ABSTRACT
BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.
Subject(s)
Autoimmune Lymphoproliferative Syndrome , Fas-Associated Death Domain Protein , Humans , Apoptosis/genetics , Autoimmune Diseases/genetics , Autoimmune Lymphoproliferative Syndrome/genetics , Comparative Genomic Hybridization , DNA , fas Receptor/genetics , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Germ Cells/pathology , MutationABSTRACT
BACKGROUND: The 1p19q non-codeleted gliomas with IDH mutation, defined as "molecular astrocytomas," display frequent TP53 mutations and have an intermediate prognosis. We investigated the prognostic impact of copy number-neutral loss of heterozygosity (CNLOH) in 17p in this population. METHODS: We analyzed 793 gliomas (206 grade II, 377 grade III, and 210 grade IV) by single nucleotide polymorphism array and for TP53 mutations. RESULTS: Homodisomy revealed by CNLOH was observed in 156 cases (19.7%). It was more frequent in astrocytomas and oligoastrocytomas (98/256, 38%) than oligodendrogliomas (28/327, 8.6%; p < .0001) or glioblastoma multiforme (30/210, 14.3%; p < .0001), tightly associated with TP53 mutation (69/71 vs. 20/79; p = 2 × 10(-16)), and mutually exclusive with 1p19q codeletion (1/156 vs. 249/556; p < .0001). In the group of IDH-mutated 1p19q non-codeleted gliomas, CNLOH 17p was associated with longer survival (86.3 vs. 46.2 months; p = .004), particularly in grade III gliomas (overall survival >100 vs. 37.9 months; p = .007). These data were confirmed in an independent dataset from the Cancer Genome Atlas. CONCLUSION: CNLOH 17p is a prognostic marker and further refines the molecular classification of gliomas. IMPLICATIONS FOR PRACTICE: Homodisomy of chromosome 17p (CNLOH 17p) is a frequent feature in IDH-mutated 1p19q non-codeleted gliomas (group 2). It is constantly associated with TP53 mutation. It was found, within this specific molecular group of gliomas (corresponding to molecular astrocytomas), that CNLOH 17p is associated with a much better outcome and may therefore represent an additional prognostic marker to refine the prognostic classification of gliomas.
Subject(s)
Glioma/genetics , Isocitrate Dehydrogenase/genetics , Loss of Heterozygosity/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Chromosomes, Human, Pair 17/genetics , Disease-Free Survival , Female , Glioma/epidemiology , Glioma/pathology , Humans , Male , Middle Aged , Mutation , PrognosisABSTRACT
TERT promoter (TERTp) mutation is the most common mutation in glioblastomas. It creates a putative binding site for Ets/TCF transcription factors, enhancing telomerase expression and activity, whereas the rs2853669 variant disrupts another Ets/TCF binding. We explore here the interaction between these two alterations, tumor genomic profile and the impact on prognosis. The TERTp and rs2853669 statuses were determined and confronted with the outcome and molecular profile, i.e., loss of chromosome 10q, CDKN2A deletion, IDH mutation, EGFR amplification, MGMT promoter methylation. 651 glioblastomas were selected (sex ratio = 1.35, median age 60.4 years, median survival 13.5 months). The TERTp mutation found in 481 patients (74 %) was independent from rs2853669 genotypes. TERTp mutation, but not rs2853669 status, was associated with older age (61.4 vs. 52.8 years). rs2853669 status had no impact on overall survival (OS) either in mutated TERTp or wild-type TERTp. Neither rs2736100 (TERT, 5q15.33) nor rs192011116 (TERC, 3q26.2) status had any impact on survival or showed any association with a TERTp mutation. The TERTp mutation was associated with EGFR amplification chromosome 10q loss, CDKN2A deletion and IDH wt. EGFR amplification was associated with a better outcome in TERTp mutated GBM, and a worse outcome in TERTp WT. This study-the largest analyzing the TERTp mutation and the rs2853669 polymorphism-fails to find any prognostic impact of rs2853669. It confirms the dual prognostic impact of EGFR amplification depending on TERTp status.
Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Glioblastoma/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Telomerase/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/pathology , Female , Follow-Up Studies , Genotype , Glioblastoma/pathology , Humans , Male , Middle Aged , Neoplasm Staging , Polymerase Chain Reaction , Prognosis , Survival Rate , Young AdultABSTRACT
Background: Oncogenic FGFR-TACC fusions are present in 3-5% of high-grade gliomas (HGGs). Fexagratinib (AZD4547) is an oral FGFR1-3 inhibitor with preclinical activity in FGFR-TACC+ gliomas. We tested its safety and efficacy in patients with recurrent FGFR-TACCâ +â HGGs. Patients and Methods: TARGET (NCT02824133) is a phase I/II open-label multicenter study that included adult patients with FGFR-TACCâ +â HGGs relapsing after ≥1 line of standard chemoradiation. Patients received fexagratinib 80 mg bd on a continuous schedule until disease progression or unacceptable toxicity. The primary endpoint was the 6-month progression-free survival rate (PFS6). Results: Twelve patients with recurrent IDH wildtype FGFR-TACCâ +â HGGs (all FGFR3-TACC3+) were included in the efficacy cohort (male/female ratioâ =â 1.4, median ageâ =â 61.5 years). Most patients (67%) were included at the first relapse. The PFS6 was 25% (95% confidence interval 5-57%), with a median PFS of 1.4 months. All patients without progression at 6 months (nâ =â 3) were treated at first recurrence (versus 56% of those in progression) and remained progression-free for 14-23 months. The best response was RANO partial response in 1 patient (8%), stable disease in 5 (42%), and progressive disease in 6 (50%). Median survival was 17.5 months from inclusion. Grade 3 toxicities included lymphopenia, hyperglycaemia, stomatitis, nail changes, and alanine aminotransferase increase (nâ =â 1 each). No grade 4-5 toxicities were seen. A 32-gene signature was associated with the benefit of FGFR inhibition in FGFR3-TACC3â +â HGGs. Conclusions: Fexagratinib exhibited acceptable toxicity but limited efficacy in recurrent FGFR3-TACC3â +â HGGs. Patients treated at first recurrence appeared more likely to benefit, yet additional evidence is required.
ABSTRACT
Here, we report on a heterozygous interferon regulatory factor 4 (IRF4) missense variant identified in three patients from a multigeneration family with hypogammaglobulinemia. Patients' low blood plasmablast/plasma cell and naïve CD4 and CD8 T cell counts contrasted with high terminal effector CD4 and CD8 T cell counts. Expression of the mutant IRF4 protein in control lymphoblastoid B cell lines reduced the expression of BLIMP-1 and XBP1 (key transcription factors in plasma cell differentiation). In B cell lines, the mutant IRF4 protein as wildtype was found to bind to known IRF4 binding motifs. The mutant IRF4 failed to efficiently regulate the transcriptional activity of interferon-stimulated response elements (ISREs). Rapid immunoprecipitation mass spectrometry of endogenous proteins indicated that the mutant and wildtype IRF4 proteins differed with regard to their respective sets of binding partners. Our findings highlight a novel mechanism for autosomal-dominant primary immunodeficiency through altered protein binding by mutant IRF4 at ISRE, leading to defective plasma cell differentiation.
Subject(s)
B-Lymphocytes , Interferon Regulatory Factors , Humans , B-Lymphocytes/metabolism , Cell Differentiation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mutation/genetics , Plasma Cells/metabolismABSTRACT
BACKGROUND: Isocitrate dehydrogenase (IDH) wildtype (wt) grade II gliomas are a rare and heterogeneous entity. Survival and prognostic factors are poorly defined. METHODS: We searched retrospectively all patients diagnosed with diffuse World Health Organization (WHO) grades II and III gliomas at our center (1989-2020). RESULTS: Out of 517 grade II gliomas, 47 were "diffuse astrocytomas, IDHwt." Tumors frequently had fronto-temporo-insular location (28/47, 60%) and infiltrative behavior. We found telomerase reverse transcriptase (TERT) promoter mutations (23/45, 51%), whole chromosome 7 gains (10/37, 27%), whole chromosome 10 losses (10/41, 24%), and EGFR amplifications (4/43, 9%), but no TP53 mutations (0/22, 0%). Median overall survival (OS) was 59 months (vs 19 mo for IDHwt grade III gliomas) (P < 0.0001). Twenty-nine patients (29/43, 67%) met the definition of molecular glioblastoma according to cIMPACT-NOW update 3. Median OS in this subset was 42 months, which was shorter compared with patients with IDHwt grade II gliomas not meeting this definition (median OS: 57 mo), but substantially longer compared with IDHwt grade III gliomas meeting the definition for molecular glioblastoma (median OS: 17 mo, P < 0.0001). Most patients with IDHwt grade II gliomas met cIMPACT criteria because of isolated TERT promoter mutations (16/26, 62%), which were not predictive of poor outcome (median OS: 88 mo). Actionable targets, including 5 gene fusions involving FGFR3, were found in 7 patients (24%). CONCLUSIONS: Our findings highlight the importance of histological grading and molecular profiling for the prognostic stratification of IDHwt gliomas and suggest some caution when assimilating IDHwt grade II gliomas to molecular glioblastomas, especially those with isolated TERT promoter mutation.
Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/genetics , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Neoplasm Grading , Prognosis , Retrospective StudiesABSTRACT
Inborn errors of immunity cause monogenic immune dysregulatory conditions such as severe and recurrent pathogen infection, inflammation, allergy, and malignancy. Somatic reversion refers to the spontaneous repair of a pathogenic germline genetic variant and has been reported to occur in a number of inborn errors of immunity, with a range of impacts on clinical outcomes of these conditions. DOCK8 deficiency due to biallelic inactivating mutations in DOCK8 causes a combined immunodeficiency characterized by severe bacterial, viral, and fungal infections, as well as allergic disease and some cancers. Here, we describe the clinical, genetic, and cellular features of 3 patients with biallelic DOCK8 variants who, following somatic reversion in multiple lymphocyte subsets, exhibited improved clinical features, including complete resolution of infection and allergic disease, and cure over time. Acquisition of DOCK8 expression restored defective lymphocyte signalling, survival and proliferation, as well as CD8+ T cell cytotoxicity, CD4+ T cell cytokine production, and memory B cell generation compared with typical DOCK8-deficient patients. Our temporal analysis of DOCK8-revertant and DOCK8-deficient cells within the same individual established mechanisms of clinical improvement in these patients following somatic reversion and revealed further nonredundant functions of DOCK8 in human lymphocyte biology. Last, our findings have significant implications for future therapeutic options for the treatment of DOCK8 deficiency.
Subject(s)
Cell Differentiation , Guanine Nucleotide Exchange Factors/deficiency , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Lymphocytes/immunology , Severe Combined Immunodeficiency , Adult , Cell Differentiation/genetics , Cell Differentiation/immunology , Female , Humans , Male , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunologyABSTRACT
BACKGROUND: Actionable fibroblast growth factor receptor 3 (FGFR3)-transforming acidic coiled-coil protein 3 fusions (F3T3) are found in approximately 3% of gliomas, but their characteristics and prognostic significance are still poorly defined. Our goal was to characterize the clinical, radiological, and molecular profile of F3T3 positive diffuse gliomas. METHODS: We screened F3T3 fusion by real-time (RT)-PCR and FGFR3 immunohistochemistry in a large series of gliomas, characterized for main genetic alterations, histology, and clinical evolution. We performed a radiological and radiomic case control study, using an exploratory and a validation cohort. RESULTS: We screened 1162 diffuse gliomas (951 unselected cases and 211 preselected for FGFR3 protein immunopositivity), identifying 80 F3T3 positive gliomas. F3T3 was mutually exclusive with IDH mutation (P < 0.001) and EGFR amplification (P = 0.01), defining a distinct molecular cluster associated with CDK4 (P = 0.04) and MDM2 amplification (P = 0.03). F3T3 fusion was associated with longer survival for the whole series and for glioblastomas (median overall survival was 31.1 vs 19.9 mo, P = 0.02) and was an independent predictor of better outcome on multivariate analysis.F3T3 positive gliomas had specific MRI features, affecting preferentially insula and temporal lobe, and with poorly defined tumor margins. F3T3 fusion was correctly predicted by radiomics analysis on both the exploratory (area under the curve [AUC] = 0.87) and the validation MRI (AUC = 0.75) cohort. Using Cox proportional hazards models, radiomics predicted survival with a high C-index (0.75, SD 0.04), while the model combining clinical, genetic, and radiomic data showed the highest C-index (0.81, SD 0.04). CONCLUSION: F3T3 positive gliomas have distinct molecular and radiological features, and better outcome.
Subject(s)
Brain Neoplasms , Glioma , Microtubule-Associated Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Case-Control Studies , Female , Glioma/diagnostic imaging , Glioma/genetics , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Male , Middle Aged , Young AdultABSTRACT
Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Interferon Type I/immunology , Loss of Function Mutation , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Asymptomatic Infections , Betacoronavirus , COVID-19 , Child , Child, Preschool , Female , Genetic Loci , Genetic Predisposition to Disease , Humans , Infant , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Pandemics , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 3/genetics , Young AdultABSTRACT
Adult glioblastomas, IDH-wildtype represent a heterogeneous group of diseases. They are resistant to conventional treatment by concomitant radiochemotherapy and carry a dismal prognosis. The discovery of oncogenic gene fusions in these tumors has led to prospective targeted treatments, but identification of these rare alterations in practice is challenging. Here, we report a series of 30 adult diffuse gliomas with an in frame FGFR3-TACC3 oncogenic fusion (n = 27 WHO grade IV and n = 3 WHO grade II) as well as their histological and molecular features. We observed recurrent morphological features (monomorphous ovoid nuclei, nuclear palisading and thin parallel cytoplasmic processes, endocrinoid network of thin capillaries) associated with frequent microcalcifications and desmoplasia. We report a constant immunoreactivity for FGFR3, which is a valuable method for screening for the FGFR3-TACC3 fusion with 100% sensitivity and 92% specificity. We confirmed the associated molecular features (typical genetic alterations of glioblastoma, except the absence of EGFR amplification, and an increased frequency of CDK4 and MDM2 amplifications). FGFR3 immunopositivity is a valuable tool to identify gliomas that are likely to harbor the FGFR3-TACC3 fusion for inclusion in targeted therapeutic trials.
Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/metabolism , Glioma/pathology , Microtubule-Associated Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Adult , Aged , Aged, 80 and over , Brain Neoplasms/genetics , Female , Glioma/genetics , Humans , Immunohistochemistry , Male , Microtubule-Associated Proteins/metabolism , Middle Aged , Oncogene Fusion , Receptor, Fibroblast Growth Factor, Type 3/metabolismABSTRACT
OBJECTIVE: To characterize the prevalence and prognostic significance of major driver molecular alterations in adult midline diffuse gliomas (MLG). METHODS: Adults with histologically proven MLG diagnosed between 1996 and 2017 were identified from our tumor bank, systematically reviewed, and reclassified according to WHO 2016. Targeted sequencing was performed, including determination of H3F3A, HIST1H3B, TERTp, IDH1/2, FGFR1, p16/CDKN2A, and EGFR status. RESULTS: A total of 116 adult patients (M/F 71/45, median age 46.5 years) with MLG (17 cerebellar, 8 spinal, 30 brainstem, 57 thalamic, and 4 diencephalic nonthalamic) were identified. Most patients had high-grade disease at presentation (grade II: 11%, grade III: 15%, grade IV: 75%). Median overall survival was 17.3 months (14.5-23.8 months). Main molecular alterations observed were TERT promoter, H3F3A, and hotspot FGFR1 (N546 and K656) mutations, in 37%, 34%, and 18% of patients, respectively. IDH1 mutations only affected brainstem gliomas (6/24 vs 0/78; p = 7.5 × 10-5), were mostly non-R132H (contrasting with hemispheric gliomas, p = 0.0001), and were associated with longer survival (54 vs 12 months). TERT promoter mutation (9.1 vs 24.2 months), CDKN2A deletion (9.9 vs 23.8 months), and EGFR amplification (4.3 vs 23.8 months) were associated with shorter survival. Of interest, in contrast with pediatric MLG, H3K27M mutations were not associated with worse prognosis (23 vs 15 months). CONCLUSIONS: Patients with adult MLG present with unique clinical and molecular characteristics, differing from their pediatric counterparts. The identification of potentially actionable FGFR1 mutations in a subset of adult MLG highlights the importance of comprehensive genomic analysis in this rare affection.