Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Cell ; 187(14): 3461-3495, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38906136

ABSTRACT

Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.


Subject(s)
Developmental Biology , Animals , Humans , Biological Evolution , Genomics , Artificial Intelligence
2.
Cell ; 185(5): 755-758, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245477

ABSTRACT

Support for basic science has been eclipsed by initiatives aimed at specific medical problems. The latest example is the dismantling of the Skirball Institute at NYU School of Medicine. Here, we reflect on the achievements and mission underlying the Skirball to gain insight into the dividends of maintaining a basic science vision within the academic enterprises.


Subject(s)
Academies and Institutes , Biomedical Research , Schools, Medical
3.
Cell ; 180(3): 536-551.e17, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31955849

ABSTRACT

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.


Subject(s)
Cerebellum/physiology , Decision Making/physiology , Reaction Time/physiology , Zebrafish/physiology , Animals , Behavior, Animal/physiology , Brain Mapping/methods , Cerebrum/physiology , Cognition/physiology , Conditioning, Operant/physiology , Goals , Habenula/physiology , Hot Temperature , Larva/physiology , Motor Activity/physiology , Movement , Neurons/physiology , Psychomotor Performance/physiology , Rhombencephalon/physiology
4.
Cell ; 177(2): 478-491.e20, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929901

ABSTRACT

Genomic studies have identified hundreds of candidate genes near loci associated with risk for schizophrenia. To define candidates and their functions, we mutated zebrafish orthologs of 132 human schizophrenia-associated genes. We created a phenotype atlas consisting of whole-brain activity maps, brain structural differences, and profiles of behavioral abnormalities. Phenotypes were diverse but specific, including altered forebrain development and decreased prepulse inhibition. Exploration of these datasets identified promising candidates in more than 10 gene-rich regions, including the magnesium transporter cnnm2 and the translational repressor gigyf2, and revealed shared anatomical sites of activity differences, including the pallium, hypothalamus, and tectum. Single-cell RNA sequencing uncovered an essential role for the understudied transcription factor znf536 in the development of forebrain neurons implicated in social behavior and stress. This phenotypic landscape of schizophrenia-associated genes prioritizes more than 30 candidates for further study and provides hypotheses to bridge the divide between genetic association and biological mechanism.


Subject(s)
Schizophrenia/genetics , Schizophrenia/physiopathology , Animals , Brain , Cerebral Cortex , Disease Models, Animal , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide/genetics , Zebrafish/genetics
5.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355799

ABSTRACT

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Subject(s)
Animals, Newborn , Embryo, Mammalian , Embryonic Development , Gastrula , Single-Cell Analysis , Time-Lapse Imaging , Animals , Female , Mice , Pregnancy , Animals, Newborn/embryology , Animals, Newborn/genetics , Cell Differentiation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Development/genetics , Gastrula/cytology , Gastrula/embryology , Gastrulation/genetics , Kidney/cytology , Kidney/embryology , Mesoderm/cytology , Mesoderm/enzymology , Neurons/cytology , Neurons/metabolism , Retina/cytology , Retina/embryology , Somites/cytology , Somites/embryology , Time Factors , Transcription Factors/genetics , Transcription, Genetic , Organ Specificity/genetics
6.
Cell ; 159(7): 1698-710, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25497548

ABSTRACT

Cells control dynamic transitions in transcript levels by regulating transcription, processing, and/or degradation through an integrated regulatory strategy. Here, we combine RNA metabolic labeling, rRNA-depleted RNA-seq, and DRiLL, a novel computational framework, to quantify the level; editing sites; and transcription, processing, and degradation rates of each transcript at a splice junction resolution during the LPS response of mouse dendritic cells. Four key regulatory strategies, dominated by RNA transcription changes, generate most temporal gene expression patterns. Noncanonical strategies that also employ dynamic posttranscriptional regulation control only a minority of genes, but provide unique signal processing features. We validate Tristetraprolin (TTP) as a major regulator of RNA degradation in one noncanonical strategy. Applying DRiLL to the regulation of noncoding RNAs and to zebrafish embryogenesis demonstrates its broad utility. Our study provides a new quantitative approach to discover transcriptional and posttranscriptional events that control dynamic changes in transcript levels using RNA sequencing data.


Subject(s)
Computer Simulation , Dendritic Cells/metabolism , Sequence Analysis, RNA/methods , Animals , Gene Expression Profiling/methods , Kinetics , Lipopolysaccharides/metabolism , Mice , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Untranslated/metabolism , Transcription, Genetic , Tristetraprolin/metabolism , Zebrafish/embryology
7.
Cell ; 154(5): 955-956, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23993087

ABSTRACT

Animals are often in discrete behavioral states, but it is unclear how one specific state is generated and opposes alternative states. Flavell et al. now identify molecular and neural components in C. elegans that are involved in the generation of dwelling and roaming states.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Neuropeptides/metabolism , Serotonin/metabolism , Signal Transduction , Animals
8.
Cell ; 153(3): 550-61, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23622240

ABSTRACT

Sharply delineated domains of cell types arise in developing tissues under instruction of inductive signal (morphogen) gradients, which specify distinct cell fates at different signal levels. The translation of a morphogen gradient into discrete spatial domains relies on precise signal responses at stable cell positions. However, cells in developing tissues undergoing morphogenesis and proliferation often experience complex movements, which may affect their morphogen exposure, specification, and positioning. How is a clear pattern achieved with cells moving around? Using in toto imaging of the zebrafish neural tube, we analyzed specification patterns and movement trajectories of neural progenitors. We found that specified progenitors of different fates are spatially mixed following heterogeneous Sonic Hedgehog signaling responses. Cell sorting then rearranges them into sharply bordered domains. Ectopically induced motor neuron progenitors also robustly sort to correct locations. Our results reveal that cell sorting acts to correct imprecision of spatial patterning by noisy inductive signals.


Subject(s)
Morphogenesis , Neural Stem Cells/metabolism , Neural Tube/cytology , Signal Transduction , Zebrafish/embryology , Animals , Cell Movement , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Hedgehog Proteins/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
9.
Proc Natl Acad Sci U S A ; 120(43): e2307203120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37844219

ABSTRACT

The TGF-beta signals Vg1 (Dvr1/Gdf3) and Nodal form heterodimers to induce vertebrate mesendoderm. The Vg1 proprotein is a monomer retained in the endoplasmic reticulum (ER) and is processed and secreted upon heterodimerization with Nodal, but the mechanisms underlying Vg1 biogenesis are largely elusive. Here, we clarify the mechanisms underlying Vg1 retention, processing, secretion, and signaling and introduce a Synthetic Processing (SynPro) system that enables the programmed cleavage of ER-resident and extracellular proteins. First, we find that Vg1 can be processed by intra- or extracellular proteases. Second, Vg1 can be processed without Nodal but requires Nodal for secretion and signaling. Third, Vg1-Nodal signaling activity requires Vg1 processing, whereas Nodal can remain unprocessed. Fourth, Vg1 employs exposed cysteines, glycosylated asparagines, and BiP chaperone-binding motifs for monomer retention in the ER. These observations suggest two mechanisms for rapid mesendoderm induction: Chaperone-binding motifs help store Vg1 as an inactive but ready-to-heterodimerize monomer in the ER, and the flexibility of Vg1 processing location allows efficient generation of active heterodimers both intra- and extracellularly. These results establish SynPro as an in vivo processing system and define molecular mechanisms and motifs that facilitate the generation of active TGF-beta heterodimers.


Subject(s)
Body Patterning , Transforming Growth Factor beta , Animals , Transforming Growth Factor beta/metabolism , Vertebrates/metabolism , Signal Transduction
10.
Annu Rev Cell Dev Biol ; 27: 377-407, 2011.
Article in English | MEDLINE | ID: mdl-21801015

ABSTRACT

Morphogens are long-range signaling molecules that pattern developing tissues in a concentration-dependent manner. The graded activity of morphogens within tissues exposes cells to different signal levels and leads to region-specific transcriptional responses and cell fates. In its simplest incarnation, a morphogen signal forms a gradient by diffusion from a local source and clearance in surrounding tissues. Responding cells often transduce morphogen levels in a linear fashion, which results in the graded activation of transcriptional effectors. The concentration-dependent expression of morphogen target genes is achieved by their different binding affinities for transcriptional effectors as well as inputs from other transcriptional regulators. Morphogen distribution and interpretation are the result of complex interactions between the morphogen and responding tissues. The response to a morphogen is dependent not simply on morphogen concentration but also on the duration of morphogen exposure and the state of the target cells. In this review, we describe the morphogen concept and discuss the mechanisms that underlie the generation, modulation, and interpretation of morphogen gradients.


Subject(s)
Body Patterning/physiology , Cell Communication/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction/physiology , Animals , Embryo, Nonmammalian/anatomy & histology , Embryo, Nonmammalian/physiology , Humans , Models, Biological
11.
Mol Cell ; 68(6): 1083-1094.e5, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29225039

ABSTRACT

The stability of mRNAs is regulated by signals within their sequences, but a systematic and predictive understanding of the underlying sequence rules remains elusive. Here we introduce UTR-seq, a combination of massively parallel reporter assays and regression models, to survey the dynamics of tens of thousands of 3' UTR sequences during early zebrafish embryogenesis. UTR-seq revealed two temporal degradation programs: a maternally encoded early-onset program and a late-onset program that accelerated degradation after zygotic genome activation. Three signals regulated early-onset rates: stabilizing poly-U and UUAG sequences and destabilizing GC-rich signals. Three signals explained late-onset degradation: miR-430 seeds, AU-rich sequences, and Pumilio recognition sites. Sequence-based regression models translated 3' UTRs into their unique decay patterns and predicted the in vivo effect of sequence signals on mRNA stability. Their application led to the successful design of artificial 3' UTRs that conferred specific mRNA dynamics. UTR-seq provides a general strategy to uncover the rules of RNA cis regulation.


Subject(s)
3' Untranslated Regions , Embryo, Nonmammalian/metabolism , Genes, Reporter , RNA Stability , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Zygote/metabolism , Animals , Embryo, Nonmammalian/cytology , Gene Expression Regulation , MicroRNAs , RNA, Messenger , Zebrafish/genetics , Zebrafish/growth & development , Zygote/growth & development
12.
Cell ; 132(3): 337-9, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18267065

ABSTRACT

The chemokine SDF-1a and its receptor CXCR4b guide germ cell migration in zebrafish by activating downstream signaling events. Boldajipour et al. (2008) now report that a second SDF-1a receptor, CXCR7, is also required for guided migration but does not function as a signaling receptor, and instead sequesters SDF-1a. These results highlight the importance of ligand clearance during guided cell migration.


Subject(s)
Cell Movement , Germ Cells/cytology , Animals , Embryo, Nonmammalian/metabolism , Models, Biological , Zebrafish/embryology
13.
Nature ; 551(7679): 227-231, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29088697

ABSTRACT

Copy-number variants of chromosome 16 region 16p11.2 are linked to neuropsychiatric disorders and are among the most prevalent in autism spectrum disorders. Of many 16p11.2 genes, Kctd13 has been implicated as a major driver of neurodevelopmental phenotypes. The function of KCTD13 in the mammalian brain, however, remains unknown. Here we delete the Kctd13 gene in mice and demonstrate reduced synaptic transmission. Reduced synaptic transmission correlates with increased levels of Ras homolog gene family, member A (RhoA), a KCTD13/CUL3 ubiquitin ligase substrate, and is reversed by RhoA inhibition, suggesting increased RhoA as an important mechanism. In contrast to a previous knockdown study, deletion of Kctd13 or kctd13 does not increase brain size or neurogenesis in mice or zebrafish, respectively. These findings implicate Kctd13 in the regulation of neuronal function relevant to neuropsychiatric disorders and clarify the role of Kctd13 in neurogenesis and brain size. Our data also reveal a potential role for RhoA as a therapeutic target in disorders associated with KCTD13 deletion.


Subject(s)
Brain/metabolism , Carrier Proteins/metabolism , Gene Deletion , Synaptic Transmission/genetics , Zebrafish Proteins/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology , Autistic Disorder/genetics , Autistic Disorder/psychology , Brain/anatomy & histology , Brain/cytology , Brain/pathology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Carrier Proteins/genetics , Chromosome Deletion , Chromosome Disorders/genetics , Chromosome Disorders/psychology , Chromosomes, Human, Pair 16/genetics , Cullin Proteins/metabolism , Female , Intellectual Disability/genetics , Intellectual Disability/psychology , Male , Mice , Multifactorial Inheritance/genetics , Neurogenesis/genetics , Organ Size/genetics , Reproducibility of Results , Synaptic Transmission/drug effects , Ubiquitin-Protein Ligase Complexes , Zebrafish , Zebrafish Proteins/genetics , rho GTP-Binding Proteins/antagonists & inhibitors , rhoA GTP-Binding Protein
14.
Nature ; 545(7654): 345-349, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28489821

ABSTRACT

High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.


Subject(s)
Brain/ultrastructure , Microscopy, Electron , Zebrafish , Anatomy, Artistic , Animals , Atlases as Topic , Axons/metabolism , Axons/ultrastructure , Brain/anatomy & histology , Brain/cytology , Datasets as Topic , Larva/anatomy & histology , Larva/cytology , Larva/ultrastructure , Microscopy, Fluorescence, Multiphoton , Open Access Publishing , Zebrafish/anatomy & histology , Zebrafish/growth & development
15.
Annu Rev Neurosci ; 37: 503-31, 2014.
Article in English | MEDLINE | ID: mdl-25032501

ABSTRACT

Sleep and wake are fundamental behavioral states whose molecular regulation remains mysterious. Brain states and body functions change dramatically between sleep and wake, are regulated by circadian and homeostatic processes, and depend on the nutritional and emotional condition of the animal. Sleep-wake transitions require the coordination of several brain regions and engage multiple neurochemical systems, including neuropeptides. Neuropeptides serve two main functions in sleep-wake regulation. First, they represent physiological states such as energy level or stress in response to environmental and internal stimuli. Second, neuropeptides excite or inhibit their target neurons to induce, stabilize, or switch between sleep-wake states. Thus, neuropeptides integrate physiological subsystems such as circadian time, previous neuron usage, energy homeostasis, and stress and growth status to generate appropriate sleep-wake behaviors. We review the roles of more than 20 neuropeptides in sleep and wake to lay the foundation for future studies uncovering the mechanisms that underlie the initiation, maintenance, and exit of sleep and wake states.


Subject(s)
Neuropeptides/physiology , Sleep/physiology , Wakefulness/physiology , Animals , Brain/physiology , Energy Metabolism/physiology , Homeostasis/physiology , Humans , Models, Neurological , Neuropeptides/biosynthesis , Stress, Physiological/physiology
16.
J Neurosci ; 40(1): 143-158, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31685652

ABSTRACT

Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENTDscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.


Subject(s)
Eye Movements/physiology , Adaptation, Ocular/genetics , Adaptation, Ocular/physiology , Amacrine Cells/physiology , Animals , Animals, Genetically Modified , Calcium Signaling , Cell Adhesion Molecules/physiology , Eye Movements/genetics , Fixation, Ocular/genetics , Fixation, Ocular/physiology , Larva , Locomotion , Muscle Fatigue , Mutation , Oculomotor Muscles/growth & development , Oculomotor Muscles/physiopathology , Retina/growth & development , Retina/ultrastructure , Saccades/genetics , Saccades/physiology , Zebrafish/growth & development , Zebrafish Proteins/physiology
17.
Development ; 145(1)2018 01 09.
Article in English | MEDLINE | ID: mdl-29180571

ABSTRACT

The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZnanog) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZnanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation.


Subject(s)
Cell Differentiation/physiology , Gene Expression Regulation, Developmental/physiology , Nanog Homeobox Protein/biosynthesis , Yolk Sac/embryology , Zebrafish Proteins/biosynthesis , Zebrafish/embryology , Animals , Mutation , Nanog Homeobox Protein/genetics , Yolk Sac/cytology , Zebrafish/genetics , Zebrafish Proteins/genetics
18.
Development ; 145(24)2018 12 10.
Article in English | MEDLINE | ID: mdl-30446628

ABSTRACT

Nodal is the major effector of left-right axis development. In mice, Nodal forms heterodimers with Gdf1 and is inhibited by Cerl2/Dand5 at the node, and by Lefty1 in the lateral plate mesoderm (LPM). Studies in zebrafish have suggested some parallels, but also differences, between left-right patterning in mouse and zebrafish. To address these discrepancies, we generated single and double zebrafish mutants for southpaw (spaw, the Nodal ortholog), dand5 and lefty1, and performed biochemical and activity assays with Spaw and Vg1/Gdf3 (the Gdf1 ortholog). Contrary to previous findings, spaw mutants failed to initiate spaw expression in the LPM, and asymmetric heart looping was absent, similar to mouse Nodal mutants. In blastoderm assays, Vg1 and Spaw were interdependent for target gene induction, and contrary to previous results, formed heterodimers. Loss of Dand5 or Lefty1 caused bilateral spaw expression, similar to mouse mutants, and Lefty1 was replaceable with a uniform Nodal signaling inhibitor. Collectively, these results indicate that Dand5 activity biases Spaw-Vg1 heterodimer activity to the left, Spaw around Kupffer's vesicle induces the expression of spaw in the LPM and global Nodal inhibition maintains the left bias of Spaw activity, demonstrating conservation between zebrafish and mouse mechanisms of left-right patterning.


Subject(s)
Body Patterning , Nodal Protein/metabolism , Nodal Signaling Ligands/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animals , Gene Expression Regulation, Developmental , Mice , Models, Biological , Mutation/genetics , Nodal Protein/genetics , Nodal Signaling Ligands/genetics , Protein Multimerization , Time Factors , Zebrafish/genetics , Zebrafish Proteins/genetics
20.
J Neurosci ; 37(47): 11353-11365, 2017 11 22.
Article in English | MEDLINE | ID: mdl-28972121

ABSTRACT

Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5-7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without compromising reflexive behavior.SIGNIFICANCE STATEMENT Interneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined how the anatomical composition of a genetically defined population of balance interneurons in the larval zebrafish relates to the computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up sensations without compromising gaze stabilization. Finally, we found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural circuits to represent relevant features of the environment without compromising behavior.


Subject(s)
Brain/physiology , Eye Movements , Motor Neurons/physiology , Sensory Receptor Cells/physiology , Vestibular Nerve/physiology , Animals , Brain/cytology , Reflex , Vestibular Nerve/cytology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL