Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 182(6): 1419-1440.e23, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32810438

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.


Subject(s)
Coronavirus Infections/immunology , Myeloid Cells/immunology , Myelopoiesis , Pneumonia, Viral/immunology , Adult , Aged , CD11 Antigens/genetics , CD11 Antigens/metabolism , COVID-19 , Cells, Cultured , Coronavirus Infections/blood , Coronavirus Infections/pathology , Female , HLA-DR Antigens/genetics , HLA-DR Antigens/metabolism , Humans , Male , Middle Aged , Myeloid Cells/cytology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Proteome/genetics , Proteome/metabolism , Proteomics , Single-Cell Analysis
2.
Immunity ; 45(5): 1148-1161, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851915

ABSTRACT

The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Epigenesis, Genetic/immunology , Epigenomics/methods , Immunologic Memory/immunology , Female , Flow Cytometry , Gene Expression Profiling/methods , Humans , Machine Learning , Polymerase Chain Reaction , Transcriptome
3.
Infection ; 52(3): 1087-1097, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38326527

ABSTRACT

BACKGROUND: Innate lymphoid cells (ILCs) are key organizers of tissue immune responses and regulate tissue development, repair, and pathology. Persistent clinical sequelae beyond 12 weeks following acute COVID-19 disease, named post-COVID syndrome (PCS), are increasingly recognized in convalescent individuals. ILCs have been associated with the severity of COVID-19 symptoms but their role in the development of PCS remains poorly defined. METHODS AND RESULTS: Here, we used multiparametric immune phenotyping, finding expanded circulating ILC precursors (ILCPs) and concurrent decreased group 2 innate lymphoid cells (ILC2s) in PCS patients compared to well-matched convalescent control groups at > 3 months after infection or healthy controls. Patients with PCS showed elevated expression of chemokines and cytokines associated with trafficking of immune cells (CCL19/MIP-3b, FLT3-ligand), endothelial inflammation and repair (CXCL1, EGF, RANTES, IL-1RA, PDGF-AA). CONCLUSION: These results define immunological parameters associated with PCS and might help find biomarkers and disease-relevant therapeutic strategies.


Subject(s)
COVID-19 , Convalescence , Cytokines , Lymphocytes , Post-Acute COVID-19 Syndrome , Humans , COVID-19/immunology , COVID-19/diagnosis , Male , Female , Middle Aged , Adult , Lymphocytes/immunology , Cytokines/immunology , SARS-CoV-2/immunology , Immunity, Innate , Aged , Chemokines/immunology
4.
Am J Transplant ; 21(4): 1603-1611, 2021 04.
Article in English | MEDLINE | ID: mdl-33171020

ABSTRACT

Short-term outcomes in kidney transplantation are marred by progressive transplant failure and mortality secondary to immunosuppression toxicity. Immune modulation with autologous polyclonal regulatory T cell (Treg) therapy may facilitate immunosuppression reduction promoting better long-term clinical outcomes. In a Phase I clinical trial, 12 kidney transplant recipients received 1-10 × 106 Treg per kg at Day +5 posttransplantation in lieu of induction immunosuppression (Treg Therapy cohort). Nineteen patients received standard immunosuppression (Reference cohort). Primary outcomes were rejection-free and patient survival. Patient and transplant survival was 100%; acute rejection-free survival was 100% in the Treg Therapy versus 78.9% in the reference cohort at 48 months posttransplant. Treg therapy revealed no excess safety concerns. Four patients in the Treg Therapy cohort had mycophenolate mofetil withdrawn successfully and remain on tacrolimus monotherapy. Treg infusion resulted in a long-lasting dose-dependent increase in peripheral blood Tregs together with an increase in marginal zone B cell numbers. We identified a pretransplantation immune phenotype suggesting a high risk of unsuccessful ex-vivo Treg expansion. Autologous Treg therapy is feasible, safe, and is potentially associated with a lower rejection rate than standard immunosuppression. Treg therapy may provide an exciting opportunity to minimize immunosuppression therapy and improve long-term outcomes.


Subject(s)
Kidney Transplantation , Feasibility Studies , Graft Rejection/etiology , Graft Rejection/prevention & control , Humans , Immunosuppressive Agents/therapeutic use , Living Donors , Monitoring, Immunologic , T-Lymphocytes, Regulatory
5.
Lancet ; 395(10237): 1627-1639, 2020 05 23.
Article in English | MEDLINE | ID: mdl-32446407

ABSTRACT

BACKGROUND: Use of cell-based medicinal products (CBMPs) represents a state-of-the-art approach for reducing general immunosuppression in organ transplantation. We tested multiple regulatory CBMPs in kidney transplant trials to establish the safety of regulatory CBMPs when combined with reduced immunosuppressive treatment. METHODS: The ONE Study consisted of seven investigator-led, single-arm trials done internationally at eight hospitals in France, Germany, Italy, the UK, and the USA (60 week follow-up). Included patients were living-donor kidney transplant recipients aged 18 years and older. The reference group trial (RGT) was a standard-of-care group given basiliximab, tapered steroids, mycophenolate mofetil, and tacrolimus. Six non-randomised phase 1/2A cell therapy group (CTG) trials were pooled and analysed, in which patients received one of six CBMPs containing regulatory T cells, dendritic cells, or macrophages; patient selection and immunosuppression mirrored the RGT, except basiliximab induction was substituted with CBMPs and mycophenolate mofetil tapering was allowed. None of the trials were randomised and none of the individuals involved were masked. The primary endpoint was biopsy-confirmed acute rejection (BCAR) within 60 weeks after transplantation; adverse event coding was centralised. The RTG and CTG trials are registered with ClinicalTrials.gov, NCT01656135, NCT02252055, NCT02085629, NCT02244801, NCT02371434, NCT02129881, and NCT02091232. FINDINGS: The seven trials took place between Dec 11, 2012, and Nov 14, 2018. Of 782 patients assessed for eligibility, 130 (17%) patients were enrolled and 104 were treated and included in the analysis. The 66 patients who were treated in the RGT were 73% male and had a median age of 47 years. The 38 patients who were treated across six CTG trials were 71% male and had a median age of 45 years. Standard-of-care immunosuppression in the recipients in the RGT resulted in a 12% BCAR rate (expected range 3·2-18·0). The overall BCAR rate for the six parallel CTG trials was 16%. 15 (40%) patients given CBMPs were successfully weaned from mycophenolate mofetil and maintained on tacrolimus monotherapy. Combined adverse event data and BCAR episodes from all six CTG trials revealed no safety concerns when compared with the RGT. Fewer episodes of infections were registered in CTG trials versus the RGT. INTERPRETATION: Regulatory cell therapy is achievable and safe in living-donor kidney transplant recipients, and is associated with fewer infectious complications, but similar rejection rates in the first year. Therefore, immune cell therapy is a potentially useful therapeutic approach in recipients of kidney transplant to minimise the burden of general immunosuppression. FUNDING: The 7th EU Framework Programme.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Graft Rejection/prevention & control , Immunosuppression Therapy/methods , Immunosuppressive Agents/therapeutic use , Kidney Transplantation , Cell- and Tissue-Based Therapy/adverse effects , Dendritic Cells/immunology , Graft Rejection/immunology , Humans , Immunosuppression Therapy/adverse effects , Macrophages/immunology , T-Lymphocytes, Regulatory/immunology
6.
Immun Ageing ; 18(1): 20, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879187

ABSTRACT

BACKGROUND: Immune ageing is a result of repetitive microbial challenges along with cell intrinsic or systemic changes occurring during ageing. Mice under 'specific-pathogen-free' (SPF) conditions are frequently used to assess immune ageing in long-term experiments. However, physiological pathogenic challenges are reduced in SPF mice. The question arises to what extent murine experiments performed under SPF conditions are suited to analyze immune ageing in mice and serve as models for human immune ageing. Our previous comparisons of same aged mice with different microbial exposures, unambiguously identified distinct clusters of immune cells characteristic for numerous previous pathogen encounters in particular in pet shop mice. RESULTS: We here performed single cell mass cytometry assessing splenic as secondary and bone marrow as primary lymphoid organ-derived leukocytes isolated from young versus aged SPF mice in order to delineate alterations of the murine hematopoietic system induced during ageing. We then compared immune clusters from young and aged SPF mice to pet shop mice in order to delineate alterations of the murine hematopoietic system induced by physiological pathogenic challenges and those caused by cell intrinsic or systemic changes during ageing. Notably, distinct immune signatures were similarly altered in both pet shop and aged SPF mice in comparison to young SPF mice, including increased frequencies of memory T lymphocytes, effector-cytokine producing T cells, plasma cells and mature NK cells. However, elevated frequencies of CD4+ T cells, total NK cells, granulocytes, pDCs, cDCs and decreased frequencies of naïve B cells were specifically identified only in pet shop mice. In aged SPF mice specifically the frequencies of splenic IgM+ plasma cells, CD8+ T cells and CD4+ CD25+ Treg were increased as compared to pet shop mice and young mice. CONCLUSIONS: Our study dissects firstly how ageing impacts both innate and adaptive immune cells in primary and secondary lymphoid organs. Secondly, it partly distinguishes murine intrinsic immune ageing alterations from those induced by physiological pathogen challenges highlighting the importance of designing mouse models for their use in preclinical research including vaccines and immunotherapies.

8.
Proc Natl Acad Sci U S A ; 115(13): E2940-E2949, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531070

ABSTRACT

Recent findings demonstrated proinflammatory functions of interleukin (IL)-9-producing T helper type (Th) 9 cells in the pathogenesis of intestinal bowel diseases (IBDs). However, also antiinflammatory properties have been ascribed to Th9 cells, pointing to a functional heterogeneity. To dissect the specific expression pattern and, especially, diversity of murine antigen-specific Th9 cells, we applied single cell transcription profiling. Th9 cells displayed reduced expression of typical activation markers, such as Cd40 ligand and Cd96, whereas expression of Cd25 and Cd83 was increased compared with other Th subsets. Importantly, we identified two subsets of Th9 cells differing above all in their CD96 expression. The heterogeneous CD96 expression was specific for Th9 cells and not observed for other Th subtypes, such as Th1 cells. Lower CD96 expression was also observed in human IL-9+ compared with IFN-γ+ T cells. Although Il9 was highly transcribed by all Th9 cells, IL-9 mRNA and protein expression was increased in CD96low cells. Transfer of CD96low Th9 cells into recombination activating gene 1-deficient (Rag1-/- ) mice caused severe weight loss, intestinal and colonic inflammation, and destruction of allogeneic skin grafts and thus showed high inflammatory potential. This was associated with their expansion and tissue accumulation. Contrastingly, CD96high Th9 cells did not cause colitis and showed reduced expansion and migratory potential. Blockade of CD96 completely restored the expansion and inflammatory properties of CD96high Th9 cells. Collectively, our data suggest an inhibitory role for the cosignaling receptor CD96 in Th9 cells, raising new opportunities in the treatment of IL-9-associated inflammations such as IBD.


Subject(s)
Antigens, CD/metabolism , Colitis/immunology , Inflammation/immunology , Interleukin-9/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens, CD/genetics , Cells, Cultured , Colitis/metabolism , Colitis/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Profiling , Graft Rejection , Homeodomain Proteins/physiology , Humans , Inflammation/metabolism , Inflammation/pathology , Interleukin-9/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Single-Cell Analysis , Skin Transplantation , T-Lymphocytes, Helper-Inducer/metabolism
9.
Mediators Inflamm ; 2019: 9356728, 2019.
Article in English | MEDLINE | ID: mdl-30906227

ABSTRACT

PURPOSE: To compare the intraocular cytokine and chemokine profiles in patients with acute primary acquired ocular toxoplasmosis (pOT) or recurrent ocular toxoplasmosis (rOT) and to correlate them with their clinical characteristics. METHODS: Aqueous humor samples were collected from 62 consecutive patients (21 pOT, 30 rOT, and 11 noninfected controls) and analyzed by multiplex assay. Correlations were assessed between cytokine/chemokine levels, type of inflammatory response (Th1, Th2, and Th17), and clinical characteristics. In all OT patients, the clinical diagnosis of either pOT or rOT was confirmed by positive intraocular Goldmann/Witmer-Desmonts coefficient. Correlations were assessed between a preselected panel of immune mediators and the clinical characteristics of OT. RESULTS: In pOT patients, increased levels of IL-2, IFN-γ, TNF-α, IL-15, IL-4, IL-5, IL-9, IL-13, IL-17, IL-1Rα, IL-6, IL-1ß, and chemokines MIP-1α, MIP-1ß, IP-10, Eotaxin, IL-8, RANTES, PDGF-bb, GM-CSF, G-CSF, and MCP-1 were found in comparison to those in controls (p < 0.05). Patients with rOT showed elevated levels of IL-2, IFN-γ, TNF-α, IL-15, IL-4, IL-5, IL-9, IL-17, IL-1Rα, IL-6, IL-1ß, and chemokines MIP-1α, IP-10, Eotaxin, IL-8, RANTES, PDGF-bb, G-CSF, and MCP-1 compared to controls (p < 0.05). In addition, IL-7 (p = 0.028) differed between pOT and rOT; IL-9 (p = 0.054) and IL-13 (p = 0.051) showed a tendency of higher concentration in pOT than in rOT. A negative correlation was found between IL-7 (p = 0.017) as well as IL-9 (p = 0.008) and the number of recurrences. Cytokine ratios showed no difference between pOT and rOT, indicating a dominant Th1-type response in both infectious groups. Moreover, a positive correlation was detected between IL-7, VEGF, IL-13 and age at aqueous humor sampling (p < 0.05). CONCLUSIONS: This study for the first time shows subtle differences between the intraocular cytokine profiles in patients with either acute pOT or rOT.


Subject(s)
Aqueous Humor/metabolism , Toxoplasmosis, Ocular/metabolism , Adult , Aged , Aqueous Humor/immunology , Chemokines/metabolism , Cytokines/metabolism , Female , Humans , Male , Middle Aged , Toxoplasmosis, Ocular/immunology
10.
Cytometry A ; 91(1): 85-95, 2017 01.
Article in English | MEDLINE | ID: mdl-27403624

ABSTRACT

A great part of our knowledge on mammalian immunology has been established in laboratory settings. The use of inbred mouse strains enabled controlled studies of immune cell and molecule functions in defined settings. These studies were usually performed in specific-pathogen free (SPF) environments providing standardized conditions. In contrast, mammalians including humans living in their natural habitat are continuously facing pathogen encounters throughout their life. The influences of environmental conditions on the signatures of the immune system and on experimental outcomes are yet not well defined. Thus, the transferability of results obtained in current experimental systems to the physiological human situation has always been a matter of debate. Studies elucidating the diversity of "wild immunology" imprintings in detail and comparing it with those of "clean" lab mice are sparse. Here, we applied multidimensional mass cytometry to dissect phenotypic and functional differences between distinct groups of laboratory and pet shop mice as a source for "wild mice". For this purpose, we developed a 31-antibody panel for murine leukocyte subsets identification and a 35-antibody panel assessing various cytokines. Established murine leukocyte populations were easily identified and diverse immune signatures indicative of numerous pathogen encounters were classified particularly in pet shop mice and to a lesser extent in quarantine and non-SPF mice as compared to SPF mice. In addition, unsupervised analysis identified distinct clusters that associated strongly with the degree of pathogenic priming, including increased frequencies of activated NK cells and antigen-experienced B- and T-cell subsets. Our study unravels the complexity of immune signatures altered under physiological pathogen challenges and highlights the importance of carefully adapting laboratory settings for immunological studies in mice, including drug and therapy testing. © 2016 International Society for Advancement of Cytometry.


Subject(s)
Image Cytometry/methods , Killer Cells, Natural/immunology , T-Lymphocyte Subsets/immunology , Animals , Humans , Leukocytes/immunology , Mice , Mice, Inbred Strains/immunology
11.
J Immunol ; 194(7): 3136-46, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25750433

ABSTRACT

We previously showed that the T cell activation inhibitor, mitochondrial (Tcaim) is highly expressed in grafts of tolerance-developing transplant recipients and that the encoded protein is localized within mitochondria. In this study, we show that CD11c(+) dendritic cells (DCs), as main producers of TCAIM, downregulate Tcaim expression after LPS stimulation or in vivo alloantigen challenge. LPS-stimulated TCAIM-overexpressing bone marrow-derived DC (BMDCs) have a reduced capacity to induce proliferation of and cytokine expression by cocultured allogeneic T cells; this is not due to diminished upregulation of MHC or costimulatory molecules. Transcriptional profiling also revealed normal LPS-mediated upregulation of the majority of genes involved in TLR signaling. However, TCAIM BMDCs did not induce Il2 mRNA expression upon LPS stimulation in comparison with Control-BMDCs. In addition, TCAIM overexpression abolished LPS-mediated Ca(2+) influx and mitochondrial reactive oxygen species formation. Addition of IL-2 to BMDC-T cell cocultures restored the priming capacity of TCAIM BMDCs for cocultured allogeneic CD8(+) T cells. Furthermore, BMDCs of IL-2-deficient mice showed similarly abolished LPS-induced T cell priming as TCAIM-overexpressing wild type BMDCs. Thus, TCAIM interferes with TLR4 signaling in BMDCs and subsequently impairs their T cell priming capacity, which supports its role for tolerance induction.


Subject(s)
Calcium/metabolism , Dendritic Cells/immunology , Interleukin-2/biosynthesis , Mitochondrial Proteins/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Toll-Like Receptors/metabolism , Animals , B7-2 Antigen/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cluster Analysis , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Histocompatibility Antigens Class II/metabolism , Interleukin-2/genetics , Interleukin-2/pharmacology , Lipopolysaccharides/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Male , Mice , Mitochondrial Proteins/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Skin Transplantation , T-Lymphocytes/drug effects , Transplantation, Homologous
12.
Cytometry A ; 89(6): 543-64, 2016 06.
Article in English | MEDLINE | ID: mdl-27144459

ABSTRACT

Flow cytometry is now accepted as an ideal technology to reveal changes in immune cell composition and function. However, it is also an error-prone and variable technology, which makes it difficult to reproduce findings across laboratories. We have recently developed a strategy to standardize whole blood flow cytometry. The performance of our protocols was challenged here by profiling samples from healthy volunteers to reveal age- and gender-dependent differences and to establish a standardized reference cohort for use in clinical trials. Whole blood samples from two different cohorts were analyzed (first cohort: n = 52, second cohort: n = 46, both 20-84 years with equal gender distribution). The second cohort was run as a validation cohort by a different operator. The "ONE Study" panels were applied to analyze expression of >30 different surface markers to enumerate proportional and absolute numbers of >50 leucocyte subsets. Indeed, analysis of the first cohort revealed significant age-dependent changes in subsets e.g. increased activated and differentiated CD4(+) and CD8(+) T cell subsets, acquisition of a memory phenotype for Tregs as well as decreased MDC2 and Marginal Zone B cells. Males and females showed different dynamics in age-dependent T cell activation and differentiation, indicating faster immunosenescence in males. Importantly, although both cohorts consisted of a small sample size, our standardized approach enabled validation of age-dependent changes with the second cohort. Thus, we have proven the utility of our strategy and generated reproducible reference ranges accounting for age- and gender-dependent differences, which are crucial for a better patient monitoring and individualized therapy. © 2016 International Society for Advancement of Cytometry.


Subject(s)
Antigens, CD/immunology , Flow Cytometry/standards , Immunophenotyping/standards , Lymphocyte Subsets/classification , Adult , Age Factors , Aged , Aged, 80 and over , Antigens, CD/genetics , Cohort Studies , Female , Healthy Volunteers , Humans , Immunologic Memory , Lymphocyte Subsets/cytology , Lymphocyte Subsets/immunology , Male , Middle Aged , Reference Values , Sex Factors
13.
Transpl Int ; 28(8): 911-20, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25611562

ABSTRACT

Despite major improvements in short-term survival of organ allografts, long-term graft survival has not changed significantly. It is also known that toxic side effects of current immunosuppressive drugs (IS) especially calcineurin inhibitors (CNI) contribute to the unsatisfactory graft and patient survival following transplantation. Thus, clinicians strive to reduce or wean IS in potentially eligible patients. Research in the last 10 years has focussed on identification of biomarkers suitable for patient stratification in minimization or weaning trials. Most of the described biomarkers have been run retrospectively on samples collected within single-centre trials. Thus, often their performance has not been validated in other potentially multicentre clinical trials. Ultimately, the utility of biomarkers to identify potential weaning candidates should be investigated in large randomized prospective trials. In particular, for testing in such trials, we need more information about the accuracy, reproducibility, stability and limitations of the described biomarkers. Also, data repositories summarizing crucial information on biomarker performance in age- and gender-matched healthy individuals of different ethnicity are missing. This together with improved bioinformatics tools might help in developing better scores for patient stratification. Here, we will summarize the current results, knowledge and limitations on biomarkers for drug minimization or weaning trials.


Subject(s)
Biomarkers/blood , Calcineurin Inhibitors/administration & dosage , Clinical Decision-Making/methods , Graft Rejection/prevention & control , Immunosuppressive Agents/administration & dosage , Precision Medicine/methods , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/therapeutic use , Drug Administration Schedule , Graft Rejection/blood , Graft Rejection/diagnosis , Graft Rejection/immunology , Graft Survival/drug effects , Graft Survival/immunology , Humans , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Patient Selection , Transplantation Tolerance/drug effects , Transplantation Tolerance/immunology , Withholding Treatment
14.
Eur J Immunol ; 43(12): 3291-305, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23946112

ABSTRACT

The transfer of alloreactive regulatory T (aTreg) cells into transplant recipients represents an attractive treatment option to improve long-term graft acceptance. We recently described a protocol for the generation of aTreg cells in mice using a nondepleting anti-CD4 antibody (aCD4). Here, we investigated whether adding TGF-ß and retinoic acid (RA) or rapamycin (Rapa) can further improve aTreg-cell generation and function. Murine CD4(+) T cells were cultured with allogeneic B cells in the presence of aCD4 alone, aCD4+TGF-ß+RA or aCD4+Rapa. Addition of TGF-ß+RA or Rapa resulted in an increase of CD25(+)Foxp3(+)-expressing T cells. Expression of CD40L and production of IFN-γ and IL-17 was abolished in aCD4+TGF-ß+RA aTreg cells. Additionally, aCD4+TGF-ß+RA aTreg cells showed the highest level of Helios and Neuropilin-1 co-expression. Although CD25(+)Foxp3(+) cells from all culture conditions displayed complete demethylation of the Treg-specific demethylated region, aCD4+TGF-ß+RA Treg cells showed the most stable Foxp3 expression upon restimulation. Consequently, aCD4+TGF-ß+RA aTreg cells suppressed effector T-cell differentiation more effectively in comparison to aTreg cells harvested from all other cultures, and furthermore inhibited acute graft versus host disease and especially skin transplant rejection. Thus, addition of TGF-ß+RA seems to be superior over Rapa in stabilising the phenotype and functional capacity of aTreg cells.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Antibodies, Monoclonal, Murine-Derived/pharmacology , CD4 Antigens/immunology , Sirolimus/pharmacology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/pharmacology , Tretinoin/pharmacology , Acute Disease , Allografts , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , CD4 Antigens/genetics , CD40 Ligand/genetics , CD40 Ligand/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Coculture Techniques , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Skin Transplantation , T-Lymphocytes, Regulatory/pathology
15.
STAR Protoc ; 5(2): 103038, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38678568

ABSTRACT

Phenotypic and compositional changes of immune cells in cerebrospinal fluid (CSF) can be used as biomarkers to help diagnose and track disease activity for neuroinflammatory and neurodegenerative diseases. Here, we present a workflow to perform high-dimensional immune profiling at single-cell resolution using cytometry by time-of-flight (CyTOF) on cells isolated from the CSF of patients with neuroinflammation. We describe steps for sample collection and preparation, barcoding to allow for multiplexing, and downstream data analysis using R. For complete details on the use and execution of this protocol, please refer to Fernández-Zapata et al.1.


Subject(s)
Flow Cytometry , Neuroinflammatory Diseases , Humans , Flow Cytometry/methods , Neuroinflammatory Diseases/cerebrospinal fluid , Neuroinflammatory Diseases/immunology , Single-Cell Analysis/methods , Biomarkers/cerebrospinal fluid , Cerebrospinal Fluid/cytology , Cerebrospinal Fluid/immunology
16.
Adv Sci (Weinh) ; 11(21): e2308447, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491873

ABSTRACT

Beyond SARS-CoV2 vaccines, mRNA drugs are being explored to overcome today's greatest healthcare burdens, including cancer and cardiovascular disease. Synthetic mRNA triggers immune responses in transfected cells, which can be reduced by chemically modified nucleotides. However, the side effects of mRNA-triggered immune activation on cell function and how different nucleotides, such as the N1-methylpseudouridine (m1Ψ) used in SARS-CoV2 vaccines, can modulate cellular responses is not fully understood. Here, cellular responses toward a library of uridine-modified mRNAs are investigated in primary human cells. Targeted proteomics analyses reveal that unmodified mRNA induces a pro-inflammatory paracrine pattern marked by the secretion of chemokines, which recruit T and B lymphocytes toward transfected cells. Importantly, the magnitude of mRNA-induced changes in cell function varies quantitatively between unmodified, Ψ-, m1Ψ-, and 5moU-modified mRNA and can be gradually tailored, with implications for deliberately exploiting this effect in mRNA drug design. Indeed, both the immunosuppressive effect of stromal cells on T-cell proliferation, and the anti-inflammatory effect of IL-10 mRNA are enhanced by appropriate uridine modification. The results provide new insights into the effects of mRNA drugs on cell function and cell-cell communication and open new possibilities to tailor mRNA-triggered immune activation to the desired pro- or anti-inflammatory application.


Subject(s)
RNA, Messenger , Uridine , Humans , Uridine/pharmacology , Uridine/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , Chemokines/metabolism , Chemokines/genetics , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , COVID-19/immunology , COVID-19/prevention & control , Cells, Cultured
17.
J Immunol ; 186(9): 5201-11, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21422246

ABSTRACT

The activity of α-1,2-mannosidase I is required for the conversion of high-mannose to hybrid-type (ConA reactive) and complex-type N-glycans (Phaseolus vulgaris-leukoagglutinin [PHA-L] reactive) during posttranslational protein N-glycosylation. We recently demonstrated that α-1,2-mannosidase I mRNA decreases in graft-infiltrating CD11c(+) dendritic cells (DCs) prior to allograft rejection. Although highly expressed in immature DCs, little is known about its role in DC functions. In this study, analysis of surface complex-type N-glycan expression by lectin staining revealed the existence of PHA-L(low) and PHA-L(high) subpopulations in murine splenic conventional DCs, as well as in bone marrow-derived DC (BMDCs), whereas plasmacytoid DCs are nearly exclusively PHA-L(high). Interestingly, all PHA-L(high) DCs displayed a strongly reduced responsiveness to TNF-α-induced p38-MAPK activation compared with PHA-L(low) DCs, indicating differences in PHA-L-binding capacities between DCs with different inflammatory properties. However, p38 phosphorylation levels were increased in BMDCs overexpressing α-1,2-mannosidase I mRNA. Moreover, hybrid-type, but not complex-type, N-glycans are required for TNF-α-induced p38-MAPK activation and subsequent phenotypic maturation of BMDCs (MHC-II, CD86, CCR7 upregulation). α-1,2-mannosidase I inhibitor-treated DCs displayed diminished transendothelial migration in response to CCL19, homing to regional lymph nodes, and priming of IFN-γ-producing T cells in vivo. In contrast, the activity of α-1,2-mannosidase I is dispensable for LPS-induced signaling, as well as the DCs' general capability for phenotypic and functional maturation. Systemic application of an α-1,2-mannosidase I inhibitor was able to significantly prolong allograft survival in a murine high-responder corneal transplantation model, further highlighting the importance of N-glycan processing by α-1,2-mannosidase I for alloantigen presentation and T cell priming.


Subject(s)
Cell Differentiation/immunology , Dendritic Cells/cytology , Graft Survival/immunology , Polysaccharides/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Antigen Presentation/immunology , Cell Separation , Corneal Transplantation , Dendritic Cells/chemistry , Dendritic Cells/immunology , Enzyme Inhibitors/pharmacology , Flow Cytometry , Graft Survival/drug effects , Humans , Lymphocyte Activation/immunology , Male , Mannosidases/antagonists & inhibitors , Mannosidases/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Polysaccharides/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction
18.
Biomaterials ; 294: 121971, 2023 03.
Article in English | MEDLINE | ID: mdl-36634491

ABSTRACT

In vitro transcribed (IVT-)mRNA has entered center stage for vaccine development due to its immune co-stimulating properties. Given the widely demonstrated safety of IVT-mRNA-based vaccines, we aimed to adopt IVT-mRNA encoding VEGF for secretory phenotype modulation of therapeutic cells. However, we observed that the immunogenicity of IVT-mRNA impairs the endogenous secretion of pro-angiogenic mediators from transfected mesenchymal stromal cells, instead inducing anti-angiogenic chemokines. This inflammatory secretome modulation limits the application potential of unmodified IVT-mRNA for cell therapy manufacturing, pro-angiogenic therapy and regenerative medicine. To uncouple immunogenicity from the protein expression functionality, we immuno-engineered IVT-mRNA with different chemically modified ribonucleotides. 5-Methoxy-uridine-modification of IVT-mRNA rescued the endogenous secretome pattern of transfected cells and prolonged secretion of IVT-mRNA-encoded VEGF. We found that high secretion of IVT-mRNA-encoded protein further depends on optimized cell adhesion. Cell encapsulation in a collagen-hyaluronic acid hydrogel increased secretion of IVT-mRNA-encoded VEGF and augmented the endogenous secretion of supporting pro-angiogenic mediators, such as HGF. Integrating minimally immunogenic mRNA technology with predesigned matrix-derived cues allows for the synergistic combination of multiple dimensions of cell manipulation and opens routes for biomaterial-based delivery of mRNA-engineered cell products. Such multimodal systems could present a more biologically relevant way to therapeutically address complex multifactorial processes such as tissue ischemia, angiogenesis, and regeneration.


Subject(s)
Mesenchymal Stem Cells , Vascular Endothelial Growth Factor A , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Secretome , Regenerative Medicine/methods
19.
J Clin Med ; 12(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37892685

ABSTRACT

BACKGROUND: Operational tolerance as the ability to accept the liver transplant without pharmacological immunosuppression is a common phenomenon in the long-term course. However, it is currently underutilized due to a lack of simple diagnostic support and fear of rejection despite its recognized benefits. In the present work, we present a simple score based on clinical parameters to estimate the probability of tolerance. PATIENTS AND METHODS: In order to estimate the probability of tolerance, clinical parameters from 82 patients after LT who underwent weaning from the IS for various reasons at our transplant center were extracted from a prospectively organized database and analyzed retrospectively. Univariate testing as well as multivariable logistic regression analysis were performed to assess the association of clinical variables with tolerance in the real-world setting. RESULTS: The most important factors associated with tolerance after multivariable logistic regression were IS monotherapy, male sex, history of hepatocellular carcinoma pretransplant, time since LT, and lack of rejection. These five predictors were retained in an approximate model that could be presented as a simple scoring system to estimate the clinical probability of tolerance or IS dispensability with good predictive performance (AUC = 0.89). CONCLUSION: In parallel with the existence of a tremendous need for further research on tolerance mechanisms, the presented score, after validation in a larger collective preferably in a multicenter setting, could be easily and safely applied in the real world and already now address all three levels of prevention in LT patients over the long-term course.

20.
Nat Commun ; 14(1): 7728, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007484

ABSTRACT

Disease-modifying therapies (DMTs) are widely used in neuroimmunological diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Although these treatments are known to predispose patients to infections and affect their responses to vaccination, little is known about the impact of DMTs on the myeloid cell compartment. In this study, we use mass cytometry to examine DMT-associated changes in the innate immune system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23). We also investigated the association between changes in myeloid cell phenotypes and longitudinal responsiveness to homologous primary, secondary, and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated myeloid cell clusters, in particular CD64+HLADRlow granulocytes, showed significant correlations with B and T cell responses induced by vaccination. Our findings suggest the potential role of myeloid cells in cellular and humoral responses following vaccination in DMT-treated patients with neuroimmunological diseases.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Humans , Myeloid Cells , Granulocytes , Myeloid Progenitor Cells , Vaccination , Multiple Sclerosis/drug therapy , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL