Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
Add more filters

Publication year range
1.
Genes Dev ; 35(23-24): 1657-1677, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34819350

ABSTRACT

Senescence shapes embryonic development, plays a key role in aging, and is a critical barrier to cancer initiation, yet how senescence is regulated remains incompletely understood. TBX2 is an antisenescence T-box family transcription repressor implicated in embryonic development and cancer. However, the repertoire of TBX2 target genes, its cooperating partners, and how TBX2 promotes proliferation and senescence bypass are poorly understood. Here, using melanoma as a model, we show that TBX2 lies downstream from PI3K signaling and that TBX2 binds and is required for expression of E2F1, a key antisenescence cell cycle regulator. Remarkably, TBX2 binding in vivo is associated with CACGTG E-boxes, present in genes down-regulated by TBX2 depletion, more frequently than the consensus T-element DNA binding motif that is restricted to Tbx2 repressed genes. TBX2 is revealed to interact with a wide range of transcription factors and cofactors, including key components of the BCOR/PRC1.1 complex that are recruited by TBX2 to the E2F1 locus. Our results provide key insights into how PI3K signaling modulates TBX2 function in cancer to drive proliferation.


Subject(s)
Melanoma , T-Box Domain Proteins , Gene Expression , Humans , Melanoma/genetics , Melanoma/metabolism , Phosphatidylinositol 3-Kinases/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism
2.
J Infect Dis ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743691

ABSTRACT

BACKGROUND: Data on antibiotic resistance of uropathogens for UTI recurrences are lacking. METHODS: In a retrospective cohort of adults at Kaiser Permanente Southern California with culture-confirmed index uncomplicated UTI (uUTI) between 01/2016 and 12/2020, we examined the number and characteristics of subsequent culture-confirmed UTIs through 2021. RESULTS: We identified 148,994 individuals with a culture-confirmed index uUTI (88% female, 44% Hispanic, mean age 51 years [s.d. 19]), of whom 19% developed a subsequent culture-confirmed UTI after a median 300 days (IQR: 126-627). The proportion of UTI due to E. coli was highest for index uUTI (79%) and decreased to 73% for sixth UTI (UTI 6) (p-for trend <0.001), while the proportion due to Klebsiella spp increased from index UTI (7%) to UTI 6 (11%) (p-for-trend <0.001). Non-susceptibility to ≥1 and ≥3 antibiotic classes was observed in 57% and 13% of index uUTIs, respectively, and was higher for subsequent UTIs (65% and 20%, respectively, for UTI 6). Most commonly observed antibiotic non-susceptibility patterns included penicillins alone (12%), and penicillins, trimethoprim-sulfamethoxazole plus ≥1 additional antibiotic class (9%). CONCLUSIONS: Antibiotic non-susceptibility is common in UTIs and increases with subsequent UTIs. Continuous monitoring of UTI recurrences and susceptibility patterns are needed to guide treatment decisions.

3.
J Infect Dis ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941351

ABSTRACT

BACKGROUND: Urinary tract infections (UTIs) occur commonly and often recur. However, recent data on the epidemiology of recurrent UTI (rUTI) are scarce. METHODS: Between 01/01/2016-31/12/2020, index uncomplicated UTIs (uUTI) from office, emergency department (ED), hospital, and virtual care settings were identified from electronic health records of women at Kaiser Permanente Southern California. We defined rUTI as ≥3 UTI within 365 days or ≥2 UTI within 180 days. We determined the proportion of women with cystitis index uUTI who had rUTI and examined factors associated with rUTIs using modified multivariable Poisson regression. RESULTS: Among 374,171 women with cystitis index uUTI, 54,318 (14.5%) had rUTI. A higher proportion of women with rUTI compared to those without rUTI were age 18-27 or ≥78 years at index uUTI (19.7% vs 18.7% and 9.0% vs 6.0%, respectively), were immunocompromised, or had a positive urine culture at index uUTI. In multivariable analyses, characteristics associated with rUTI included younger or older age (48-57 vs 18-27 years aRR=0.83 [95% CI: 0.80-0.85]; ≥78 vs 18-27 years aRR=1.07 [95%CI=1.03-1.11]), Charlson Comorbidity Index (≥3 vs 0, aRR=1.12 [95%CI:1.08-1.17]), and diabetes mellitus (aRR=1.07 [95%CI:1.04-1.10]). More frequent prior year outpatient and ED encounters, oral antibiotic prescriptions, oral contraceptive prescriptions, positive culture at index uUTI, and antibiotic resistant organisms were also associated with increased risk of rUTI. CONCLUSIONS: The high risk of rUTI among women with cystitis is concerning, especially given previous reports of increasing UTI incidence. Current assessment of the epidemiology of rUTI may guide the development of preventive interventions against UTI.

4.
J Am Chem Soc ; 146(25): 17131-17139, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875002

ABSTRACT

Multicomponent reactions (MCRs) offer a platform to create different chemical structures and linkages for highly stable covalent organic frameworks (COFs). As an illustrative example, the multicomponent Povarov reaction generates 2,4-phenylquinoline from aldehydes and amines in the presence of electron-rich alkenes. In this study, we introduce a new domino reaction to generate unprecedented 2,3-phenylquinoline COFs in the presence of epoxystyrene. This work thus presents, for the first time, structural isomeric COFs produced by multicomponent domino and Povarov reactions. Furthermore, 2,3-phenylquinolines can undergo a Scholl reaction to form extended aromatic linkages. With this approach, we synthesize two thermally and chemically stable MCR-COFs and two heteropolyaromatic COFs using both domino and in situ domino and Scholl reactions. The structure and properties of these COFs are compared with the corresponding 2,4-phenylquinoline-linked COF and imine-COF, and their activity toward benzene and cyclohexane sorption and separation is investigated. The position of the pendant phenyl groups within the COF pore plays a crucial role in facilitating the industrially important sorption and separation of benzene over cyclohexane. This study opens a new avenue to construct heteropolyaromatic COFs via MCR reactions.

5.
J Am Chem Soc ; 146(9): 6025-6036, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408197

ABSTRACT

The formation of isolable monatomic BiI complexes and BiII radical species is challenging due to the pronounced reducing nature of metallic bismuth. Here, we report a convenient strategy to tame BiI and BiII atoms by taking advantage of the redox noninnocent character of a new chelating bis(germylene) ligand. The remarkably stable novel BiI cation complex 4, supported by the new bis(iminophosphonamido-germylene)xanthene ligand [(P)GeII(Xant)GeII(P)] 1, [(P)GeII(Xant)GeII(P) = Ph2P(NtBu)2GeII(Xant)GeII(NtBu)2PPh2, Xant = 9,9-dimethyl-xanthene-4,5-diyl], was synthesized by a two-electron reduction of the cationic BiIIII2 precursor complex 3 with cobaltocene (Cp2Co) in a molar ratio of 1:2. Notably, owing to the redox noninnocent character of the germylene moieties, the positive charge of BiI cation 4 migrates to one of the Ge atoms in the bis(germylene) ligand, giving rise to a germylium(germylene) BiI complex as suggested by DFT calculations and X-ray photoelectron spectroscopy (XPS). Likewise, migration of the positive charge of the BiIIII2 cation of 3 results in a bis(germylium)BiIIII2 complex. The delocalization of the positive charge in the ligand engenders a much higher stability of the BiI cation 4 in comparison to an isoelectronic two-coordinate Pb0 analogue (plumbylone; decomposition below -30 °C). Interestingly, 4[BArF] undergoes a reversible single-electron transfer (SET) reaction (oxidation) to afford the isolable BiII radical complex 5 in 5[BArF]2. According to electron paramagnetic resonance (EPR) spectroscopy, the unpaired electron predominantly resides at the BiII atom. Extending the redox reactivity of 4[OTf] employing AgOTf and MeOTf affords BiIII(OTf)2 complex 7 and BiIIIMe complex 8, respectively, demonstrating the high nucleophilic character of BiI cation 4.

6.
Phys Rev Lett ; 132(1): 017101, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38242668

ABSTRACT

Recent studies have found that fluctuations of magnetization transfer in integrable spin chains violate the central limit property. Here, we revisit the problem of anomalous counting statistics in the Landau-Lifshitz field theory by specializing to two distinct anomalous regimes featuring a dynamical critical point. By performing optimized numerical simulations using an integrable space-time discretization, we extract the algebraic growth exponents of time-dependent cumulants which attain their threshold values. The distinctly non-Gaussian statistics of magnetization transfer in the easy-axis regime is found to converge toward the universal distribution of charged single-file systems. At the isotropic point, we infer a weakly non-Gaussian distribution, corroborating the view that superdiffusive spin transport in integrable spin chains does not belong to any known dynamical universality class.

7.
Comput Econ ; 63(2): 529-576, 2024.
Article in English | MEDLINE | ID: mdl-38304891

ABSTRACT

We test the performance of deep deterministic policy gradient-a deep reinforcement learning algorithm, able to handle continuous state and action spaces-to find Nash equilibria in a setting where firms compete in offer prices through a uniform price auction. These algorithms are typically considered "model-free" although a large set of parameters is utilized by the algorithm. These parameters may include learning rates, memory buffers, state space dimensioning, normalizations, or noise decay rates, and the purpose of this work is to systematically test the effect of these parameter configurations on convergence to the analytically derived Bertrand equilibrium. We find parameter choices that can reach convergence rates of up to 99%. We show that the algorithm also converges in more complex settings with multiple players and different cost structures. Its reliable convergence may make the method a useful tool to studying strategic behavior of firms even in more complex settings.

8.
Angew Chem Int Ed Engl ; : e202403658, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738600

ABSTRACT

The high degree of corrosivity and reactivity of bromine, which is released from various sources, poses a serious threat to the environment. Moreover, its coexistence with iodine forming an equilibrium compound, iodine monobromide (IBr) necessitates the selective capture of bromine from halogen mixtures. The electrophilicity of halogens to π-electron rich structures enabled us to strategically design a covalent organic framework for halogen capture, featuring a defined pore environment with localized sorption sites. The higher capture capacity of bromine (4.6 g g-1) over iodine by ~41 % shows its potential in selective capture. Spectroscopic results uncovering the preferential interaction sites are supported by theoretical investigations. The alkyne bridge is a core functionality promoting the selectivity in capture by synergistic physisorption, rationalized by the higher orbital overlap of bromine due to its smaller atomic size as well as reversible chemical interactions. The slip stacking in the structure has further promoted this phenomenon by creating clusters of molecular interaction sites with bromine intercalated between the layers. The inclusion of unsaturated moieties, i.e. triple bonds and the complementary pore geometry offer a promising design strategy for the construction of porous materials for halogen capture.

9.
Small ; 19(16): e2206679, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36651137

ABSTRACT

The development of a competent (pre)catalyst for the oxygen evolution reaction (OER) to produce green hydrogen is critical for a carbon-neutral economy. In this aspect, the low-temperature, single-source precursor (SSP) method allows the formation of highly efficient OER electrocatalysts, with better control over their structural and electronic properties. Herein, a transition metal (TM) based chalcogenide material, nickel sulfide (NiS), is prepared from a novel molecular complex [NiII (PyHS)4 ][OTf]2 (1) and utilized as a (pre)catalyst for OER. The NiS (pre)catalyst requires an overpotential of only 255 mV to reach the benchmark current density of 10 mA cm-2 and shows 63 h of chronopotentiometry (CP) stability along with over 95% Faradaic efficiency in 1 m KOH. Several ex situ measurements and quasi in situ Raman spectroscopy uncover that NiS irreversibly transformed to a carbonate-intercalated γ-NiOOH phase under the alkaline OER conditions, which serves as the actual active structure for the OER. Additionally, this in situ formed active phase successfully catalyzes the selective oxidation of alcohol, aldehyde, and amine-based organic substrates to value-added chemicals, with high efficiencies.

10.
Nephrol Dial Transplant ; 38(7): 1623-1635, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36423335

ABSTRACT

BACKGROUND: Ketogenic dietary interventions (KDI) have been shown to be effective in animal models of polycystic kidney disease (PKD), but data from clinical trials are lacking. METHODS: Ten autosomal dominant PKD (ADPKD) patients with rapid disease progression were enrolled at visit V1 and initially maintained a carbohydrate-rich diet. At V2, patients entered one of the two KDI arms: a 3-day water fast (WF) or a 14-day ketogenic diet (KD). At V3, they resumed their normal diet for 3-6 weeks until V4. At each visit, magnetic resonance imaging kidney and liver volumetry was performed. Ketone bodies were evaluated to assess metabolic efficacy and questionnaires were used to determine feasibility. RESULTS: All participants [KD n = 5, WF n = 5; age 39.8 ± 11.6 years; estimated glomerular filtration rate 82 ± 23.5 mL/min/1.73 m2; total kidney volume (TKV) 2224 ± 1156 mL] were classified as Mayo Class 1C-1E. Acetone levels in breath and beta-hydroxybutyrate (BHB) blood levels increased in both study arms (V1 to V2 average acetone: 2.7 ± 1.2 p.p.m., V2 to V3: 22.8 ± 11.9 p.p.m., P = .0006; V1 to V2 average BHB: 0.22 ± 0.08 mmol/L, V2 to V3: 1.88 ± 0.93 mmol/L, P = .0008). Nine of 10 patients reached a ketogenic state and 9/10 evaluated KDIs as feasible. TKV did not change during this trial. However, we found a significant impact on total liver volume (ΔTLV V2 to V3: -7.7%, P = .01), mediated by changes in its non-cystic fraction. CONCLUSIONS: RESET-PKD demonstrates that short-term KDIs potently induce ketogenesis and are feasible for ADPKD patients in daily life. While TLV quickly changed upon the onset of ketogenesis, changes in TKV may require longer-term interventions.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , 3-Hydroxybutyric Acid/therapeutic use , Acetone/therapeutic use , Disease Progression , Glomerular Filtration Rate , Kidney/pathology , Pilot Projects , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/drug therapy
11.
Arch Orthop Trauma Surg ; 143(9): 5701-5706, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37219597

ABSTRACT

INTRODUCTION: Climbing up and down stairs with crutches is a particular challenge. The current study evaluates a commercially available insole orthosis device for weighing an affected limb and for biofeedback training of gait. This study was done on healthy, asymptomatic individuals before applying to the intended postoperative patient. The outcomes should demonstrate whether a continuous real-time biofeedback (BF) system is more effective on stairs than the current protocol involving a bathroom scale. MATERIALS AND METHODS: 59 healthy test subjects received both crutches and an orthosis and learned to apply a 3-point gait with a partial load of 20 kg using a bathroom scale. Thereafter, the participants were asked to complete an up-and-down course, first without (control group) and then with (test group) an audio-visual real-time biofeedback (BF). Compliance was evaluated using an insole pressure measurement system. RESULTS: Using the conventional therapy technique, 36.6% of the steps up and 39.1% of the steps down in the control group were loaded with < 20 kg. By activating continuous biofeedback, steps with < 20 kg could be increased significantly to 61.1% upstairs (p < 0.001) and 66.1% downstairs (p < 0.001). All subgroups profited from the BF system, independent of age, gender, side relieved, dominant or non-dominant side. CONCLUSIONS: Traditional training without biofeedback led to poor performance for partial weight bearing on stairs, even among young and healthy individuals. However, continuous real-time biofeedback clearly improved compliance, indicating its potential to enhance training and support future research in patient populations.


Subject(s)
Biofeedback, Psychology , Partial Weight-Bearing , Humans , Weight-Bearing , Biofeedback, Psychology/methods , Gait , Orthotic Devices
12.
J Infect Dis ; 225(11): 1915-1922, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34962997

ABSTRACT

BACKGROUND: Some vaccines elicit nonspecific immune responses that may protect against heterologous infections. We evaluated the association between recombinant adjuvanted zoster vaccine (RZV) and coronavirus disease 2019 (COVID-19) outcomes at Kaiser Permanente Southern California. METHODS: In a cohort design, adults aged ≥50 years who received ≥1 RZV dose before 1 March 2020 were matched 1:2 to unvaccinated individuals and followed until 31 December 2020. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for COVID-19 outcomes were estimated using Cox proportional hazards regression. In a test-negative design, cases had a positive severe acute respiratory syndrome coronavirus 2 test and controls had only negative tests, during 1 March-31 December 2020. Adjusted odds ratios (aORs) and 95% CIs for RZV receipt were estimated using logistic regression. RESULTS: In the cohort design, 149 244 RZV recipients were matched to 298 488 unvaccinated individuals. The aHRs for COVID-19 diagnosis and hospitalization were 0.84 (95% CI, .81-.87) and 0.68 (95% CI, .64-.74), respectively. In the test-negative design, 8.4% of 75 726 test-positive cases and 13.1% of 340 898 test-negative controls had received ≥1 RZV dose (aOR, 0.84 [95% CI, .81-.86]). CONCLUSIONS: RZV vaccination was associated with a 16% lower risk of COVID-19 diagnosis and 32% lower risk of hospitalization. Further study of vaccine-induced nonspecific immunity for potential attenuation of future pandemics is warranted.


Subject(s)
COVID-19 , Herpes Zoster Vaccine , Herpes Zoster , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Aged , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Testing , Herpes Zoster/diagnosis , Herpes Zoster/epidemiology , Herpes Zoster/prevention & control , Hospitalization , Humans , Vaccines, Synthetic
13.
Angew Chem Int Ed Engl ; 62(39): e202307818, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37460443

ABSTRACT

The Wittig reaction is a key step in industrial processes to synthesise large quantities of vitamin A and various other important chemicals that are used in daily life. This article presents a pathway to achieve the Wittig reaction in a solid network. A highly porous triphenylphosphine-based polymer was applied as a solid Wittig reagent that undergoes, in a multi-step cycle, in total six post-synthetic modifications. This allowed for regeneration of the solid Wittig reagent and reuse for the same reaction cycle. Of particular industrial relevance is that the newly developed material also enables a simple way of separating the product by filtration. Therefore, additional costly and difficult separation and purification steps are no longer needed.

14.
Angew Chem Int Ed Engl ; 62(32): e202302276, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37193648

ABSTRACT

Lithium-sulphur (Li-S) batteries are a promising alternative power source, as they can provide a higher energy density than current lithium-ion batteries. Porous materials are often used as cathode materials as they can act as a host for sulphur in such batteries. Recently, covalent organic frameworks (COFs) have also been used, however they typically suffer from stability issues, resulting in limited and thus insufficient durability under practical conditions and applications. Herein, we report the synthesis of a crystalline and porous imine-linked triazine-based dimethoxybenzo-dithiophene functionalized COF (TTT-DMTD) incorporating high-density redox sites. The imine linkages were further post-synthetically transformed to yield a robust thiazole-linked COF (THZ-DMTD) by utilizing a sulphur-assisted chemical conversion method, while maintaining the crystallinity. As a synergistic effect of its high crystallinity, porosity and the presence of redox-active moieties, the thiazole-linked THZ-DMTD exhibited a high capacity and long-term stability (642 mAh g-1 at 1.0 C; 78.9 % capacity retention after 200 cycles) when applied as a cathode material in a Li-S battery.

15.
Phys Rev Lett ; 128(16): 160601, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35522513

ABSTRACT

We analytically compute the full counting statistics of charge transfer in a classical automaton of interacting charged particles. Deriving a closed-form expression for the moment generating function with respect to a stationary equilibrium state, we employ asymptotic analysis to infer the structure of charge current fluctuations for a continuous range of timescales. The solution exhibits several unorthodox features. Most prominently, on the timescale of typical fluctuations the probability distribution of the integrated charge current in a stationary ensemble without bias is distinctly non-Gaussian despite diffusive behavior of dynamical charge susceptibility. While inducing a charge imbalance is enough to recover Gaussian fluctuations, we find that higher cumulants grow indefinitely in time with different exponents, implying singular scaled cumulants. We associate this phenomenon with the lack of a regularity condition on moment generating functions and the onset of a dynamical critical point. In effect, the scaled cumulant generating function does not, irrespectively of charge bias, represent a faithful generating function of the scaled cumulants, yet the associated Legendre dual yields the correct large-deviation rate function. Our findings hint at novel types of dynamical universality classes in deterministic many-body systems.

16.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35163219

ABSTRACT

Prostate cancer (PCa) is the most frequent malignancy in older men with a high propensity for bone metastases. Characteristically, PCa causes osteosclerotic lesions as a result of disrupted bone remodeling. Extracellular vesicles (EVs) participate in PCa progression by conditioning the pre-metastatic niche. However, how EVs mediate the cross-talk between PCa cells and osteoprogenitors in the bone microenvironment remains poorly understood. We found that EVs derived from murine PCa cell line RM1-BM increased metabolic activity, vitality, and cell proliferation of osteoblast precursors by >60%, while significantly impairing mineral deposition (-37%). The latter was further confirmed in two complementary in vivo models of ossification. Accordingly, gene and protein set enrichments of osteoprogenitors exposed to EVs displayed significant downregulation of osteogenic markers and upregulation of proinflammatory factors. Additionally, transcriptomic profiling of PCa-EVs revealed the abundance of three microRNAs, miR-26a-5p, miR-27a-3p, and miR-30e-5p involved in the suppression of BMP-2-induced osteogenesis in vivo, suggesting the critical role of these EV-derived miRNAs in PCa-mediated suppression of osteoblast activity. Taken together, our results indicate the importance of EV cargo in cancer-bone cross-talk in vitro and in vivo and suggest that exosomal miRNAs may contribute to the onset of osteosclerotic bone lesions in PCa.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/genetics , Osteoblasts/physiology , Prostatic Neoplasms/genetics , Animals , Bone and Bones/metabolism , Bone and Bones/physiology , Cell Communication , Cell Line, Tumor , Cell Proliferation , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/genetics , Extracellular Vesicles/metabolism , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Male , Mesenchymal Stem Cells , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Osteogenesis , Transcriptome/genetics , Tumor Microenvironment
17.
Angew Chem Int Ed Engl ; 61(21): e202117738, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35188714

ABSTRACT

Covalent organic frameworks (COFs) are structurally tuneable, porous and crystalline polymers constructed through the covalent attachment of small organic building blocks as elementary units. Using the myriad of such building blocks, a broad spectrum of functionalities has been applied for COF syntheses for broad applications, including heterogeneous catalysis. Herein, we report the synthesis of a new family of porous and crystalline COFs using a novel acridine linker and benzene-1,3,5-tricarbaldehyde derivatives bearing a variable number of hydroxy groups. With the broad absorption in the visible light region, the COFs were applied as photocatalysts in metallaphotocatalytic C-N cross-coupling. The fully ß-ketoenamine linked COF showed the highest activity, due to the increased charge separation upon irradiation. The COF showed good to excellent yields for several aryl bromides, good recyclability and even catalyzed the organic transformation in presence of green light as energy source.

18.
Respir Res ; 22(1): 292, 2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34775965

ABSTRACT

BACKGROUND: Pursed-lips breathing (PLB) is a technique to attenuate small airway collapse by regulating the expiratory flow. During mandatory ventilation, flow-controlled expiration (FLEX), which mimics the expiratory flow course of PLB utilizing a digital system for measurement and control, was shown to exert lung protective effects. However, PLB requires a patient's participation and coordinated muscular effort and FLEX requires a complex technical setup. Here, we present an adjustable flow regulator to mimic PLB and FLEX, respectively, without the need of a patient's participation, or a complex technical device. METHODS: Our study consisted of two parts: First, in a lung model which was ventilated with standard settings (tidal volume 500 ml, respiratory rate 12 min-1, positive end-expiratory pressure (PEEP) 5 cmH2O), the possible reduction of the maximal expiratory flow by utilizing the flow regulator was assessed. Second, with spontaneously breathing healthy volunteers, the short-term effects of medium and strong expiratory flow reduction on airway pressure, the change of end-expiratory lung volume (EELV), and breathing discomfort was investigated. RESULTS: In the lung model experiments, expiratory flow could be reduced from - 899 ± 9 ml·s-1 down to - 328 ± 25 ml·s-1. Thereby, inspiratory variables and PEEP were unaffected. In the volunteers, the maximal expiratory flow of - 574 ± 131 ml·s-1 under baseline conditions was reduced to - 395 ± 71 ml·s-1 for medium flow regulation and to - 266 ± 58 ml·s-1 for strong flow regulation, respectively (p < 0.001). Accordingly, mean airway pressure increased from 0.6 ± 0.1 cmH2O to 2.9 ± 0.4 cmH2O with medium flow regulation and to 5.4 ± 2.4 cmH2O with strong flow regulation, respectively (p < 0.001). The EELV increased from baseline by 31 ± 458 ml for medium flow regulation and 320 ± 681 ml for strong flow regulation (p = 0.033). The participants rated breathing with the flow regulator as moderately uncomfortable, but none rated breathing with the flow regulator as intolerable. CONCLUSIONS: The flow regulator represents an adjustable device for application of a self-regulated expiratory resistive load, representing an alternative for PLB and FLEX. Future applications in spontaneously breathing patients and patients with mandatory ventilation alike may reveal potential benefits. TRIAL REGISTRATION: DRKS00015296, registered on 20th August, 2018; URL: https://www.drks.de/drks_web/setLocale_EN.do .


Subject(s)
Lung Volume Measurements/methods , Lung/physiology , Models, Biological , Positive-Pressure Respiration/methods , Pulmonary Disease, Chronic Obstructive/therapy , Tidal Volume/physiology , Adolescent , Adult , Cross-Over Studies , Exhalation , Female , Healthy Volunteers , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Young Adult
19.
Exp Physiol ; 106(2): 396-400, 2021 02.
Article in English | MEDLINE | ID: mdl-33200855

ABSTRACT

NEW FINDINGS: What is the central question of the study? Does respiratory support ensure blood gas homeostasis and the relevance of experimental outcomes? What is the main finding and its importance? Spontaneous breathing during surgical intervention under anaesthesia results in impaired gas exchange and loss of diaphragm muscle strength in rats. Subsequent short-term mechanical ventilation restored blood gas homeostasis and diaphragm muscle strength. Blood gas homeostasis interferes substantially with experimental conditions and may alter study results. Monitoring and maintenance of blood gas balance is required to ensure quality and relevance of physiological animal experiments. ABSTRACT: In pre-clinical small animal studies with surgical interventions under general anaesthesia, animals are often left to breathe spontaneously. However, anaesthesia may impair respiratory functions and result in disturbed blood gas homeostasis. In turn, the disturbed blood gas homeostasis can affect physiological functions and thus unintentionally impact the experimental results. We hypothesized that short-term mechanical ventilation restores blood gas balance and physiological functions despite anaesthesia and surgical interventions. Therefore, we investigated variables of blood gas analyses and diaphragm muscle strength in rats anaesthetized with ketamine/medetomidine after tracheotomy and catheterization of the carotid artery under spontaneous breathing and after 20 min of mechanical ventilation following the same surgical intervention. Spontaneous breathing during general anaesthesia and surgical intervention resulted in unphysiological blood oxygen partial pressure (<65 mmHg) and carbon dioxide partial pressure (>55 mmHg). After subsequent short-term mechanical ventilation, blood gas partial pressures were restored to their physiological ranges. Additionally, diaphragm muscle strength of animals breathing spontaneously was lower compared to animals that received subsequent mechanical ventilation (P = 0.0063). We conclude that spontaneous breathing of rats under ketamine/medetomidine anaesthesia is not sufficient to maintain a physiological blood gas balance. Disturbed blood gas balance is related to reduced diaphragm muscle strength. Mechanical ventilation for only 20 min restores blood gas homeostasis and muscle strength. Therefore, monitoring and maintenance of blood gas balance should be conducted to ensure quality and relevance of small animal experiments.


Subject(s)
Homeostasis/physiology , Muscle Strength/physiology , Respiration, Artificial , Respiration , Anesthesia, General , Animals , Blood Gas Analysis , Female , Hypnotics and Sedatives/administration & dosage , Ketamine/administration & dosage , Medetomidine/administration & dosage , Muscle Strength/drug effects , Rats , Rats, Sprague-Dawley
20.
Nucleic Acids Res ; 47(1): 266-282, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30418648

ABSTRACT

The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes.


Subject(s)
Active Transport, Cell Nucleus/genetics , Cell Nucleus/genetics , RNA Splicing/genetics , Trypanosoma/genetics , Cytoplasm/genetics , Eukaryotic Initiation Factors/genetics , Humans , Nuclear Pore/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Trans-Splicing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL