Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Immunity ; 50(2): 505-519.e4, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30770247

ABSTRACT

Innate lymphoid cells (ILC) play critical roles in regulating immunity, inflammation, and tissue homeostasis in mice. However, limited access to non-diseased human tissues has hindered efforts to profile anatomically-distinct ILCs in humans. Through flow cytometric and transcriptional analyses of lymphoid, mucosal, and metabolic tissues from previously healthy human organ donors, here we have provided a map of human ILC heterogeneity across multiple anatomical sites. In contrast to mice, human ILCs are less strictly compartmentalized and tissue localization selectively impacts ILC distribution in a subset-dependent manner. Tissue-specific distinctions are particularly apparent for ILC1 populations, whose distribution was markedly altered in obesity or aging. Furthermore, the degree of ILC1 population heterogeneity differed substantially in lymphoid versus mucosal sites. Together, these analyses comprise a comprehensive characterization of the spatial and temporal dynamics regulating the anatomical distribution, subset heterogeneity, and functional potential of ILCs in non-diseased human tissues.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Organ Specificity/immunology , Transcriptome/immunology , Adolescent , Adult , Aged , Aging/genetics , Animals , Child , Child, Preschool , Female , Genetic Heterogeneity , Humans , Immunity, Innate/genetics , Infant , Infant, Newborn , Lymphocytes/metabolism , Male , Mice , Middle Aged , Organ Specificity/genetics , Transcriptome/genetics , Young Adult
2.
Proc Natl Acad Sci U S A ; 114(6): E980-E989, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28049849

ABSTRACT

Refractory celiac disease type II (RCDII) is a severe complication of celiac disease (CD) characterized by the presence of an enlarged clonal population of innate intraepithelial lymphocytes (IELs) lacking classical B-, T-, and natural killer (NK)-cell lineage markers (Lin-IELs) in the duodenum. In ∼50% of patients with RCDII, these Lin-IELs develop into a lymphoma for which no effective treatment is available. Current evidence indicates that the survival and expansion of these malignant Lin-IELs is driven by epithelial cell-derived IL-15. Like CD, RCDII is strongly associated with HLA-DQ2, suggesting the involvement of HLA-DQ2-restricted gluten-specific CD4+ T cells. We now show that gluten-specific CD4+ T cells isolated from CD duodenal biopsy specimens produce cytokines able to trigger proliferation of malignant Lin-IEL lines as powerfully as IL-15. Furthermore, we identify TNF, IL-2, and IL-21 as CD4+ T-cell cytokines that synergistically mediate this effect. Like IL-15, these cytokines were found to increase the phosphorylation of STAT5 and Akt and transcription of antiapoptotic mediator bcl-xL Several small-molecule inhibitors targeting the JAK/STAT pathway blocked proliferation elicited by IL-2 and IL-15, but only an inhibitor targeting the PI3K/Akt/mTOR pathway blocked proliferation induced by IL-15 as well as the CD4+ T-cell cytokines. Confirming and extending these findings, TNF, IL-2, and IL-21 also synergistically triggered the proliferation of freshly isolated Lin-IELs and CD3-CD56+ IELs (NK-IELs) from RCDII as well as non-RCDII duodenal biopsy specimens. These data provide evidence implicating CD4+ T-cell cytokines in the pathogenesis of RCDII. More broadly, they suggest that adaptive immune responses can contribute to innate IEL activation during mucosal inflammation.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Cytokines/pharmacology , Intraepithelial Lymphocytes/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Celiac Disease/genetics , Celiac Disease/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Drug Synergism , Duodenum/metabolism , Humans , Interleukin-15/genetics , Interleukin-15/metabolism , Interleukin-15/pharmacology , Interleukin-2/genetics , Interleukin-2/metabolism , Interleukin-2/pharmacology , Interleukins/genetics , Interleukins/metabolism , Interleukins/pharmacology , Intraepithelial Lymphocytes/metabolism , Recombinant Proteins/pharmacology , Transcriptome/drug effects , Transcriptome/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
3.
Gut ; 65(8): 1269-78, 2016 08.
Article in English | MEDLINE | ID: mdl-25966995

ABSTRACT

OBJECTIVE: Coeliac disease (CD), a gluten-induced enteropathy, alters the composition and function of duodenal intraepithelial T cells. The intestine also harbours four types of CD3-negative intraepithelial lymphocytes (IELs) with largely unknown function: CD56(-)CD127(-), CD56(-)CD127(+), CD56(+)CD127(-) and CD56(+)CD127(+). Here we aimed to gain insight into the potential function of these innate IELs in health and disease. DESIGN: We determined the phenotypes, relative abundance and differentiation potential of these innate IEL subsets in duodenal biopsies from controls and patients with CD or patients with refractory CD type II (RCDII). RESULTS: Hierarchical clustering analysis of the expression of 15 natural killer and T cell surface markers showed that innate IELs differed markedly from innate peripheral blood lymphocytes and divided innate IEL subsets into two main branches: a CD127(-) branch expressing high levels of interleukin (IL) 2/15Rß but no IL-21R, and a CD127(+) branch with the opposite phenotype. While CD was characterised by the contraction of all four innate IEL subsets, a selective expansion of CD56(-)CD127(-) and CD56(-)CD127(+) innate IEL was detected in RCDII. In vitro, in the presence of IL-15, CD56(-)CD127(-) IEL from controls and patients with CD, but not from patients with RCDII, differentiated into functional natural killer and T cells, the latter largely dependent on notch-signalling. Furthermore, compared with non-coeliac controls, CD56(-)CD127(-) IEL from patients with CD expressed more intracellular CD3ε and CD3γ and gave more pronounced T cell differentiation. CONCLUSIONS: Thus, we demonstrate previously unappreciated diversity and plasticity of the innate IEL compartment and its loss of differentiation potential in patients with RCDII.


Subject(s)
CD3 Complex/analysis , Celiac Disease , Duodenum/pathology , Intestinal Mucosa , Intracellular Signaling Peptides and Proteins/analysis , T-Lymphocyte Subsets , Celiac Disease/immunology , Celiac Disease/pathology , Cell Differentiation/immunology , Cell Line , Cytokines/immunology , Humans , Interleukin-7 Receptor alpha Subunit/analysis , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , RNA Polymerase I , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology
4.
J Autoimmun ; 56: 56-65, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25457306

ABSTRACT

Celiac disease (CD) is a common CD4(+) T cell mediated enteropathy driven by gluten in wheat, rye, and barley. Whilst clinical feeding studies generally support the safety of oats ingestion in CD, the avenin protein from oats can stimulate intestinal gluten-reactive T cells isolated from some CD patients in vitro. Our objective was to establish whether ingestion of oats or other grains toxic in CD stimulate an avenin-specific T cell response in vivo. We fed participants a meal of oats (100 g/day over 3 days) to measure the in vivo polyclonal avenin-specific T cell responses to peptides contained within comprehensive avenin peptide libraries in 73 HLA-DQ2.5(+) CD patients. Grain cross-reactivity was investigated using oral challenge with wheat, barley, and rye. Avenin-specific responses were observed in 6/73 HLA-DQ2.5(+) CD patients (8%), against four closely related peptides. Oral barley challenge efficiently induced cross-reactive avenin/hordein-specific T cells in most CD patients, whereas wheat or rye challenge did not. In vitro, immunogenic avenin peptides were susceptible to digestive endopeptidases and showed weak HLA-DQ2.5 binding stability. Our findings indicate that CD patients possess T cells capable of responding to immuno-dominant hordein epitopes and homologous avenin peptides ex vivo, but the frequency and consistency of these T cells in blood is substantially higher after oral challenge with barley compared to oats. The low rates of T cell activation after a substantial oats challenge (100 g/d) suggests that doses of oats commonly consumed are insufficient to cause clinical relapse, and supports the safety of oats demonstrated in long-term feeding studies.


Subject(s)
Celiac Disease/immunology , Cross Reactions/immunology , Glutens , Lymphocyte Activation/immunology , Peptides/immunology , Prolamins , T-Lymphocyte Subsets/immunology , Amino Acid Sequence , Avena/chemistry , Eating , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Glutens/chemistry , Hordeum/chemistry , Humans , Peptides/administration & dosage , Peptides/chemistry , Prolamins/chemistry
5.
Gut ; 62(4): 509-19, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22760007

ABSTRACT

OBJECTIVE: Refractory coeliac disease type II (RCDII) is a severe complication of coeliac disease (CD) characterised by aberrant intraepithelial lymphocytes (IELs) of unknown origin that display an atypical CD3(-)CD7(+)icCD3(+) phenotype. In approximately 40% of patients with RCDII these lymphocytes develop into an invasive lymphoma. In the current study we aimed to identify the physiological counterpart of these cells. DESIGN: RCDII cell lines were compared with T-cell receptor positive (TCR(+)) IEL (T-IEL) lines by microarray analysis, real-time quantitative PCR and flow cytometry. This information was used to identify cells with an RCDII-associated phenotype in duodenal biopsies from non-refractory individuals by multicolour flow cytometry. RESULTS: RCDII lines were transcriptionally distinct from T-IEL lines and expressed higher levels of multiple natural killer (NK) cell receptors. In addition to the CD3(-)CD7(+)icCD3(+) phenotype, the RCDII lines were distinguishable from other lymphocyte subsets by the absence of CD56, CD127 and CD34. Cells matching this surface lineage-negative (Lin(-)) CD7(+)CD127(-)CD34(-) phenotype expressed a functional interleukin-15 (IL-15) receptor and constituted a significant proportion of IELs in duodenal specimens of patients without CD, particularly children, and were also found in the thymus. In patients without CD, the Lin(-)CD7(+)CD127(-)CD34(-) subset was one of four subsets within the CD3(-)CD7(+)icCD3(+) population that could be distinguished on the basis of differential expression of CD56 and/or CD127. CONCLUSION: Our studies indicate that the CD3(-)CD7(+)icCD3(+) population is heterogeneous and reveal the existence of a Lin(-) subset that is distinct from T, B, NK and lymphoid tissue inducer cells. We speculate that this IL-15 responsive population represents the physiological counterpart of aberrant cells expanded in RCDII and transformed in RCDII-associated lymphoma.


Subject(s)
Celiac Disease/immunology , Celiac Disease/pathology , Duodenum/immunology , Duodenum/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Lymphocytes/immunology , Lymphocytes/pathology , Antigens, CD/immunology , Biomarkers/analysis , Biopsy , Cell Line , Cells, Cultured , Flow Cytometry , Humans , Interleukin-15/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Phenotype , Real-Time Polymerase Chain Reaction , Receptors, Antigen, T-Cell/immunology , Tissue Array Analysis
6.
Science ; 363(6431)2019 03 08.
Article in English | MEDLINE | ID: mdl-30846569

ABSTRACT

Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.


Subject(s)
Antibodies, Neutralizing/chemistry , Biomimetic Materials/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/prevention & control , Piperazines/pharmacology , Pyridines/pharmacology , Tetrazoles/pharmacology , Viral Fusion Protein Inhibitors/pharmacology , Virus Internalization/drug effects , Administration, Oral , Animals , Biomimetic Materials/administration & dosage , Biomimetic Materials/pharmacokinetics , Bronchi/virology , Cells, Cultured , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Madin Darby Canine Kidney Cells , Mice , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Respiratory Mucosa/virology , Tetrazoles/administration & dosage , Tetrazoles/pharmacokinetics , Viral Fusion Protein Inhibitors/administration & dosage , Viral Fusion Protein Inhibitors/pharmacokinetics
7.
Mol Immunol ; 58(1): 10-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24252355

ABSTRACT

Celiac disease (CD) patients who fail to respond to a gluten-free diet suffer from refractory celiac disease (RCD). A marked expansion of intraepithelial lymphocytes (IEL) lacking surface TCR/CD3 expression characterizes the RCD subtype II. In up to 50% of RCDII patients these so-called aberrant IEL (a-IEL) develop into lymphoma and can disseminate into other tissues. Elevated levels of Interleukin-15 (IL-15) in the intestine of CD and RCD patients likely contribute to the expansion of a-IEL. Here, we investigated if interactions with other cells might also influence a-IEL expansion. Similar to IL-15, cells from the monocyte lineage, particularly mature dendritic cells (DCs), promoted proliferation, prevented apoptosis and induced IFNγ secretion of a-IEL derived from RCDII biopsies (RCDII cell lines), which in turn induced CXCL10. In contrast to IL-15, mature DCs did not induce proliferation of regular TCR(+)IEL lines, generated from CD biopsies and IL-15-blocking antibodies did not inhibit DC-induced proliferation of RCDII cell lines. Furthermore, proliferation was dependent on cell-cell contact, but independent of the HLA-genotype of the stimulating cells. Our results suggest that contact with DC, either in the epithelium or upon dissemination, contributes to uncontrolled expansion of a-IEL in RCDII, independent of HLA-genotype and IL-15.


Subject(s)
Celiac Disease/immunology , Dendritic Cells/immunology , Receptor-CD3 Complex, Antigen, T-Cell/deficiency , T-Lymphocytes/immunology , Antibodies, Blocking/immunology , Apoptosis/immunology , Cell Communication/immunology , Cell Line , Cell Proliferation , Cell Survival , Chemokine CXCL10/biosynthesis , HT29 Cells , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/metabolism , Interleukin-15/biosynthesis , Interleukin-15/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Monocytes/immunology , Receptor-CD3 Complex, Antigen, T-Cell/genetics , Receptor-CD3 Complex, Antigen, T-Cell/immunology
8.
Eur J Pharmacol ; 675(1-3): 57-62, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22173128

ABSTRACT

The receptor tyrosine kinase c-Kit is important for mast cell differentiation, proliferation, and cytokine release. Recently, we reported that c-Kit acts as an intermediate signalling molecule regulating IL-33-induced signalling and effector functions in mast cells. Here, we investigated the influence of c-Kit on the IL-1ß-induced signalling and effector functions in HMC mast cell lines. HMC-cells were stimulated with IL-1ß and the resulting signalling and cytokine responses were analysed. Furthermore, we used pharmacological inhibitors to investigate the relevance of several signalling molecules for the IL-1ß-induced signalling and cytokine responses. Treatment of HMC-cells with the c-Kit inhibitor STI571 blocked the IL-1ß-induced activation of Erk1/2 and JNK1/2 but not p38 and NFκB. Furthermore, inhibition of these signalling pathways blocked the IL-6 production in HMC-cells. These findings indicate that IL-1ß-induced signalling in mast cells branches into c-Kit- dependent and -independent pathways, both relevant for IL-6 release. Therefore, c-Kit is an important regulator of IL-1 receptor 1-induced signalling and effector functions in HMC-cells.


Subject(s)
Interleukin-1beta/metabolism , Mast Cells/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Interleukin-1/metabolism , Signal Transduction , Animals , Benzamides , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Line , Cells, Cultured , Cytokines/metabolism , Female , Humans , Imatinib Mesylate , Interleukin-1beta/agonists , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Male , Mast Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/genetics , Pyrimidines/pharmacology , Receptors, Interleukin-1/agonists , Signal Transduction/drug effects , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL