Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Immunity ; 54(7): 1363-1365, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260881

ABSTRACT

CARD8 senses pathogen-associated protease activity and assembles a pyroptosis-inducing inflammasome, but detailed regulatory mechanisms have remained elusive. In this issue of Immunity, Sharif et al. use cryo-EM and biochemical assays to unveil how DPP9 sequesters the inflammasome-forming C-terminal fragment of CARD8 to suppress its activation.


Subject(s)
CARD Signaling Adaptor Proteins , Inflammasomes , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Inflammasomes/metabolism , Neoplasm Proteins/metabolism , Pyroptosis
2.
Immunity ; 52(4): 591-605.e6, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294405

ABSTRACT

Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.


Subject(s)
Endoribonucleases/metabolism , Monocytes/immunology , Neutrophils/immunology , RNA, Bacterial/metabolism , RNA, Protozoan/metabolism , Toll-Like Receptor 8/metabolism , CRISPR-Cas Systems , Cell Line , Endoribonucleases/immunology , Erythrocytes/immunology , Erythrocytes/parasitology , Escherichia coli/chemistry , Escherichia coli/immunology , Gene Editing/methods , Humans , Listeria monocytogenes/chemistry , Listeria monocytogenes/immunology , Monocytes/microbiology , Monocytes/parasitology , Neutrophils/microbiology , Neutrophils/parasitology , Plasmodium falciparum/chemistry , Plasmodium falciparum/immunology , Primary Cell Culture , RNA Stability , RNA, Bacterial/immunology , RNA, Protozoan/immunology , Serratia marcescens/chemistry , Serratia marcescens/immunology , Staphylococcus aureus/chemistry , Staphylococcus aureus/immunology , Streptococcus/chemistry , Streptococcus/immunology , THP-1 Cells , Toll-Like Receptor 8/immunology
3.
Nat Immunol ; 16(10): 1025-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26343537

ABSTRACT

Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.


Subject(s)
DNA, Complementary/chemistry , DNA, Viral/chemistry , DNA, Viral/immunology , HIV-1/genetics , HIV-1/immunology , Interferon-alpha/immunology , Nucleotidyltransferases/genetics , Animals , Cell Line , Cells, Cultured , DNA, Complementary/genetics , DNA, Complementary/immunology , DNA, Viral/genetics , HEK293 Cells , Humans , Immunization , Mice
4.
Nucleic Acids Res ; 51(21): 11893-11910, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37831086

ABSTRACT

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.


Subject(s)
DEAD Box Protein 58 , Isoleucine , Receptors, Immunologic , DEAD Box Protein 58/chemistry , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Immune Tolerance , Isoleucine/genetics , RNA, Double-Stranded/genetics , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
5.
Immunity ; 43(1): 41-51, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26187414

ABSTRACT

The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation. Moreover, we identified a single conserved amino acid (H830) in the RIG-I RNA binding pocket as the mediator of steric exclusion of N1-2'O-methylated RNA. H830A alteration (RIG-I(H830A)) restored binding of N1-2'O-methylated pppRNA. Consequently, endogenous mRNA activated the RIG-I(H830A) mutant but not wild-type RIG-I. Similarly, knockdown of the endogenous N1-2'O-methyltransferase led to considerable RIG-I stimulation in the absence of exogenous stimuli. Studies involving yellow-fever-virus-encoded 2'O-methyltransferase and RIG-I(H830A) revealed that viruses exploit this mechanism to escape RIG-I. Our data reveal a new role for cap N1-2'O-methylation in RIG-I tolerance of self-RNA.


Subject(s)
DEAD-box RNA Helicases/genetics , Immune Tolerance/genetics , RNA Processing, Post-Transcriptional/genetics , RNA/genetics , Yellow fever virus/enzymology , Amino Acid Sequence , Animals , Cells, Cultured , DEAD Box Protein 58 , Enzyme Activation/genetics , Enzyme Activation/immunology , Histidine/genetics , Humans , Methylation , Methyltransferases/genetics , Mice , Protein Structure, Tertiary , RNA/chemistry , RNA/immunology , RNA, Viral/immunology , Receptors, Immunologic , Yellow fever virus/genetics
6.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569596

ABSTRACT

Immune surveillance by natural killer (NK) cells and their recruitment to sites of inflammation renders them susceptible to viral infection, potentially modulating their effector function. Here, we analyzed innate RNA receptor signaling in NK cells downstream of direct Influenza A virus (IAV) infection and its impact on NK cell effector function. Infection of NK cells with IAV resulted in the activation of TBK1, NF-Ï°B and subsequent type-I IFN secretion. CRISPR-generated knockouts in primary human NK cells revealed that this effect depended on the antiviral cytosolic RNA receptor RIG-I. Transfection of NK cells with synthetic 3p-dsRNA, a strong RIG-I agonist that mimics viral RNA, resulted in a similar phenotype and rendered NK cells resistant to subsequent IAV infection. Strikingly, both IAV infection and 3p-dsRNA transfection enhanced degranulation and cytokine production by NK cells when exposed to target cells. Thus, RIG-I activation in NK cells both supports their cell intrinsic viral defense and enhances their cytotoxic effector function against target cells.


Subject(s)
Influenza A virus , Influenza, Human , Interferon Type I , Humans , Influenza A virus/physiology , Killer Cells, Natural , RNA
7.
Nat Immunol ; 11(1): 63-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19915568

ABSTRACT

Interleukin 1 beta (IL-1 beta) is a potent proinflammatory factor during viral infection. Its production is tightly controlled by transcription of Il1b dependent on the transcription factor NF-kappaB and subsequent processing of pro-IL-1 beta by an inflammasome. However, the sensors and mechanisms that facilitate RNA virus-induced production of IL-1 beta are not well defined. Here we report a dual role for the RNA helicase RIG-I in RNA virus-induced proinflammatory responses. Whereas RIG-I-mediated activation of NF-kappaB required the signaling adaptor MAVS and a complex of the adaptors CARD9 and Bcl-10, RIG-I also bound to the adaptor ASC to trigger caspase-1-dependent inflammasome activation by a mechanism independent of MAVS, CARD9 and the Nod-like receptor protein NLRP3. Our results identify the CARD9-Bcl-10 module as an essential component of the RIG-I-dependent proinflammatory response and establish RIG-I as a sensor able to activate the inflammasome in response to certain RNA viruses.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DEAD-box RNA Helicases/metabolism , Inflammation/physiopathology , Interleukin-1beta/metabolism , RNA Viruses/physiology , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Animals , CARD Signaling Adaptor Proteins , Caspase 1/metabolism , Cell Line , Cells, Cultured , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , Encephalomyocarditis virus/immunology , Encephalomyocarditis virus/physiology , Enzyme Activation , Enzyme-Linked Immunosorbent Assay , Host-Pathogen Interactions , Humans , Immunoblotting , Inflammation/immunology , Inflammation/virology , Interferon-Induced Helicase, IFIH1 , Mice , Mice, Knockout , Models, Biological , RNA Virus Infections/immunology , RNA Virus Infections/physiopathology , RNA Virus Infections/virology , RNA Viruses/immunology , Vesicular stomatitis Indiana virus/immunology , Vesicular stomatitis Indiana virus/physiology , bcl-X Protein/genetics , bcl-X Protein/metabolism
8.
J Immunol ; 200(12): 4024-4035, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29712772

ABSTRACT

Type I IFN production of plasmacytoid dendritic cells (pDCs) triggered by TLR-signaling is an essential part of antiviral responses and autoimmune reactions. Although it was well-documented that members of the cytokine signaling (SOCS) family regulate TLR-signaling, the mechanism of how SOCS proteins regulate TLR7-mediated type I IFN production has not been elucidated yet. In this article, we show that TLR7 activation in human pDCs induced the expression of SOCS1 and SOCS3. SOCS1 and SOCS3 strongly suppressed TLR7-mediated type I IFN production. Furthermore, we demonstrated that SOCS1- and SOCS3-bound IFN regulatory factor 7, a pivotal transcription factor of the TLR7 pathway, through the SH2 domain to promote its proteasomal degradation by lysine 48-linked polyubiquitination. Together, our results demonstrate that SOCS1/3-mediated degradation of IFN regulatory factor 7 directly regulates TLR7 signaling and type I IFN production in pDCs. This mechanism might be targeted by therapeutic approaches to either enhance type I IFN production in antiviral treatment or decrease type I IFN production in the treatment of autoimmune diseases.


Subject(s)
Dendritic Cells/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon-alpha/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Toll-Like Receptor 7/metabolism , Cells, Cultured , HEK293 Cells , Humans , Leukocytes, Mononuclear/metabolism , Signal Transduction/physiology
9.
Nature ; 514(7522): 372-375, 2014 10 16.
Article in English | MEDLINE | ID: mdl-25119032

ABSTRACT

Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α and ß; hereafter IFN), which are key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5'-end (reviewed in refs 1, 2, 3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5'-diphosphates (5'pp). Genomes from mammalian reoviruses with 5'pp termini, 5'pp-RNA isolated from yeast L-A virus, and base-paired 5'pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5'pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5'pp. Such RNAs are found in some viruses but not in uninfected cells, indicating that recognition of 5'pp-RNA, like that of 5'ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system.


Subject(s)
DEAD-box RNA Helicases/metabolism , Diphosphates/metabolism , Immunity, Innate , RNA, Viral/chemistry , RNA, Viral/metabolism , Reoviridae/genetics , Reoviridae/immunology , Animals , Base Pairing , Base Sequence , DEAD Box Protein 58 , Female , Genome, Viral/genetics , Male , Mice , RNA, Viral/genetics , Reoviridae/physiology
10.
Immunity ; 31(1): 25-34, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19576794

ABSTRACT

Antiviral immunity is triggered by immunorecognition of viral nucleic acids. The cytosolic helicase RIG-I is a key sensor of viral infections and is activated by RNA containing a triphosphate at the 5' end. The exact structure of RNA activating RIG-I remains controversial. Here, we established a chemical approach for 5' triphosphate oligoribonucleotide synthesis and found that synthetic single-stranded 5' triphosphate oligoribonucleotides were unable to bind and activate RIG-I. Conversely, the addition of the synthetic complementary strand resulted in optimal binding and activation of RIG-I. Short double-strand conformation with base pairing of the nucleoside carrying the 5' triphosphate was required. RIG-I activation was impaired by a 3' overhang at the 5' triphosphate end. These results define the structure of RNA for full RIG-I activation and explain how RIG-I detects negative-strand RNA viruses that lack long double-stranded RNA but do contain blunt short double-stranded 5' triphosphate RNA in the panhandle region of their single-stranded genome.


Subject(s)
DEAD-box RNA Helicases/immunology , Polyphosphates/immunology , RNA Viruses/immunology , RNA, Double-Stranded/immunology , RNA, Viral/immunology , Animals , Cells, Cultured , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , Humans , Interferon-alpha/biosynthesis , Interferon-alpha/immunology , Mice , Mice, Mutant Strains , Monocytes/immunology , Monocytes/metabolism , Oligoribonucleotides/chemical synthesis , Oligoribonucleotides/immunology , Polyphosphates/metabolism , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Receptors, Immunologic
11.
Mol Ther ; 25(9): 2093-2103, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28760668

ABSTRACT

Influenza A virus infection causes substantial morbidity and mortality in seasonal epidemic outbreaks, and more efficient treatments are urgently needed. Innate immune sensing of viral nucleic acids stimulates antiviral immunity, including cell-autonomous antiviral defense mechanisms that restrict viral replication. RNA oligonucleotide ligands that potently activate the cytoplasmic helicase retinoic-acid-inducible gene I (RIG-I) are promising candidates for the development of new antiviral therapies. Here, we demonstrate in an Mx1-expressing mouse model of influenza A virus infection that a single intravenous injection of low-dose RIG-I ligand 5'-triphosphate RNA (3pRNA) completely protected mice from a lethal challenge with influenza A virus for at least 7 days. Furthermore, systemic administration of 3pRNA rescued mice with pre-established fulminant influenza infection and prevented the fatal effects of a streptococcal superinfection. Type I interferon, but not interferon-λ, was required for the therapeutic effect. Our results suggest that the use of RIG-I activating oligonucleotide ligands has the clinical potential to confine influenza epidemics when a strain-specific vaccine is not yet available and to reduce lethality of influenza in severely infected patients.


Subject(s)
Bacterial Infections , Influenza A virus , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Superinfection , Animals , Chemokine CXCL10/metabolism , Influenza A virus/immunology , Interferon Type I/metabolism , Ligands , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Membrane Proteins/agonists , Mice , Mice, Transgenic , Nerve Tissue Proteins/agonists , Oligonucleotides/administration & dosage , Oligonucleotides/genetics , Orthomyxoviridae Infections/mortality , Protective Agents/administration & dosage , RNA/administration & dosage , RNA/genetics , Receptors, Cell Surface , Survival Analysis , Toll-Like Receptors/metabolism
12.
EMBO J ; 31(21): 4153-64, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23064150

ABSTRACT

Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill-defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG-I, MDA5 and STING thereby triggering interferon ß production. Secreted Listeria nucleic acids also caused RIG-I-dependent IL-1ß-production and inflammasome activation. The signalling molecule CARD9 contributed to IL-1ß production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG-I provides a mechanistic explanation for efficient induction of immunity by live bacteria.


Subject(s)
Cytoplasm/metabolism , DEAD-box RNA Helicases/physiology , DNA, Bacterial/immunology , Immunity, Cellular/immunology , Inflammation/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , RNA, Bacterial/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Blotting, Western , CARD Signaling Adaptor Proteins , Cells, Cultured , Cytoplasm/immunology , Cytoplasm/microbiology , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA, Bacterial/genetics , Flow Cytometry , Fluorescent Antibody Technique , Inflammation/microbiology , Interferon-Induced Helicase, IFIH1 , Listeria monocytogenes/genetics , Listeriosis/genetics , Listeriosis/microbiology , Macrophages/immunology , Macrophages/microbiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Bacterial/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
13.
Stem Cells ; 31(6): 1064-74, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23390110

ABSTRACT

Cellular heterogeneity, for example, the intratumoral coexistence of cancer cells with and without stem cell characteristics, represents a potential root of therapeutic resistance and a significant challenge for modern drug development in glioblastoma (GBM). We propose here that activation of the innate immune system by stimulation of innate immune receptors involved in antiviral and antitumor responses can similarly target different malignant populations of glioma cells. We used short-term expanded patient-specific primary human GBM cells to study the stimulation of the cytosolic nucleic acid receptors melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). Specifically, we analyzed cells from the tumor core versus "residual GBM cells" derived from the tumor resection margin as well as stem cell-enriched primary cultures versus specimens without stem cell properties. A portfolio of human, nontumor neural cells was used as a control for these studies. The expression of RIG-I and MDA5 could be induced in all of these cells. Receptor stimulation with their respective ligands, p(I:C) and 3pRNA, led to in vitro evidence for an effective activation of the innate immune system. Most intriguingly, all investigated cancer cell populations additionally responded with a pronounced induction of apoptotic signaling cascades revealing a second, direct mechanism of antitumor activity. By contrast, p(I:C) and 3pRNA induced only little toxicity in human nonmalignant neural cells. Granted that the challenge of effective central nervous system (CNS) delivery can be overcome, targeting of RIG-I and MDA5 could thus become a quintessential strategy to encounter heterogeneous cancers in the sophisticated environments of the brain.


Subject(s)
Antineoplastic Agents/pharmacology , Cytosol/immunology , DEAD-box RNA Helicases/immunology , Glioblastoma/drug therapy , Glioblastoma/immunology , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis/immunology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Cell Line, Tumor , Cytosol/drug effects , Cytosol/metabolism , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon-Induced Helicase, IFIH1 , Ligands , Receptors, Immunologic , Signal Transduction/drug effects , Stem Cells/drug effects , Stem Cells/immunology , Stem Cells/metabolism
14.
Nat Commun ; 15(1): 1534, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378748

ABSTRACT

Myotonic dystrophy type 2 (DM2) is a tetranucleotide CCTG repeat expansion disease associated with an increased prevalence of autoimmunity. Here, we identified an elevated type I interferon (IFN) signature in peripheral blood mononuclear cells and primary fibroblasts of DM2 patients as a trigger of chronic immune stimulation. Although RNA-repeat accumulation was prevalent in the cytosol of DM2-patient fibroblasts, type-I IFN release did not depend on innate RNA immune sensors but rather the DNA sensor cGAS and the prevalence of mitochondrial DNA (mtDNA) in the cytoplasm. Sublethal mtDNA release was promoted by a chronic activation of the ATF6 branch of the unfolded protein response (UPR) in reaction to RNA-repeat accumulation and non-AUG translated tetrapeptide expansion proteins. ATF6-dependent mtDNA release and resulting cGAS/STING activation could also be recapitulated in human THP-1 monocytes exposed to chronic endoplasmic reticulum (ER) stress. Altogether, our study demonstrates a novel mechanism by which large repeat expansions cause chronic endoplasmic reticulum stress and associated mtDNA leakage. This mtDNA is, in turn, sensed by the cGAS/STING pathway and induces a type-I IFN response predisposing to autoimmunity. Elucidating this pathway reveals new potential therapeutic targets for autoimmune disorders associated with repeat expansion diseases.


Subject(s)
Autoimmune Diseases , Interferon Type I , Myotonic Dystrophy , Humans , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , DNA, Mitochondrial/genetics , Autoimmunity/genetics , Leukocytes, Mononuclear/metabolism , RNA , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Endoplasmic Reticulum Stress/genetics
15.
Immunol Rev ; 227(1): 66-74, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19120476

ABSTRACT

Innate and antigen-specific antiviral immunity are triggered by immunorecognition of viral nucleic acids. The helicase retinoic acid-inducible gene I (RIG-I) (also known as DDX58) is the key sensor of negative strand RNA viruses in the cytosol of cells. RNA containing a triphosphate at the 5'-end was shown to activate RIG-I, but the exact structure of RNA supporting 5'-triphosphate recognition, the requirement of a 5'-triphosphate group, as well as the existence of RNA structures detected by RIG-I in the absence of 5'-triphosphate remain controversial. Here, we revisit the literature on RIG-I and RIG-I ligands. The literature proposes at least six different RIG-I ligands: (i) single strand with a 5'-triphosphate, (ii) double-stranded RNA with a 5'-triphosphate, (iii) 5'-triphosphate single-stranded RNA with A- and U-rich 3'-sequences, (iv) double-stranded RNA of intermediate length (>300 and <2000 bp) without 5'-triphosphate, (v) blunt-end short double-stranded RNA (23-30 bp) without 5'-triphosphate, and (vi) short double-stranded RNA (23-30 bp) with 5'-monophosphate. RIG-I thus seems promiscuous for a variety of different RNA molecules, very similar to the Toll-like receptors, of which 10 family members are sufficient for the safe detection of the microbial cosmos. In the light of these outstanding publications, it seems an unlikely possibility that there is a fundamental shortcoming in the design of all studies. Looking closely, the only issue that comes to mind is the in vitro transcription technique used by all investigators without confirming the identity of RNA products. This technique, together with the different biological systems used, the lack of dose responses and of proper comparison of different published ligands and controls leave us with more questions than answers as to what the exact RIG-I ligand is, if in fact it exists.


Subject(s)
DEAD-box RNA Helicases/metabolism , Host-Pathogen Interactions/immunology , RNA Virus Infections/immunology , RNA, Viral/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Allosteric Regulation/genetics , Allosteric Regulation/immunology , Animals , Base Composition/immunology , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/immunology , Dimerization , Humans , Immunity, Innate , Ligands , RNA 5' Terminal Oligopyrimidine Sequence/immunology , RNA Virus Infections/physiopathology , RNA Virus Infections/prevention & control , RNA Viruses/physiology , RNA, Viral/genetics , RNA, Viral/immunology , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/immunology , Receptors, Immunologic , Species Specificity
16.
Front Immunol ; 14: 1073608, 2023.
Article in English | MEDLINE | ID: mdl-36936901

ABSTRACT

TBK1 and IKKϵ are related, crucial kinases in antiviral immune signaling pathways downstream of cytosolic nucleic acid receptors such as cGAS and RIG-I-like receptors. Upon activation, they phosphorylate the transcription factors IRF3 and IRF7 and thereby initiate the expression of type I interferons and antiviral effectors. While point mutation-induced loss of TBK1 kinase activity results in clinical hyper-susceptibility to viral infections, a complete lack of TBK1 expression in humans is unexpectedly not associated with diminished antiviral responses. Here, we provide a mechanistic explanation for these so-far unexplained observations by showing that TBK1 controls the protein expression of its related kinase IKKϵ in human myeloid cells. Mechanistically, TBK1 constitutively diminishes the protein stability of IKKϵ independent of TBK1 kinase activity but dependent on its interaction with the scaffold protein TANK. In consequence, depletion of TBK1 protein but not mutation-induced kinase deficiency induces the upregulation of IKKϵ. Due to the functional redundancy of the kinases in cGAS-STING and RIG-I-like receptor signaling in human myeloid cells, enhanced IKKϵ expression can compensate for the loss of TBK1. We show that IKKϵ upregulation is crucial to ensure unmitigated type I interferon production in conditions of TBK1 deficiency: While the type I interferon response to Listeria monocytogenes infection is maintained upon TBK1 loss, it is strongly diminished in cells harboring a kinase-deficient TBK1 variant, in which IKKϵ is not upregulated. Many pathogens induce TBK1 degradation, suggesting that loss of TBK1-mediated destabilization of IKKϵ is a critical backup mechanism to prevent diminished interferon responses upon TBK1 depletion.


Subject(s)
I-kappa B Kinase , Interferon Type I , Humans , I-kappa B Kinase/genetics , Nucleotidyltransferases , Protein Serine-Threonine Kinases/metabolism
17.
J Mol Cell Biol ; 15(1)2023 06 01.
Article in English | MEDLINE | ID: mdl-36626927

ABSTRACT

Radiotherapy induces DNA damage, resulting in cell-cycle arrest and activation of cell-intrinsic death pathways. However, the radioresistance of some tumour entities such as malignant melanoma limits its clinical application. The innate immune sensing receptor retinoic acid-inducible gene I (RIG-I) is ubiquitously expressed and upon activation triggers an immunogenic form of cell death in a variety of tumour cell types including melanoma. To date, the potential of RIG-I ligands to overcome radioresistance of tumour cells has not been investigated. Here, we demonstrate that RIG-I activation enhanced the extent and immunogenicity of irradiation-induced tumour cell death in human and murine melanoma cells in vitro and improved survival in the murine B16 melanoma model in vivo. Transcriptome analysis pointed to a central role for p53, which was confirmed using p53-/- B16 cells. In vivo, the additional effect of RIG-I in combination with irradiation on tumour growth was absent in mice carrying p53-/- B16 tumours, while the antitumoural response to RIG-I stimulation alone was maintained. Our results identify p53 as a pivotal checkpoint that is triggered by RIG-I resulting in enhanced irradiation-induced tumour cell death. Thus, the combined administration of RIG-I ligands and radiotherapy is a promising approach to treating radioresistant tumours with a functional p53 pathway, such as melanoma.


Subject(s)
Melanoma, Experimental , Tumor Suppressor Protein p53 , Animals , Mice , Humans , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Ligands , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Immunotherapy/methods , Melanoma, Cutaneous Malignant
18.
Science ; 379(6632): 586-591, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36758070

ABSTRACT

Orthomyxo- and bunyaviruses steal the 5' cap portion of host RNAs to prime their own transcription in a process called "cap snatching." We report that RNA modification of the cap portion by host 2'-O-ribose methyltransferase 1 (MTr1) is essential for the initiation of influenza A and B virus replication, but not for other cap-snatching viruses. We identified with in silico compound screening and functional analysis a derivative of a natural product from Streptomyces, called trifluoromethyl-tubercidin (TFMT), that inhibits MTr1 through interaction at its S-adenosyl-l-methionine binding pocket to restrict influenza virus replication. Mechanistically, TFMT impairs the association of host cap RNAs with the viral polymerase basic protein 2 subunit in human lung explants and in vivo in mice. TFMT acts synergistically with approved anti-influenza drugs.


Subject(s)
Alphainfluenzavirus , Antiviral Agents , Betainfluenzavirus , Biological Products , Enzyme Inhibitors , Methyltransferases , RNA Caps , Tubercidin , Virus Replication , Animals , Humans , Mice , RNA Caps/metabolism , RNA, Messenger/metabolism , RNA, Viral/biosynthesis , Virus Replication/drug effects , Alphainfluenzavirus/drug effects , Betainfluenzavirus/drug effects , Biological Products/chemistry , Biological Products/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Tubercidin/analogs & derivatives , Tubercidin/pharmacology , Methyltransferases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Streptomyces/chemistry , Computer Simulation , A549 Cells
19.
J Immunol ; 185(12): 7367-73, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21057083

ABSTRACT

Bacterial DNA contains unmethylated CpG dinucleotides and is a potent ligand for TLR9. Bacterial DNA has been claimed the active ingredient in bacterial lysates used for immunotherapy. Whereas the detection of viral DNA by TLR9 expressed in plasmacytoid dendritic cells (PDCs) with subsequent IFN-α production is well defined, the role of bacterial DNA during microbial infection is less clear. In fact, IFN-α is not a hallmark of antibacterial immune responses. Unlike in mice, TLR9 expression in humans is restricted to PDCs and B cells; thus, conclusions from murine models of infection have limitations. In this study, we demonstrate that lysates of heat-killed Escherichia coli containing bacterial DNA induced IFN-α in isolated PDCs but not in the mixed cell populations of human PBMCs. Depletion of monocytes restored IFN-α secretion by PDCs within PBMCs. We found that monocyte-derived IL-10 and PGs contribute to monocyte-mediated inhibition of IFN-α release in PDCs. We conclude that human PDCs can be stimulated by bacterial DNA via TLR9; however, in the physiological context of mixed-cell populations, PDC activation is blocked by factors released from monocytes stimulated in parallel by other components of bacterial lysates such as LPS. This functional repression of PDCs by concomitantly stimulated monocytes avoids production of antiviral IFN-α during bacterial infection and thus explains how the innate immune system is enabled to distinguish bacterial from viral CpG DNA and thus to elicit the appropriate responses despite the presence of CpG DNA in both types of infection.


Subject(s)
DNA, Bacterial/immunology , Dendritic Cells/immunology , Escherichia coli K12/immunology , Interferon-alpha/immunology , Monocytes/immunology , Plasma Cells/immunology , Toll-Like Receptor 9/immunology , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/pharmacology , DNA, Viral/chemistry , DNA, Viral/immunology , DNA, Viral/pharmacology , Dendritic Cells/metabolism , Escherichia coli K12/chemistry , Humans , Interferon-alpha/biosynthesis , Lipopolysaccharides/chemistry , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Mice , Monocytes/metabolism , Plasma Cells/metabolism , Toll-Like Receptor 9/metabolism , Viruses/chemistry , Viruses/immunology
20.
Nat Med ; 11(3): 263-70, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15723075

ABSTRACT

Short interfering RNA (siRNA) is used in RNA interference technology to avoid non-target-related induction of type I interferon (IFN) typical for long double-stranded RNA. Here we show that in plasmacytoid dendritic cells (PDC), an immune cell subset specialized in the detection of viral nucleic acids and production of type I IFN, some siRNA sequences, independent of their GU content, are potent stimuli of IFN-alpha production. Localization of the immunostimulatory motif on the sense strand of a potent IFN-alpha-inducing siRNA allowed dissection of immunostimulation and target silencing. Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-alpha in serum and activation of T cells and dendritic cells in spleen. Immunostimulation by siRNA was absent in TLR7-deficient mice. Thus sequence-specific TLR7-dependent immune recognition in PDC needs to be considered as an additional biological activity of siRNA, which then should be termed immunostimulatory RNA (isRNA).


Subject(s)
Dendritic Cells/immunology , Interferon-alpha/biosynthesis , Membrane Glycoproteins/physiology , RNA, Small Interfering/immunology , Receptors, Cell Surface/physiology , Animals , Base Sequence , Cell Line , Dendritic Cells/metabolism , Humans , Liposomes , Mice , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA, Viral/physiology , Toll-Like Receptor 7 , Toll-Like Receptor 9 , Toll-Like Receptors
SELECTION OF CITATIONS
SEARCH DETAIL