Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 24(11): 1825-1838, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735593

ABSTRACT

Noncoding genetic variation drives phenotypic diversity, but underlying mechanisms and affected cell types are incompletely understood. Here, investigation of effects of natural genetic variation on the epigenomes and transcriptomes of Kupffer cells derived from inbred mouse strains identified strain-specific environmental factors influencing Kupffer cell phenotypes, including leptin signaling in Kupffer cells from a steatohepatitis-resistant strain. Cell-autonomous and non-cell-autonomous effects of genetic variation were resolved by analysis of F1 hybrid mice and cells engrafted into an immunodeficient host. During homeostasis, non-cell-autonomous trans effects of genetic variation dominated control of Kupffer cells, while strain-specific responses to acute lipopolysaccharide injection were dominated by actions of cis-acting effects modifying response elements for lineage-determining and signal-dependent transcription factors. These findings demonstrate that epigenetic landscapes report on trans effects of genetic variation and serve as a resource for deeper analyses into genetic control of transcription in Kupffer cells and macrophages in vitro.


Subject(s)
Kupffer Cells , Transcriptome , Mice , Animals , Epigenome , Mice, Inbred C57BL , Genetic Variation
2.
Cell ; 176(5): 1098-1112.e18, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30794774

ABSTRACT

Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-ß-muricholic acid (T-ßMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.


Subject(s)
Intestinal Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bile Acids and Salts/metabolism , Cell Line , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Deoxycholic Acid/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , Intestinal Neoplasms/genetics , Intestines , Liver , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/physiology , Organoids/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Risk Factors , Signal Transduction , Taurocholic Acid/analogs & derivatives , Taurocholic Acid/metabolism , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology
3.
Hepatology ; 80(2): 403-417, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38377466

ABSTRACT

BACKGROUND AND AIMS: Patients with alcohol-associated hepatitis (AH) have an altered fecal metabolome, including reduced microbiota-derived tryptophan metabolites, which function as ligands for aryl hydrocarbon receptor (AhR). The aim of this study was to assess serum AhR ligand activity in patients with AH. APPROACH AND RESULTS: The study included 74 controls without AUD, 97 patients with AUD, and 330 patients with AH from 2 different multicenter cohorts (InTeam: 134, AlcHepNet: 196). Serum AhR activity was evaluated using an AhR reporter assay with HepG2-Lucia cells incubated with serum for 24 hours. Serum AhR activity was significantly higher in patients with AH compared with both controls (1.59 vs. 0.96-fold change, p < 0.001) and patients with AUD (1.59 vs. 0.93, p < 0.001). In both AH cohorts, patients with AhR activity ≥ 2.09 had significantly lower cumulative survival rates at 30, 60, 90, and 180 days compared to those with AhR activity < 2.09. When serum AhR activity was used to further stratify patients with severe AH, the cumulative 30, 60, 90, and 180-day survival rates for patients with severe AH and the AhR activity ≥ 2.09 group were all significantly lower than those with an AhR activity < 2.09 group. CONCLUSIONS: Serum AhR activity was significantly higher in patients with AH compared with controls and individuals with AUD, and this increased activity was associated with higher mortality. Consequently, serum AhR activity holds potential as a prognostic marker.


Subject(s)
Hepatitis, Alcoholic , Receptors, Aryl Hydrocarbon , Humans , Receptors, Aryl Hydrocarbon/blood , Receptors, Aryl Hydrocarbon/metabolism , Male , Female , Middle Aged , Hepatitis, Alcoholic/mortality , Hepatitis, Alcoholic/blood , Adult , Case-Control Studies , Basic Helix-Loop-Helix Transcription Factors/blood , Basic Helix-Loop-Helix Transcription Factors/metabolism , Survival Rate , Hep G2 Cells , Aged , Biomarkers/blood
4.
Nature ; 575(7783): 505-511, 2019 11.
Article in English | MEDLINE | ID: mdl-31723265

ABSTRACT

Chronic liver disease due to alcohol-use disorder contributes markedly to the global burden of disease and mortality1-3. Alcoholic hepatitis is a severe and life-threatening form of alcohol-associated liver disease. The gut microbiota promotes ethanol-induced liver disease in mice4, but little is known about the microbial factors that are responsible for this process. Here we identify cytolysin-a two-subunit exotoxin that is secreted by Enterococcus faecalis5,6-as a cause of hepatocyte death and liver injury. Compared with non-alcoholic individuals or patients with alcohol-use disorder, patients with alcoholic hepatitis have increased faecal numbers of E. faecalis. The presence of cytolysin-positive (cytolytic) E. faecalis correlated with the severity of liver disease and with mortality in patients with alcoholic hepatitis. Using humanized mice that were colonized with bacteria from the faeces of patients with alcoholic hepatitis, we investigated the therapeutic effects of bacteriophages that target cytolytic E. faecalis. We found that these bacteriophages decrease cytolysin in the liver and abolish ethanol-induced liver disease in humanized mice. Our findings link cytolytic E. faecalis with more severe clinical outcomes and increased mortality in patients with alcoholic hepatitis. We show that bacteriophages can specifically target cytolytic E. faecalis, which provides a method for precisely editing the intestinal microbiota. A clinical trial with a larger cohort is required to validate the relevance of our findings in humans, and to test whether this therapeutic approach is effective for patients with alcoholic hepatitis.


Subject(s)
Bacteriophages/physiology , Enterococcus faecalis/pathogenicity , Enterococcus faecalis/virology , Gastrointestinal Microbiome , Hepatitis, Alcoholic/microbiology , Hepatitis, Alcoholic/therapy , Phage Therapy , Alcoholism/complications , Alcoholism/microbiology , Animals , Enterococcus faecalis/isolation & purification , Ethanol/adverse effects , Fatty Liver/complications , Fatty Liver/microbiology , Feces/microbiology , Female , Germ-Free Life , Hepatitis, Alcoholic/complications , Hepatitis, Alcoholic/mortality , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Perforin/metabolism
5.
Gut ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033024

ABSTRACT

OBJECTIVE: Patients with alcohol-associated hepatitis (AH) have a high mortality. Alcohol exacerbates liver damage by inducing gut dysbiosis, bacterial translocation and inflammation, which is characterised by increased numbers of circulating and hepatic neutrophils. DESIGN: In this study, we performed tandem mass tag (TMT) proteomics to analyse proteins in the faeces of controls (n=19), patients with alcohol-use disorder (AUD; n=20) and AH (n=80) from a multicentre cohort (InTeam). To identify protein groups that are disproportionately represented, we conducted over-representation analysis using Reactome pathway analysis and Gene Ontology to determine the proteins with the most significant impact. A faecal biomarker and its prognostic effect were validated by ELISA in faecal samples from patients with AH (n=70), who were recruited in a second and independent multicentre cohort (AlcHepNet). RESULT: Faecal proteomic profiles were overall significantly different between controls, patients with AUD and AH (principal component analysis p=0.001, dissimilarity index calculated by the method of Bray-Curtis). Proteins that showed notable differences across all three groups and displayed a progressive increase in accordance with the severity of alcohol-associated liver disease were predominantly those located in neutrophil granules. Over-representation and Reactome analyses confirmed that differentially regulated proteins are part of granules in neutrophils and the neutrophil degranulation pathway. Myeloperoxidase (MPO), the marker protein of neutrophil granules, correlates with disease severity and predicts 60-day mortality. Using an independent validation cohort, we confirmed that faecal MPO levels can predict short-term survival at 60 days. CONCLUSIONS: We found an increased abundance of faecal proteins linked to neutrophil degranulation in patients with AH, which is predictive of short-term survival and could serve as a prognostic non-invasive marker.

6.
Hepatology ; 78(4): 1168-1181, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37021791

ABSTRACT

BACKGROUND AND AIMS: NAFLD in adolescents is an increasing health crisis worldwide, but its exact global, continental, and national prevalence, its relationship with other metabolic conditions, and the human development index (HDI) globally are not known. APPROACH AND RESULTS: We analyzed data from the Global Burden of Disease Study 2019 to compare global, continental, and national prevalence rates of adolescent NAFLD and associations with other metabolic conditions and HDI. The global NAFLD prevalence in adolescents increased from 3.73% in 1990 to 4.71% in 2019 (a relative increase of 26.27%). The prevalence for the male and female populations was 5.84% and 3.52% in 2019, respectively. The Oceanian and North American continents had the highest adolescent NAFLD prevalence (median: 6.54% and 5.64%, respectively), whereas Europe had the lowest prevalence (median: 3.98%). South America and North America had the highest relative increase in adolescent NAFLD prevalence from 1990 to 2019 (median: 39.25% and 36.87%, respectively). High body mass index and type 2 diabetes mellitus increased significantly in adolescents worldwide. However, only high body mass index and not type 2 diabetes mellitus correlated with NAFLD prevalence in adolescents globally. Countries with a higher HDI had larger increases in adolescent NAFLD prevalence from 1990 to 2019 although countries with the highest HDI (HDI: > 0.9) had the lowest NAFLD prevalence in 2019. CONCLUSIONS: NAFLD in adolescents is an increasing health problem on all continents. Improving environmental factors, including lifestyle but also healthcare policies, can help to prevent NAFLD from developing in children and adolescents and help to improve outcomes in children and adolescents with NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Child , Humans , Male , Adolescent , Female , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Diabetes Mellitus, Type 2/complications , Prevalence , Global Burden of Disease , Body Mass Index
7.
Hepatology ; 77(6): 2073-2083, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36631002

ABSTRACT

BACKGROUND AND AIMS: The prevalence of alcohol use disorder (AUD) and metabolic dysfunction-associated fatty liver disease (MAFLD) are increasing worldwide, leading to the increasing likelihood of both etiologies contributing to a patient's liver disease. However, the effects of modest alcohol use in NAFLD are controversial and more studies are needed. We compared the intestinal viromes of patients with AUD and NAFLD in order to evaluate the effect of alcohol consumption on the intestinal viromes of NAFLD patients by extracting virus-like particles and performing metagenomic sequencing. APPROACH AND RESULTS: Viral nucleic acids were extracted from fecal samples and subjected to metagenomic sequencing. We demonstrate significant differences in the intestinal viromes of NAFLD and AUD patients, and that alcohol use in NAFLD patients reclassified to MAFLD accounted for significant differences in the intestinal viromes. The relative abundance of several Lactococcus phages was more similar between AUD patients and alcohol-consuming MAFLD patients than non-alcohol-consuming MAFLD patients and control subjects, and multivariate modeling using the most discriminating Lactococcus phages could better predict alcohol use in the MAFLD population than the alcohol-associated liver disease/NAFLD Index. Significant differences in the viral composition and diversity were also seen between MAFLD patients with low and moderate alcohol consumption compared with no alcohol consumption. CONCLUSIONS: The intestinal virome of MAFLD patients who consume low to moderate amounts of alcohol are significantly different from those who do not, and many features of the intestinal virome of alcohol-consuming MAFLD patients resemble that of AUD patients.


Subject(s)
Alcoholism , Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Humans , Virome , Alcohol Drinking/adverse effects , Ethanol
8.
Hepatology ; 78(1): 295-306, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36811393

ABSTRACT

BACKGROUND AND AIMS: Patients with severe alcohol-associated hepatitis have high morbidity and mortality. Novel therapeutic approaches are urgently needed. The aims of our study were to confirm the predictive value of cytolysin-positive Enterococcus faecalis ( E. faecalis ) for mortality in patients with alcohol-associated hepatitis and to assess the protective effect of specific chicken immunoglobulin Y (IgY) antibodies against cytolysin in vitro and in a microbiota-humanized mouse model of ethanol-induced liver disease. APPROACH AND RESULTS: We investigated a multicenter cohort of 26 subjects with alcohol-associated hepatitis and confirmed our previous findings that the presence of fecal cytolysin-positive E. faecalis predicted 180-day mortality in those patients. After combining this smaller cohort with our previously published multicenter cohort, the presence of fecal cytolysin has a better diagnostic area under the curve, better other accuracy measures, and a higher odds ratio to predict death in patients with alcohol-associated hepatitis than other commonly used liver disease models. In a precision medicine approach, we generated IgY antibodies against cytolysin from hyperimmunized chickens. Neutralizing IgY antibodies against cytolysin reduced cytolysin-induced cell death in primary mouse hepatocytes. The oral administration of IgY antibodies against cytolysin decreased ethanol-induced liver disease in gnotobiotic mice colonized with stool from cytolysin-positive patients with alcohol-associated hepatitis. CONCLUSIONS: E. faecalis cytolysin is an important mortality predictor in alcohol-associated hepatitis patients, and its targeted neutralization through specific antibodies improves ethanol-induced liver disease in microbiota-humanized mice.


Subject(s)
Ethanol , Hepatitis, Alcoholic , Animals , Mice , Chickens , Immunoglobulins/therapeutic use , Antibodies , Cytotoxins , Hepatitis, Alcoholic/drug therapy
9.
Curr Opin Gastroenterol ; 40(3): 134-142, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38362864

ABSTRACT

PURPOSE OF REVIEW: The intestinal microbiome and the gut-liver axis play a major role in health and disease. The human gut harbors trillions of microbes and a disruption of the gut homeostasis can contribute to liver disease. In this review, the progress in the field within the last 3 years is summarized, focusing on metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), autoimmune liver disease (AILD), and hepatocellular carcinoma (HCC). RECENT FINDINGS: Changes in the fecal virome and fungal mycobiome have been described in patients with various liver diseases. Several microbial derived metabolites including endogenous ethanol produced by bacteria, have been mechanistically linked to liver disease such as MASLD. Virulence factors encoded by gut bacteria contribute to ALD, AILD and HCC. Novel therapeutic approaches focused on the microbiome including phages, pre- and postbiotics have been successfully used in preclinical models. Fecal microbiota transplantation has been effective in attenuating liver disease. Probiotics are safe in patients with alcohol-associated hepatitis and improve liver disease and alcohol addiction. SUMMARY: The gut-liver axis plays a key role in the pathophysiology of liver diseases. Understanding the microbiota in liver disease can help to develop precise microbiota centered therapies.


Subject(s)
Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Liver Neoplasms , Probiotics , Humans , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Liver Diseases, Alcoholic/drug therapy , Probiotics/therapeutic use , Gastrointestinal Microbiome/physiology
10.
Nature ; 560(7717): 198-203, 2018 08.
Article in English | MEDLINE | ID: mdl-30046112

ABSTRACT

Dysregulated NLRP3 inflammasome activity results in uncontrolled inflammation, which underlies many chronic diseases. Although mitochondrial damage is needed for the assembly and activation of the NLRP3 inflammasome, it is unclear how macrophages are able to respond to structurally diverse inflammasome-activating stimuli. Here we show that the synthesis of mitochondrial DNA (mtDNA), induced after the engagement of Toll-like receptors, is crucial for NLRP3 signalling. Toll-like receptors signal via the MyD88 and TRIF adaptors to trigger IRF1-dependent transcription of CMPK2, a rate-limiting enzyme that supplies deoxyribonucleotides for mtDNA synthesis. CMPK2-dependent mtDNA synthesis is necessary for the production of oxidized mtDNA fragments after exposure to NLRP3 activators. Cytosolic oxidized mtDNA associates with the NLRP3 inflammasome complex and is required for its activation. The dependence on CMPK2 catalytic activity provides opportunities for more effective control of NLRP3 inflammasome-associated diseases.


Subject(s)
DNA, Mitochondrial/biosynthesis , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Biocatalysis , Cytosol/metabolism , Interferon Regulatory Factor-1/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Mice , Mitochondria/metabolism , Mitochondria/pathology , Nucleoside-Phosphate Kinase/genetics , Nucleoside-Phosphate Kinase/metabolism , Oxidation-Reduction , Signal Transduction , Toll-Like Receptors/immunology
11.
Gut ; 72(10): 1959-1970, 2023 10.
Article in English | MEDLINE | ID: mdl-36690432

ABSTRACT

OBJECTIVE: Alcohol-associated liver disease is accompanied by microbial dysbiosis, increased intestinal permeability and hepatic exposure to translocated microbial products that contribute to disease progression. A key strategy to generate immune protection against invading pathogens is the secretion of IgA in the gut. Intestinal IgA levels depend on the polymeric immunoglobulin receptor (pIgR), which transports IgA across the epithelial barrier into the intestinal lumen and hepatic canaliculi. Here, we aimed to address the function of pIgR during ethanol-induced liver disease. DESIGN: pIgR and IgA were assessed in livers from patients with alcohol-associated hepatitis and controls. Wild-type and pIgR-deficient (pIgR-/- ) littermates were subjected to the chronic-binge (NIAAA model) and Lieber-DeCarli feeding model for 8 weeks. Hepatic pIgR re-expression was established in pIgR-/- mice using adeno-associated virus serotype 8 (AAV8)-mediated pIgR expression in hepatocytes. RESULTS: Livers of patients with alcohol-associated hepatitis demonstrated an increased colocalisation of pIgR and IgA within canaliculi and apical poles of hepatocytes. pIgR-deficient mice developed increased liver injury, steatosis and inflammation after ethanol feeding compared with wild-type littermates. Furthermore, mice lacking pIgR demonstrated increased plasma lipopolysaccharide levels and more hepatic bacteria, indicating elevated bacterial translocation. Treatment with non-absorbable antibiotics prevented ethanol-induced liver disease in pIgR-/- mice. Injection of AAV8 expressing pIgR into pIgR-/- mice prior to ethanol feeding increased intestinal IgA levels and ameliorated ethanol-induced steatohepatitis compared with pIgR-/- mice injected with control-AAV8 by reducing bacterial translocation. CONCLUSION: Our results highlight that dysfunctional hepatic pIgR enhances alcohol-associated liver disease due to impaired antimicrobial defence by IgA in the gut.


Subject(s)
Fatty Liver , Hepatitis , Liver Diseases, Alcoholic , Receptors, Polymeric Immunoglobulin , Mice , Animals , Ethanol/metabolism , Receptors, Polymeric Immunoglobulin/metabolism , Bacterial Translocation , Liver/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Fatty Liver/metabolism , Hepatitis/metabolism , Immunoglobulin A , Mice, Inbred C57BL
12.
Semin Liver Dis ; 43(3): 311-322, 2023 08.
Article in English | MEDLINE | ID: mdl-37527781

ABSTRACT

Globally, liver disease caused by alcohol is becoming more prevalent each year. Misuse of alcohol causes a spectrum of liver diseases, such as liver steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The cornerstone of treatment is abstinence from alcohol. In spite of this, available treatment for alcohol-associated liver disease (ALD) shows limited effectiveness currently. There are numerous ways in which alcohol disrupts the gut-liver axis, including dysbiosis of the gut microbiome, disruption of mucus and epithelial cell barriers, impaired production of antimicrobial molecules, and dysfunction of the immune system, causing translocation of viable microbes and microbial products to the liver and systemic circulation. Microbial exposure results in not only inflammation and progression of liver disease but also infections in late-stage ALD. This led scientists to focus their therapeutic strategies and targets for ALD on the gut microbiome. Throughout this review, we address the role of gut microbiome-centered therapeutic approaches for ALD focusing predominantly on randomized controlled trials. We will summarize the latest clinical trials using probiotics, antibiotics, and fecal microbial transplants in modulating the gut-liver axis and for improvement of ALD.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Liver Neoplasms , Humans , Liver Diseases, Alcoholic/therapy , Liver , Ethanol/therapeutic use , Liver Neoplasms/complications , Dysbiosis/complications
13.
J Biol Chem ; 298(7): 102056, 2022 07.
Article in English | MEDLINE | ID: mdl-35605662

ABSTRACT

Peroxisome proliferator-activated receptor delta (PPARδ) agonists have been shown to exert beneficial effects in liver disease and reduce total bile acid levels. The mechanism(s) whereby PPARδ agonism reduces bile acid levels are, however, unknown, and therefore the aim of the present study was to investigate the molecular pathways responsible for reducing bile acid synthesis in hepatocytes, following treatment with the selective PPARδ agonist, seladelpar. We show that administration of seladelpar to WT mice repressed the liver expression of cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme for bile acid synthesis, and decreased plasma 7α-hydroxy-4-cholesten-3-one (C4), a freely diffusible metabolite downstream of Cyp7a1. In primary mouse hepatocytes, seladelpar significantly reduced the expression of Cyp7a1 independent of the nuclear bile acid receptor, Farnesoid X receptor. In addition, seladelpar upregulated fibroblast growth factor 21 (Fgf21) in mouse liver, serum, and in cultured hepatocytes. We demonstrate that recombinant Fgf21 protein activated the c-Jun N-terminal kinase (JNK) signaling pathway and repressed Cyp7a1 gene expression in primary hepatocytes. The suppressive effect of seladelpar on Cyp7a1 expression was blocked by a JNK inhibitor as well as in the absence of Fgf21, indicating that Fgf21 plays an indispensable role in PPARδ-mediated downregulation of Cyp7a1. Finally, reduction of CYP7A1 expression by seladelpar was confirmed in primary human hepatocytes. In conclusion, we show that seladelpar reduces bile acid synthesis via an FGF21-dependent mechanism that signals at least partially through JNK to repress CYP7A1.


Subject(s)
Acetates , Bile Acids and Salts , Cholesterol 7-alpha-Hydroxylase , Fibroblast Growth Factors , PPAR delta , Acetates/pharmacology , Animals , Bile Acids and Salts/biosynthesis , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Fibroblast Growth Factors/metabolism , Hepatocytes/metabolism , Humans , Mice , PPAR delta/agonists , Signal Transduction
14.
J Hepatol ; 78(4): 836-851, 2023 04.
Article in English | MEDLINE | ID: mdl-36565724

ABSTRACT

Liver and biliary diseases affect more than a billion people worldwide, with high associated morbidity and mortality. The impact of the intestinal bacterial microbiome on liver diseases has been well established. However, the fungal microbiome, or mycobiome, has been overlooked for a long time. Recently, several studies have shed light on the role of the mycobiome in the development and progression of hepatobiliary diseases. In particular, the fungal genus Candida has been found to be involved in the pathogenesis of multiple hepatobiliary conditions. Herein, we compare colonisation and infection, describe mycobiome findings in the healthy state and across the various hepatobiliary conditions, and point toward communalities. We detail how quantitation of immune responses to fungal antigens can be employed to predict disease severity, e.g. using antibodies to Saccharomyces cerevisiae or specific anti-Candida albicans antibodies. We also show how fungal products (e.g. beta-glucans, candidalysin) activate the host's immune system to exacerbate liver and biliary diseases. Finally, we describe how the gut mycobiome can be modulated to ameliorate hepatobiliary conditions.


Subject(s)
Digestive System Diseases , Mycobiome , Mycoses , Humans , Mycobiome/physiology , Candida , Candida albicans , Saccharomyces cerevisiae
15.
Int Immunol ; 34(9): 455-466, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35792761

ABSTRACT

Cirrhosis is end-stage liver disease resulting from various etiologies and is a common cause of death worldwide. The progression from compensated to decompensated cirrhosis to acute-on-chronic liver failure (ACLF) is due to multiple factors, including continuation of alcohol use or continued exposure to other toxins, an imbalance of the gut microbiota (dysbiosis), increased gut permeability and a disrupted immune response. This disrupted immune response is also named cirrhosis-associated immune dysfunction, which is characterized by worsening systemic inflammation with concomitant immune paralysis, as liver disease deteriorates. This review highlights central immunologic events during the exacerbation of cirrhosis and characterizes the different immune cell populations involved therein.


Subject(s)
Acute-On-Chronic Liver Failure , Gastrointestinal Microbiome , Immune System Diseases , Acute-On-Chronic Liver Failure/complications , Dysbiosis , Humans , Inflammation , Liver Cirrhosis/complications
16.
Liver Int ; 2023 May 15.
Article in English | MEDLINE | ID: mdl-37183549

ABSTRACT

Acute alcohol-associated hepatitis (AH) is a syndrome that occurs in heavy and long-term drinkers and results in severe jaundice and liver failure. The mortality rate in severe cases is 20%-50% at 28 days, and in cases that do not improve despite appropriately timed corticosteroid therapy, the mortality rate reaches 70% at 6 months. The only curative treatment is early liver transplantation, but less than 2% of patients with severe AH are eligible. In order to improve the prognosis, diagnostic tools are needed to detect appropriate cases at risk of severe conditions, and new therapies need to be developed that can replace corticosteroids. Recent research has revealed that the pathogenesis of AH involves a complex of factors, including changes in the gut microbiota, inflammatory and cytokine signalling, oxidative stress and mitochondrial dysfunction, and abnormalities in the hepatic regenerative capacity. Non-invasive diagnostic tools focusing on these specific pathologies have been reported in recent years. In addition, several novel agents targeting specific pathways are currently being developed and tested in clinical trials. This review will provide an overview of alcohol-associated hepatitis and focus on the latest diagnostic tools, particularly non-invasive biomarkers, and novel therapies.

17.
Dig Dis Sci ; 68(7): 3059-3069, 2023 07.
Article in English | MEDLINE | ID: mdl-36807831

ABSTRACT

BACKGROUND: Alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are two of the most common etiologies of chronic liver disease worldwide. Changes in intestinal permeability and increased gut microbial translocation have been posited as important contributors to inflammation in both ALD and NAFLD. However, gut microbial translocation has not been compared between the two etiologies and can lead to better understanding of the differences in their pathogenesis to liver disease. METHODS: We compared serum and liver markers in the following five models of liver disease to understand the differences in the role of gut microbial translocation on liver disease progression caused by ethanol versus Western diet: (1) 8-week chronic ethanol feeding model. (2) 2-week chronic-plus-binge (National Institute on Alcohol Abuse and Alcoholism (NIAAA)) ethanol feeding model. (3) 2-week chronic-plus-binge (NIAAA) ethanol feeding model in microbiota-humanized gnotobiotic mice colonized with stool from patients with alcohol-associated hepatitis. (4) 20-week Western-diet-feeding model of NASH. (5) 20-week Western-diet-feeding model in microbiota-humanized gnotobiotic mice colonized with stool from NASH patients. RESULTS: Translocation of bacterial lipopolysaccharide to the peripheral circulation was seen in both ethanol-induced and diet-induced liver disease, but translocation of bacteria itself was restricted to only ethanol-induced liver disease. Moreover, the diet-induced steatohepatitis models developed more significant liver injury, inflammation, and fibrosis compared with ethanol-induced liver disease models, and this positively correlated with the level of lipopolysaccharide translocation. CONCLUSIONS: More significant liver injury, inflammation, and fibrosis are seen in diet-induced steatohepatitis, which positively correlates with translocation of bacterial components, but not intact bacteria.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Mice , Animals , Ethanol/adverse effects , Non-alcoholic Fatty Liver Disease/pathology , Bacterial Translocation , Lipopolysaccharides , Liver/pathology , Liver Diseases, Alcoholic/complications , Hepatitis, Alcoholic/complications , Inflammation/pathology , Diet , Bacteria , Fibrosis , Mice, Inbred C57BL , Disease Models, Animal
18.
Hepatobiliary Pancreat Dis Int ; 22(5): 474-481, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37198098

ABSTRACT

BACKGROUND: Cirrhosis with acute decompensation (AD) and acute-on-chronic liver failure (ACLF) are characterized by high morbidity and mortality. Cytolysin, a toxin from Enterococcus faecalis (E. faecalis), is associated with mortality in alcohol-associated hepatitis (AH). It is unclear whether cytolysin also contributes to disease severity in AD and ACLF. METHODS: We studied the role of fecal cytolysin in 78 cirrhotic patients with AD/ACLF. Bacterial DNA from fecal samples was extracted and real-time quantitative polymerase chain reaction (PCR) was performed. The association between fecal cytolysin and liver disease severity in cirrhosis with AD or ACLF was analyzed. RESULTS: Fecal cytolysin and E. faecalis abundance did not predict chronic liver failure (CLIF-C) AD and ACLF scores. Presence of fecal cytolysin was not associated with other liver disease markers, including Fibrosis-4 (FIB-4) index, 'Age, serum Bilirubin, INR, and serum Creatinine (ABIC)' score, Child-Pugh score, model for end-stage liver disease (MELD) nor MELD-Na scores in AD or ACLF patients. CONCLUSIONS: Fecal cytolysin does not predict disease severity in AD and ACLF patients. The predictive value of fecal cytolysin positivity for mortality appears to be restricted to AH.


Subject(s)
Acute-On-Chronic Liver Failure , End Stage Liver Disease , Humans , Acute-On-Chronic Liver Failure/diagnosis , End Stage Liver Disease/complications , Severity of Illness Index , Prognosis , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Cytotoxins
19.
Semin Liver Dis ; 42(3): 233-249, 2022 08.
Article in English | MEDLINE | ID: mdl-36001995

ABSTRACT

Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and primary cell cultures have demonstrated several common cellular and molecular mechanisms in the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the development of steatotic hepatocytes and the pathways of steatosis regulation are discussed.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver Cirrhosis/complications , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications
20.
J Hepatol ; 76(6): 1379-1391, 2022 06.
Article in English | MEDLINE | ID: mdl-35589257

ABSTRACT

Humans harbour large quantities of microbes, including bacteria, fungi, viruses and archaea, in the gut. Patients with liver disease exhibit changes in the intestinal microbiota and gut barrier dysfunction. Preclinical models demonstrate the importance of the gut microbiota in the pathogenesis of various liver diseases. In this review, we discuss how manipulation of the gut microbiota can be used as a novel treatment approach for liver disease. We summarise current data on untargeted approaches, including probiotics and faecal microbiota transplantation, and precision microbiome-centered therapies, including engineered bacteria, postbiotics and phages, for the treatment of liver diseases.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases , Microbiota , Probiotics , Bacteria , Dysbiosis/microbiology , Fecal Microbiota Transplantation , Humans , Probiotics/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL