Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Beilstein J Org Chem ; 20: 540-551, 2024.
Article in English | MEDLINE | ID: mdl-38440172

ABSTRACT

The present work covers novel herbicidal lead structures that contain a 2,3-dihydro[1,3]thiazolo[4,5-b]pyridine scaffold as structural key feature carrying a substituted phenyl side chain. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity against commercially important weeds in broadacre crops, e.g., wheat and corn. The desired substituted 2,3-dihydro[1,3]thiazolo[4,5-b]pyridines were prepared via an optimized BH3-mediated reduction involving tris(pentafluorophenyl)borane as a strong Lewis acid. Remarkably, greenhouse trials showed that some of the target compounds outlined herein display promising control of grass weed species in preemergence application, combined with a dose response window that enables partial selectivity in certain crops.

2.
Chemistry ; 29(39): e202300199, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-36807428

ABSTRACT

We report the design, synthesis and biological evaluation of simplified analogues of the herbicidal natural product (+)-cornexistin. Guided by an X-Ray co-crystal structure of cornexistin bound to transketolase from Zea mays, we attempted to identify the key interactions that are necessary for cornexistin to maintain its herbicidal profile. This resulted in the preparation of three novel analogues investigating the importance of substituents that are located on the nine-membered ring of cornexistin. One analogue maintained a good level of biological activity and could provide researchers insights in how to further optimize the structure of cornexistin for commercialization in the future.


Subject(s)
Biological Products , Herbicides , Herbicides/chemistry , Molecular Structure , Biological Products/chemistry , Furans/chemistry , Structure-Activity Relationship
3.
Bioinformatics ; 37(6): 861-867, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33241296

ABSTRACT

MOTIVATION: Image-based profiling combines high-throughput screening with multiparametric feature analysis to capture the effect of perturbations on biological systems. This technology has attracted increasing interest in the field of plant phenotyping, promising to accelerate the discovery of novel herbicides. However, the extraction of meaningful features from unlabeled plant images remains a big challenge. RESULTS: We describe a novel data-driven approach to find feature representations from plant time-series images in a self-supervised manner by using time as a proxy for image similarity. In the spirit of transfer learning, we first apply an ImageNet-pretrained architecture as a base feature extractor. Then, we extend this architecture with a triplet network to refine and reduce the dimensionality of extracted features by ranking relative similarities between consecutive and non-consecutive time points. Without using any labels, we produce compact, organized representations of plant phenotypes and demonstrate their superior applicability to clustering, image retrieval and classification tasks. Besides time, our approach could be applied using other surrogate measures of phenotype similarity, thus providing a versatile method of general interest to the phenotypic profiling community. AVAILABILITY AND IMPLEMENTATION: Source code is provided in https://github.com/bayer-science-for-a-better-life/plant-triplet-net. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Plants , Software , Cluster Analysis
4.
Bioorg Med Chem ; 28(22): 115725, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33007548

ABSTRACT

New phosphorous-containing lead structures against drought stress in crops interacting with RCAR/(PYR/PYL) receptor proteins were identified starting from in-depth SAR studies of related sulfonamide lead structures and protein docking studies. A converging 6-step synthesis via phosphinic chlorides and phosphono chloridates as key intermediates afforded envisaged tetrahydroquinolinyl phosphinamidates and phosphonamidates. Whilst tetrahydroquinolinyl phosphonamidates 13a,b exhibited low to moderate target affinities, the corresponding tetrahydroquinolinyl phosphinamidates 12a,b revealed confirmed strong affinities for RCAR/ (PYR/PYL) receptor proteins in Arabidopsis thaliana on the same level as essential plant hormone abscisic acid (ABA) combined with promising efficacy against drought stress in vivo (broad-acre crops wheat and canola).


Subject(s)
Amides/pharmacology , Crops, Agricultural/drug effects , Droughts , Organophosphorus Compounds/pharmacology , Plant Proteins/chemistry , Quinolines/pharmacology , Abscisic Acid/metabolism , Amides/chemistry , Arabidopsis/drug effects , Arabidopsis/metabolism , Crops, Agricultural/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Molecular Docking Simulation , Molecular Structure , Organophosphorus Compounds/chemistry , Plant Proteins/metabolism , Quinolines/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem ; 27(24): 115142, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31685332

ABSTRACT

Novel synthetic lead structures interacting with RCAR/(PYR/PYL) receptor proteins were identified based on the results of a high-throughput screening campaign of a large compound library followed by focused SAR studies of the three most promising hit clusters. Whilst indolinylmethyl sulfonamides 8y,z and phenylsulfonyl ethylenediamines 9y,z showed strong affinities for RCAR/ (PYR/PYL) receptor proteins in wheat, thiotriazolyl acetamides 7f,s exhibited promising efficacy against drought stress in vivo (wheat, corn and canola) combined with confirmed target interaction in wheat and arabidopsis thaliana. Remarkably, binding affinities of several representatives of 8 and 9 were on the same level or even better than the essential plant hormone abscisic acid (ABA).


Subject(s)
Abscisic Acid/analogs & derivatives , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Abscisic Acid/chemistry , Abscisic Acid/pharmacology , Crops, Agricultural , Droughts , Drug Discovery , Gene Expression Regulation, Plant/drug effects , High-Throughput Screening Assays , Molecular Structure , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Sulfonamides , Triticum/genetics , Triticum/metabolism
6.
Pest Manag Sci ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334233

ABSTRACT

BACKGROUND: There are various methods to control weeds, that represent considerable challenges for farmers around the globe, although applying small molecular compounds is still the most effective and versatile technology to date. In the search for novel chemical entities with new modes-of-action that can control weeds displaying resistance, we have investigated two spirocyclic classes of acyl-ACP thioesterase inhibitors based on X-ray co-crystal structures and subsequent modelling studies. RESULTS: By exploiting scaffold-hopping and isostere concepts, we were able to identify new spirolactam-based lead structures showing promising activity in vivo against commercially important grass weeds in line with strong target affinity. CONCLUSION: The present work covers a series of novel herbicidal lead structures that contain a spirocyclic lactam as a structural key feature carrying ortho-substituted benzyl or heteroarylmethylene side chains. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity. Glasshouse trials showed that the spirolactams outlined herein display promising control of grass-weed species in pre-emergence application combined with dose-response windows that enable partial selectivity in wheat and corn. Remarkably, some of the novel acyl-ACP thioesterase-inhibitors showed efficacy against resistant grass weeds such as Alopecurus myosuroides and Lolium spp. on competitive levels compared with commercial standards. © 2024 Society of Chemical Industry.

7.
J Agric Food Chem ; 71(47): 18212-18226, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37677080

ABSTRACT

In the search for new chemical entities that can control resistant weeds by addressing novel modes of action (MoAs), we were interested in further exploring a compound class that contained a 1,8-naphthyridine core. By leveraging scaffold hopping methodologies, we were able to discover the new thiazolopyridine compound class that act as potent herbicidal molecules. Further biochemical investigations allowed us to identify that the thiazolopyridines inhibit acyl-acyl carrier protein (ACP) thioesterase (FAT), with this being further confirmed via an X-ray cocrystal structure. Greenhouse trials revealed that the thiazolopyridines display excellent control of grass weed species in pre-emergence application coupled with dose response windows that enable partial selectivity in certain crops.


Subject(s)
Herbicides , Herbicides/chemistry , Plant Weeds/metabolism , Thiolester Hydrolases/metabolism , Crops, Agricultural/metabolism , Weed Control/methods
SELECTION OF CITATIONS
SEARCH DETAIL