Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 56(4): 768-782.e9, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36804958

ABSTRACT

Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation , Receptors, Cytoplasmic and Nuclear/metabolism , Immunity, Innate , Bacteria , Pseudomonas aeruginosa/metabolism
2.
Immunity ; 54(8): 1853-1868.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34331873

ABSTRACT

Antibodies elicited by infection accumulate somatic mutations in germinal centers that can increase affinity for cognate antigens. We analyzed 6 independent groups of clonally related severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) Spike receptor-binding domain (RBD)-specific antibodies from 5 individuals shortly after infection and later in convalescence to determine the impact of maturation over months. In addition to increased affinity and neutralization potency, antibody evolution changed the mutational pathways for the acquisition of viral resistance and restricted neutralization escape options. For some antibodies, maturation imposed a requirement for multiple substitutions to enable escape. For certain antibodies, affinity maturation enabled the neutralization of circulating SARS-CoV-2 variants of concern and heterologous sarbecoviruses. Antibody-antigen structures revealed that these properties resulted from substitutions that allowed additional variability at the interface with the RBD. These findings suggest that increasing antibody diversity through prolonged or repeated antigen exposure may improve protection against diversifying SARS-CoV-2 populations, and perhaps against other pandemic threat coronaviruses.


Subject(s)
Antibody Affinity/immunology , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Models, Molecular , Neutralization Tests , Protein Binding , Protein Conformation , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Structure-Activity Relationship , Virulence/genetics
3.
J Virol ; 96(6): e0198221, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35045267

ABSTRACT

Many oseltamivir resistance mutations exhibit fitness defects in the absence of drug pressure that hinders their propagation in hosts. Secondary permissive mutations can rescue fitness defects and facilitate the segregation of resistance mutations in viral populations. Previous studies have identified a panel of permissive or compensatory mutations in neuraminidase (NA) that restore the growth defect of the predominant oseltamivir resistance mutation (H275Y) in H1N1 influenza A virus. In prior work, we identified a hyperactive mutation (Y276F) that increased NA activity by approximately 70%. While Y276F had not been previously identified as a permissive mutation, we hypothesized that Y276F may counteract the defects caused by H275Y by buffering its reduced NA expression and enzyme activity. In this study, we measured the relative fitness, NA activity, and surface expression, as well as sensitivity to oseltamivir, for several oseltamivir resistance mutations, including H275Y in the wild-type and Y276F genetic background. Our results demonstrate that Y276F selectively rescues the fitness defect of H275Y by restoring its NA surface expression and enzymatic activity, elucidating the local compensatory structural impacts of Y276F on the adjacent H275Y. IMPORTANCE The potential for influenza A virus (IAV) to cause pandemics makes understanding evolutionary mechanisms that impact drug resistance critical for developing surveillance and treatment strategies. Oseltamivir is the most widely used therapeutic strategy to treat IAV infections, but mutations in IAV can lead to drug resistance. The main oseltamivir resistance mutation, H275Y, occurs in the neuraminidase (NA) protein of IAV and reduces drug binding as well as NA function. Here, we identified a new helper mutation, Y276F, that can rescue the functional defects of H275Y and contribute to the evolution of drug resistance in IAV.


Subject(s)
Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype , Oseltamivir , Viral Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A virus/drug effects , Influenza A virus/enzymology , Influenza A virus/genetics , Influenza, Human/drug therapy , Mutation , Neuraminidase/genetics , Neuraminidase/metabolism , Oseltamivir/pharmacology , Viral Proteins/genetics , Viral Proteins/metabolism
4.
Chem Rev ; 121(6): 3238-3270, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33410674

ABSTRACT

Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Pharmaceutical Preparations/chemistry , Viral Proteins/chemistry , Virus Diseases/drug therapy , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Computational Biology , Drug Design , Drug Resistance, Viral , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , HIV-1/drug effects , Hepacivirus/drug effects , Humans , Machine Learning , Mutation , Orthomyxoviridae/drug effects , Pharmaceutical Preparations/metabolism , Protein Binding , Signal Transduction , Structure-Activity Relationship
5.
Bioorg Chem ; 131: 106269, 2023 02.
Article in English | MEDLINE | ID: mdl-36446201

ABSTRACT

Viruses from the Flavivirus genus infect millions of people worldwide and cause severe diseases, including recent epidemics of dengue virus (DENV), and Zika virus (ZIKV). There is currently no antiviral treatment against flavivirus infections, despite considerable efforts to develop inhibitors against essential viral enzymes including NS2B/NS3 protease. Targeting the flavivirus NS2B/NS3 protease proved to be challenging because of the conformational dynamics, topology, and electrostatic properties of the active site. Here, we report the identification of quinoxaline-based allosteric inhibitors by fragment-based drug discovery approach as a promising new drug-like scaffold to target the NS2B/NS3 protease. Enzymatic assays and mutational analysis of the allosteric site in ZIKV NS2B/NS3 protease support noncompetitive inhibition mechanism as well as engineered DENV protease construct indicating the compounds likely compete with the NS2B cofactor for binding to the protease domain. Furthermore, antiviral activity confirmed the therapeutic potential of this new inhibitor scaffold.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Humans , Flavivirus/chemistry , Flavivirus/metabolism , Zika Virus/metabolism , Peptide Hydrolases , Quinoxalines/pharmacology , Viral Nonstructural Proteins , Serine Endopeptidases/metabolism , Protease Inhibitors/pharmacology , Antiviral Agents/chemistry
6.
J Biol Chem ; 296: 100351, 2021.
Article in English | MEDLINE | ID: mdl-33524397

ABSTRACT

C-terminal binding proteins (CtBPs) are cotranscriptional factors that play key roles in cell fate. We have previously shown that NAD(H) promotes the assembly of similar tetramers from either human CtBP1 and CtBP2 and that CtBP2 tetramer destabilizing mutants are defective for oncogenic activity. To assist structure-based design efforts for compounds that disrupt CtBP tetramerization, it is essential to understand how NAD(H) triggers tetramer assembly. Here, we investigate the moieties within NAD(H) that are responsible for triggering tetramer formation. Using multiangle light scattering (MALS), we show that ADP is able to promote tetramer formation of both CtBP1 and CtBP2, whereas AMP promotes tetramer assembly of CtBP1, but not CtBP2. Other NAD(H) moieties that lack the adenosine phosphate, including adenosine and those incorporating nicotinamide, all fail to promote tetramer assembly. Our crystal structures of CtBP1 with AMP reveal participation of the adenosine phosphate in the tetrameric interface, pinpointing its central role in NAD(H)-linked assembly. CtBP1 and CtBP2 have overlapping but unique roles, suggesting that a detailed understanding of their unique structural properties might have utility in the design of paralog-specific inhibitors. We investigated the different responses to AMP through a series of site-directed mutants at 13 positions. These mutations reveal a central role for a hinge segment, which we term the 120s hinge that connects the substrate with coenzyme-binding domains and influences nucleotide binding and tetramer assembly. Our results provide insight into suitable pockets to explore in structure-based drug design to interfere with cotranscriptional activity of CtBP in cancer.


Subject(s)
Alcohol Oxidoreductases/metabolism , Co-Repressor Proteins/metabolism , DNA-Binding Proteins/metabolism , NADP/metabolism , Alcohol Oxidoreductases/chemistry , Co-Repressor Proteins/chemistry , DNA-Binding Proteins/chemistry , Humans , Models, Molecular , NAD/metabolism , Protein Multimerization
7.
J Biol Chem ; 297(2): 100909, 2021 08.
Article in English | MEDLINE | ID: mdl-34171358

ABSTRACT

The human cytidine deaminase family of APOBEC3s (A3s) plays critical roles in both innate immunity and the development of cancers. A3s comprise seven functionally overlapping but distinct members that can be exploited as nucleotide base editors for treating genetic diseases. Although overall structurally similar, A3s have vastly varying deamination activity and substrate preferences. Recent crystal structures of ssDNA-bound A3s together with experimental studies have provided some insights into distinct substrate specificities among the family members. However, the molecular interactions responsible for their distinct biological functions and how structure regulates substrate specificity are not clear. In this study, we identified the structural basis of substrate specificities in three catalytically active A3 domains whose crystal structures have been previously characterized: A3A, A3B- CTD, and A3G-CTD. Through molecular modeling and dynamic simulations, we found an interdependency between ssDNA substrate binding conformation and nucleotide sequence specificity. In addition to the U-shaped conformation seen in the crystal structure with the CTC0 motif, A3A can accommodate the CCC0 motif when ssDNA is in a more linear (L) conformation. A3B can also bind both U- and L-shaped ssDNA, unlike A3G, which can stably recognize only linear ssDNA. These varied conformations are stabilized by sequence-specific interactions with active site loops 1 and 7, which are highly variable among A3s. Our results explain the molecular basis of previously observed substrate specificities in A3s and have implications for designing A3-specific inhibitors for cancer therapy as well as engineering base-editing systems for gene therapy.


Subject(s)
APOBEC Deaminases/chemistry , APOBEC Deaminases/metabolism , DNA, Single-Stranded/chemistry , Mutation , Neoplasms/pathology , APOBEC Deaminases/genetics , APOBEC Deaminases/immunology , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Humans , Models, Molecular , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Protein Binding , Substrate Specificity
8.
J Am Chem Soc ; 144(46): 21035-21045, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36356199

ABSTRACT

Given the current impact of SARS-CoV2 and COVID-19 on human health and the global economy, the development of direct acting antivirals is of paramount importance. Main protease (MPro), a cysteine protease that cleaves the viral polyprotein, is essential for viral replication. Therefore, MPro is a novel therapeutic target. We identified two novel MPro inhibitors, D-FFRCMKyne and D-FFCitCMKyne, that covalently modify the active site cysteine (C145) and determined cocrystal structures. Medicinal chemistry efforts led to SM141 and SM142, which adopt a unique binding mode within the MPro active site. Notably, these inhibitors do not inhibit the other cysteine protease, papain-like protease (PLPro), involved in the life cycle of SARS-CoV2. SM141 and SM142 block SARS-CoV2 replication in hACE2 expressing A549 cells with IC50 values of 8.2 and 14.7 nM. Detailed studies indicate that these compounds also inhibit cathepsin L (CatL), which cleaves the viral S protein to promote viral entry into host cells. Detailed biochemical, proteomic, and knockdown studies indicate that the antiviral activity of SM141 and SM142 results from the dual inhibition of MPro and CatL. Notably, intranasal and intraperitoneal administration of SM141 and SM142 lead to reduced viral replication, viral loads in the lung, and enhanced survival in SARS-CoV2 infected K18-ACE2 transgenic mice. In total, these data indicate that SM141 and SM142 represent promising scaffolds on which to develop antiviral drugs against SARS-CoV2.


Subject(s)
COVID-19 Drug Treatment , Hepatitis C, Chronic , Animals , Mice , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Cathepsin L/chemistry , Cathepsin L/metabolism , RNA, Viral , SARS-CoV-2 , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Peptide Hydrolases , Proteomics , Viral Nonstructural Proteins/chemistry , Molecular Docking Simulation
9.
J Infect Dis ; 224(Supplement_1): S1-S21, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34111271

ABSTRACT

The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/virology , Drug Development , Humans , National Institutes of Health (U.S.) , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , United States , Virus Replication/drug effects
10.
Crit Rev Biochem Mol Biol ; 54(1): 11-26, 2019 02.
Article in English | MEDLINE | ID: mdl-30821513

ABSTRACT

Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4 A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.


Subject(s)
Drug Resistance, Viral , Hepacivirus/drug effects , Hepatitis C/drug therapy , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Catalytic Domain/drug effects , Hepacivirus/metabolism , Hepatitis C/virology , Humans , Protease Inhibitors/chemistry , Protein Conformation/drug effects , Serine Proteases/chemistry , Serine Proteases/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
11.
Biochemistry ; 60(39): 2925-2931, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34506130

ABSTRACT

Rupintrivir targets the 3C cysteine proteases of the picornaviridae family, which includes rhinoviruses and enteroviruses that cause a range of human diseases. Despite being a pan-3C protease inhibitor, rupintrivir activity is extremely weak against the homologous 3C-like protease of SARS-CoV-2. In this study, the crystal structures of rupintrivir were determined bound to enterovirus 68 (EV68) 3C protease and the 3C-like main protease (Mpro) from SARS-CoV-2. While the EV68 3C protease-rupintrivir structure was similar to previously determined complexes with other picornavirus 3C proteases, rupintrivir bound in a unique conformation to the active site of SARS-CoV-2 Mpro splitting the catalytic cysteine and histidine residues. This bifurcation of the catalytic dyad may provide a novel approach for inhibiting cysteine proteases.


Subject(s)
Antiviral Agents/metabolism , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/metabolism , Isoxazoles/metabolism , Phenylalanine/analogs & derivatives , Pyrrolidinones/metabolism , SARS-CoV-2/enzymology , Valine/analogs & derivatives , Antiviral Agents/chemistry , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemistry , Enterovirus D, Human/enzymology , Hydrogen Bonding , Isoxazoles/chemistry , Phenylalanine/chemistry , Phenylalanine/metabolism , Protein Binding , Pyrrolidinones/chemistry , Static Electricity , Valine/chemistry , Valine/metabolism
12.
J Chem Inf Model ; 61(6): 2537-2541, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34138546

ABSTRACT

Drug resistance impacts the effectiveness of many new therapeutics. Mutations in the therapeutic target confer resistance; however, deciphering which mutations, often remote from the enzyme active site, drive resistance is challenging. In a series of Pneumocystis jirovecii dihydrofolate reductase variants, we elucidate which interactions are key bellwethers to confer resistance to trimethoprim using homology modeling, molecular dynamics, and machine learning. Six molecular features involving mainly residues that did not vary were the best indicators of resistance.


Subject(s)
Drug Resistance, Fungal , Pneumocystis carinii , Machine Learning , Molecular Dynamics Simulation , Pneumocystis carinii/drug effects , Pneumocystis carinii/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
13.
Nucleic Acids Res ; 47(14): 7676-7689, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31424549

ABSTRACT

The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of substrate ssDNA from non-substrate. Using 2'-deoxy-2'-fluorine substituted cytidines, we show that a 2'-endo sugar conformation of the target deoxycytidine is favored for substrate binding and deamination. Trajectories of the MD simulation indicate that a ribose 2'-hydroxyl group destabilizes the π-π stacking of the target cytosine and H257, resulting in dislocation of the target cytosine base from the catalytic position. Interestingly, APOBEC3A, which can deaminate ribocytidines, retains the ribocytidine in the catalytic position throughout the MD simulation. Our results indicate that A3Gctd catalytic selectivity against RNA is dictated by both the sugar conformation and 2'-hydroxyl group.


Subject(s)
APOBEC-3G Deaminase/metabolism , DNA, Single-Stranded/metabolism , DNA/metabolism , Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation , RNA/metabolism , APOBEC-3G Deaminase/chemistry , APOBEC-3G Deaminase/genetics , Biocatalysis , Cytidine/chemistry , Cytidine/metabolism , DNA/chemistry , DNA/genetics , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Deamination , HIV-1/genetics , HIV-1/metabolism , Humans , Protein Binding , RNA/chemistry , RNA/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Substrate Specificity , Virion/genetics , Virion/metabolism
14.
Mol Biol Evol ; 36(4): 798-810, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30721995

ABSTRACT

The evolution of HIV-1 protein sequences should be governed by a combination of factors including nucleotide mutational probabilities, the genetic code, and fitness. The impact of these factors on protein sequence evolution is interdependent, making it challenging to infer the individual contribution of each factor from phylogenetic analyses alone. We investigated the protein sequence evolution of HIV-1 by determining an experimental fitness landscape of all individual amino acid changes in protease. We compared our experimental results to the frequency of protease variants in a publicly available data set of 32,163 sequenced isolates from drug-naïve individuals. The most common amino acids in sequenced isolates supported robust experimental fitness, indicating that the experimental fitness landscape captured key features of selection acting on protease during viral infections of hosts. Amino acid changes requiring multiple mutations from the likely ancestor were slightly less likely to support robust experimental fitness than single mutations, consistent with the genetic code favoring chemically conservative amino acid changes. Amino acids that were common in sequenced isolates were predominantly accessible by single mutations from the likely protease ancestor. Multiple mutations commonly observed in isolates were accessible by mutational walks with highly fit single mutation intermediates. Our results indicate that the prevalence of multiple-base mutations in HIV-1 protease is strongly influenced by mutational sampling.


Subject(s)
Evolution, Molecular , HIV Protease/genetics , HIV-1/genetics , Point Mutation , Genetic Code , Selection, Genetic
15.
J Virol ; 93(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30381484

ABSTRACT

Influenza A virus (IAV), a major cause of human morbidity and mortality, continuously evolves in response to selective pressures. Stem-directed, broadly neutralizing antibodies (sBnAbs) targeting the influenza virus hemagglutinin (HA) are a promising therapeutic strategy, but neutralization escape mutants can develop. We used an integrated approach combining viral passaging, deep sequencing, and protein structural analyses to define escape mutations and mechanisms of neutralization escape in vitro for the F10 sBnAb. IAV was propagated with escalating concentrations of F10 over serial passages in cultured cells to select for escape mutations. Viral sequence analysis revealed three mutations in HA and one in neuraminidase (NA). Introduction of these specific mutations into IAV through reverse genetics confirmed their roles in resistance to F10. Structural analyses revealed that the selected HA mutations (S123G, N460S, and N203V) are away from the F10 epitope but may indirectly impact influenza virus receptor binding, endosomal fusion, or budding. The NA mutation E329K, which was previously identified to be associated with antibody escape, affects the active site of NA, highlighting the importance of the balance between HA and NA function for viral survival. Thus, whole-genome population sequencing enables the identification of viral resistance mutations responding to antibody-induced selective pressure.IMPORTANCE Influenza A virus is a public health threat for which currently available vaccines are not always effective. Broadly neutralizing antibodies that bind to the highly conserved stem region of the influenza virus hemagglutinin (HA) can neutralize many influenza virus strains. To understand how influenza virus can become resistant or escape such antibodies, we propagated influenza A virus in vitro with escalating concentrations of antibody and analyzed viral populations by whole-genome sequencing. We identified HA mutations near and distal to the antibody binding epitope that conferred resistance to antibody neutralization. Additionally, we identified a neuraminidase (NA) mutation that allowed the virus to grow in the presence of high concentrations of the antibody. Virus carrying dual mutations in HA and NA also grew under high antibody concentrations. We show that NA mutations mediate the escape of neutralization by antibodies against HA, highlighting the importance of a balance between HA and NA for optimal virus function.


Subject(s)
Drug Resistance, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Mutation , Neuraminidase/genetics , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , Influenza Vaccines , Madin Darby Canine Kidney Cells , Models, Molecular , Neuraminidase/chemistry , Neutralization Tests , Reverse Genetics , Sequence Analysis, RNA , Viral Proteins/chemistry , Viral Proteins/genetics
16.
Proc Natl Acad Sci U S A ; 114(44): 11751-11756, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078326

ABSTRACT

Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect on cell growth. As proof of concept, we mutagenized a selected region within the leukemic oncogene BCR-ABL1 Using bulk competitions with a deep-sequencing readout, we analyzed hundreds of mutations under multiple drug conditions and found that the effects of mutations on growth in the presence or absence of drug were critical for predicting clinically relevant resistant mutations, many of which were cancer adaptive in the absence of drug pressure. Using this approach, we identified all clinically isolated BCR-ABL1 mutations and achieved a prediction score that correlated highly with their clinical prevalence. The strategy described here can be broadly applied to a variety of oncogenes to predict patient mutations and evaluate resistance susceptibility in the development of new therapeutics.


Subject(s)
CRISPR-Cas Systems/genetics , Drug Resistance, Neoplasm/genetics , Mutagenesis/genetics , Animals , Antineoplastic Agents/pharmacology , CRISPR-Cas Systems/drug effects , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/drug effects , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drug Resistance, Neoplasm/drug effects , Fusion Proteins, bcr-abl/genetics , Leukemia/drug therapy , Leukemia/genetics , Mice , Mutagenesis/drug effects , Oncogenes/genetics , Point Mutation/drug effects , Point Mutation/genetics
17.
Biochemistry ; 58(35): 3711-3726, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31386353

ABSTRACT

Protease inhibitors have the highest potency among antiviral therapies against HIV-1 infections, yet the virus can evolve resistance. Darunavir (DRV), currently the most potent Food and Drug Administration-approved protease inhibitor, retains potency against single-site mutations. However, complex combinations of mutations can confer resistance to DRV. While the interdependence between mutations within HIV-1 protease is key for inhibitor potency, the molecular mechanisms that underlie this control remain largely unknown. In this study, we investigated the interdependence between the L89V and L90M mutations and their effects on DRV binding. These two mutations have been reported to be positively correlated with one another in HIV-1 patient-derived protease isolates, with the presence of one mutation making the probability of the occurrence of the second mutation more likely. The focus of our investigation is a patient-derived isolate, with 24 mutations that we call "KY"; this variant includes the L89V and L90M mutations. Three additional KY variants with back-mutations, KY(V89L), KY(M90L), and the KY(V89L/M90L) double mutation, were used to experimentally assess the individual and combined effects of these mutations on DRV inhibition and substrate processing. The enzymatic assays revealed that the KY(V89L) variant, with methionine at residue 90, is highly resistant, but its catalytic function is compromised. When a leucine to valine mutation at residue 89 is present simultaneously with the L90M mutation, a rescue of catalytic efficiency is observed. Molecular dynamics simulations of these DRV-bound protease variants reveal how the L90M mutation induces structural changes throughout the enzyme that undermine the binding interactions.


Subject(s)
Amino Acid Substitution/physiology , Drug Resistance, Viral/genetics , Epistasis, Genetic/genetics , HIV Protease/genetics , Amino Acid Substitution/genetics , Catalytic Domain , Crystallography, X-Ray , HIV Infections/drug therapy , HIV Infections/virology , HIV Protease/chemistry , HIV Protease/metabolism , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , HIV-1/enzymology , HIV-1/genetics , Humans , Leucine/genetics , Methionine/genetics , Models, Molecular , Molecular Dynamics Simulation , Mutation, Missense/physiology , Protein Binding , Protein Denaturation , Valine/genetics
18.
J Biol Chem ; 293(23): 9101-9112, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29700119

ABSTRACT

C-terminal binding protein 1 (CtBP1) and CtBP2 are transcriptional coregulators that repress numerous cellular processes, such as apoptosis, by binding transcription factors and recruiting chromatin-remodeling enzymes to gene promoters. The NAD(H)-linked oligomerization of human CtBP is coupled to its co-transcriptional activity, which is implicated in cancer progression. However, the biologically relevant level of CtBP assembly has not been firmly established; nor has the stereochemical arrangement of the subunits above that of a dimer. Here, multi-angle light scattering (MALS) data established the NAD+- and NADH-dependent assembly of CtBP1 and CtBP2 into tetramers. An examination of subunit interactions within CtBP1 and CtBP2 crystal lattices revealed that both share a very similar tetrameric arrangement resulting from assembly of two dimeric pairs, with specific interactions probably being sensitive to NAD(H) binding. Creating a series of mutants of both CtBP1 and CtBP2, we tested the hypothesis that the crystallographically observed interdimer pairing stabilizes the solution tetramer. MALS data confirmed that these mutants disrupt both CtBP1 and CtBP2 tetramers, with the dimer generally remaining intact, providing the first stereochemical models for tetrameric assemblies of CtBP1 and CtBP2. The crystal structure of a subtle destabilizing mutant suggested that small structural perturbations of the hinge region linking the substrate- and NAD-binding domains are sufficient to weaken the CtBP1 tetramer. These results strongly suggest that the tetramer is important in CtBP function, and the series of CtBP mutants reported here can be used to investigate the physiological role of the tetramer.


Subject(s)
Alcohol Oxidoreductases/metabolism , DNA-Binding Proteins/metabolism , NAD/metabolism , Nerve Tissue Proteins/metabolism , Alcohol Oxidoreductases/chemistry , Co-Repressor Proteins , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , Humans , Models, Molecular , Nerve Tissue Proteins/chemistry , Protein Multimerization
19.
J Biomol NMR ; 73(6-7): 365-374, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31243634

ABSTRACT

Over the last two decades, both the sensitivity of NMR and the time scale of molecular dynamics (MD) simulation have increased tremendously and have advanced the field of protein dynamics. HIV-1 protease has been extensively studied using these two methods, and has presented a framework for cross-evaluation of structural ensembles and internal dynamics by integrating the two methods. Here, we review studies from our laboratories over the last several years, to understand the mechanistic basis of protease drug-resistance mutations and inhibitor responses, using NMR and crystal structure-based parallel MD simulations. Our studies demonstrate that NMR relaxation experiments, together with crystal structures and MD simulations, significantly contributed to the current understanding of structural/dynamic changes due to HIV-1 protease drug resistance mutations.


Subject(s)
HIV Protease Inhibitors/chemistry , HIV Protease/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Binding Sites , Drug Resistance, Viral , HIV Protease/genetics , HIV Protease/metabolism , HIV Protease Inhibitors/pharmacology , Humans , Mutation , Protein Binding , Structure-Activity Relationship , Water/chemistry
20.
J Chem Inf Model ; 59(9): 3679-3691, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31381335

ABSTRACT

Discovery and optimization of small molecule inhibitors as therapeutic drugs have immensely benefited from rational structure-based drug design. With recent advances in high-resolution structure determination, computational power, and machine learning methodology, it is becoming more tractable to elucidate the structural basis of drug potency. However, the applicability of machine learning models to drug design is limited by the interpretability of the resulting models in terms of feature importance. Here, we take advantage of the large number of available inhibitor-bound HIV-1 protease structures and associated potencies to evaluate inhibitor diversity and machine learning models to predict ligand affinity. First, using a hierarchical clustering approach, we grouped HIV-1 protease inhibitors and identified distinct core structures. Explicit features including protein-ligand interactions were extracted from high-resolution cocrystal structures as 3D-based fingerprints. We found that a gradient boosting machine learning model with this explicit feature attribution can predict binding affinity with high accuracy. Finally, Shapley values were derived to explain local feature importance. We found specific van der Waals (vdW) interactions of key protein residues are pivotal for the predicted potency. Protein-specific and interpretable prediction models can guide the optimization of many small molecule drugs for improved potency.


Subject(s)
Drug Discovery/methods , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease/metabolism , HIV-1/enzymology , Machine Learning , Drug Design , HIV Infections/drug therapy , HIV Protease/chemistry , HIV-1/drug effects , Humans , Ligands , Molecular Docking Simulation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL