article in English | MEDLINE | ID: mdl-28085150

ABSTRACT

The pro-survival proteins of the BCL-2 family regulate the survival of all cells, and genetic deletion models for these proteins have revealed which specific BCL-2 family member(s) is/are critical for the survival of particular cell types. A1 is a pro-survival BCL-2-like protein that is expressed predominantly in haematopoietic cells, and here we describe the characterisation of a novel mouse strain that lacks all three functional isoforms of A1 (A1-a, A1-b and A1-d). Surprisingly, complete loss of A1 caused only minor defects, with significant, although relatively small, decreases in γδTCR T cells, antigen-experienced conventional as well as regulatory CD4 T cells and conventional dendritic cells (cDCs). When examining these cell types in tissue culture, only cDC survival was significantly impaired by the loss of A1. Therefore, A1 appears to be a surprisingly redundant pro-survival protein in the haematopoietic system and other tissues, suggesting that its targeting in cancer may be readily tolerated.


Subject(s)
Minor Histocompatibility Antigens/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Bone Marrow/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Intraepithelial Lymphocytes/cytology , Intraepithelial Lymphocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Mouse Embryonic Stem Cells , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Isoforms/deficiency , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , RNA Interference , RNA, Small Interfering/metabolism , Spleen/metabolism , Thymus Gland/metabolism , bcl-X Protein/metabolism
13.
Cell Death Differ ; 24(5): 878-888, 2017 05.
Article in English | MEDLINE | ID: mdl-28362427

ABSTRACT

Survival of various immune cell populations has been proposed to preferentially rely on a particular anti-apoptotic BCL-2 family member, for example, naive T cells require BCL-2, while regulatory T cells require MCL-1. Here we examined the survival requirements of multiple immune cell subsets in vitro and in vivo, using both genetic and pharmacological approaches. Our findings support a model in which survival is determined by quantitative participation of multiple anti-apoptotic proteins rather than by a single anti-apoptotic protein. This model provides both an insight into how the sum of relative levels of anti-apoptotic proteins BCL-2, MCL-1 and A1 influence survival of T cells, B cells and dendritic cells, and a framework for ascertaining how these different immune cells can be optimally targeted in treatment of immunopathology, transplantation rejection or hematological cancers.


Subject(s)
Gene Expression Regulation/immunology , Minor Histocompatibility Antigens/genetics , Models, Immunological , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Animals , Antineoplastic Agents/pharmacology , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Survival , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Flow Cytometry , Immunity, Innate , Immunophenotyping , Mice , Mice, Inbred C57BL , Mice, Transgenic , Minor Histocompatibility Antigens/immunology , Myeloid Cell Leukemia Sequence 1 Protein/immunology , Organ Specificity , Proto-Oncogene Proteins c-bcl-2/immunology , Signal Transduction , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL