Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468643

ABSTRACT

T cells detect with their T cell antigen receptors (TCRs) the presence of rare agonist peptide/MHC complexes (pMHCs) on the surface of antigen-presenting cells (APCs). How extracellular ligand binding triggers intracellular signaling is poorly understood, yet spatial antigen arrangement on the APC surface has been suggested to be a critical factor. To examine this, we engineered a biomimetic interface based on laterally mobile functionalized DNA origami platforms, which allow for nanoscale control over ligand distances without interfering with the cell-intrinsic dynamics of receptor clustering. When targeting TCRs via stably binding monovalent antibody fragments, we found the minimum signaling unit promoting efficient T cell activation to consist of two antibody-ligated TCRs within a distance of 20 nm. In contrast, transiently engaging antigenic pMHCs stimulated T cells robustly as well-isolated entities. These results identify pairs of antibody-bound TCRs as minimal receptor entities for effective TCR triggering yet validate the exceptional stimulatory potency of single isolated pMHC molecules.


Subject(s)
Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , DNA/immunology , Major Histocompatibility Complex/genetics , Receptors, Antigen, T-Cell/chemistry , Animals , Antigen-Presenting Cells/cytology , CD4-Positive T-Lymphocytes/cytology , DNA/chemistry , DNA/genetics , Gene Expression , Ligands , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lymphocyte Activation , Mice , Nucleic Acid Conformation , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Primary Cell Culture , Protein Binding , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Signal Transduction , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Spleen/cytology , Spleen/immunology
2.
Eur J Nucl Med Mol Imaging ; 49(1): 301-310, 2021 12.
Article in English | MEDLINE | ID: mdl-34215922

ABSTRACT

PURPOSE: Adrenal tumors represent a diagnostic and therapeutic challenge. Promising results have been obtained through targeting the cytochrome P450 enzymes CYP11B1 and CYP11B2 for molecular imaging, and [123/131I]iodometomidate ([123/131I]IMTO) has even been successfully introduced as a theranostic agent. As this radiopharmaceutical shows rapid metabolic inactivation, we aimed at developing new improved tracers. METHODS: Several IMTO derivatives were newly designed by replacing the unstable methyl ester by different carboxylic esters or amides. The inhibition of aldosterone and cortisol synthesis was tested in different adrenocortical cell lines. The corresponding radiolabeled compounds were assessed regarding their stability, in vitro cell uptake, in vivo biodistribution in mice, and their binding specificity to cryosections of human adrenocortical and non-adrenocortical tissue. Furthermore, a first investigation was performed in patients with known metastatic adrenal cancer using both [123I]IMTO and the most promising compound (R)-1-[1-(4-[123I]iodophenyl)ethyl]-1H-imidazole-5-carboxylic acid azetidinylamide ([123I]IMAZA) for scintigraphy. Subsequently, a first endoradiotherapy with [131I]IMAZA in one of these patients was performed. RESULTS: We identified three analogues to IMTO with high-affinity binding to the target enzymes and comparable or higher metabolic stability and very high and specific accumulation in adrenocortical cells in vitro and in vivo. Labeled IMAZA exhibited superior pharmacokinetic and imaging properties compared to IMTO in mice and 3 patients, too. An endoradiotherapy with [131I]IMAZA induced a 21-month progression-free interval in a patient with rapidly progressing ACC prior this therapy. CONCLUSION: We developed the new radiopharmaceutical [123/131I]IMAZA with superior properties compared to the reference compound IMTO and promising first experiences in humans.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Adrenal Cortex Neoplasms/diagnostic imaging , Adrenal Cortex Neoplasms/drug therapy , Adrenocortical Carcinoma/diagnostic imaging , Adrenocortical Carcinoma/drug therapy , Animals , Humans , Ligands , Mice , Precision Medicine , Tissue Distribution
3.
Int J Mol Sci ; 22(14)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34299278

ABSTRACT

During the pathogenesis of glaucoma, optic nerve (ON) axons become continuously damaged at the optic nerve head (ONH). This often is associated with reactive astrocytes and increased transforming growth factor (TGF-ß) 2 levels. In this study we tested the hypothesis if the presence or absence of decorin (DCN), a small leucine-rich proteoglycan and a natural inhibitor of several members of the TGF family, would affect the expression of the TGF-ßs and connective tissue growth factor (CTGF/CCN2) in human ONH astrocytes and murine ON astrocytes. We found that DCN is present in the mouse ON and is expressed by human ONH and murine ON astrocytes. DCN expression and synthesis was significantly reduced after 24 h treatment with 3 nM CTGF/CCN2, while treatment with 4 pM TGF-ß2 only reduced expression of DCN significantly. Conversely, DCN treatment significantly reduced the expression of TGF-ß1, TGF-ß2 and CTGF/CCN2 vis-a-vis untreated controls. Furthermore, DCN treatment significantly reduced expression of fibronectin (FN) and collagen IV (COL IV). Notably, combined treatment with DCN and triciribine, a small molecule inhibitor of protein kinase B (AKT), attenuated effects of DCN on CTGF/CCN2, TGF-ß1, and TGF-ß2 mRNA expression. We conclude (1) that DCN is an important regulator of TGF-ß and CTGF/CCN2 expression in astrocytes of the ON and ONH, (2) that DCN thereby regulates the expression of extracellular matrix (ECM) components and (3) that DCN executes its negative regulatory effects on TGF-ß and CTGF/CCN2 via the pAKT/AKT signaling pathway in ON astrocytes.


Subject(s)
Astrocytes/metabolism , Decorin/pharmacology , Extracellular Matrix Proteins/metabolism , Glaucoma/pathology , Oncogene Protein v-akt/metabolism , Optic Nerve/metabolism , Transforming Growth Factor beta2/antagonists & inhibitors , Animals , Astrocytes/drug effects , Cells, Cultured , Disease Models, Animal , Female , Glaucoma/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Optic Nerve/drug effects , Signal Transduction
4.
Biophys J ; 117(10): 1935-1947, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31653451

ABSTRACT

Dimerization or the formation of higher-order oligomers is required for the activation of ErbB receptor tyrosine kinases. The heregulin (HRG) receptor, ErbB3, must heterodimerize with other members of the family, preferentially ErbB2, to form a functional signal transducing complex. Here, we applied single molecule imaging capable of detecting long-lived and mobile associations to measure their stoichiometry and mobility and analyzed data from experiments globally, taking the different lateral mobility of monomeric and dimeric molecular species into account. Although ErbB3 was largely monomeric in the absence of stimulation and ErbB2 co-expression, a small fraction was present as constitutive homodimers exhibiting a ∼40% lower mobility than monomers. HRG stimulation increased the homodimeric fraction of ErbB3 significantly and reduced the mobility of homodimers fourfold compared to constitutive homodimers. Expression of ErbB2 elevated the homodimeric fraction of ErbB3 even in unstimulated cells and induced a ∼2-fold reduction in the lateral mobility of ErbB3 homodimers. The mobility of ErbB2 was significantly lower than that of ErbB3, and HRG induced a less pronounced decrease in the diffusion coefficient of all ErbB2 molecules and ErbB3/ErbB2 heterodimers than in the mobility of ErbB3. The slower diffusion of ErbB2 compared to ErbB3 was abolished by depolymerizing actin filaments, whereas ErbB2 expression induced a substantial rearrangement of microfilaments, implying a bidirectional interaction between ErbB2 and actin. HRG stimulation of cells co-expressing ErbB3 and ErbB2 led to the formation of ErbB3 homodimers and ErbB3/ErbB2 heterodimers in a competitive fashion. Although pertuzumab, an antibody binding to the dimerization arm of ErbB2, completely abolished the formation of constitutive and HRG-induced ErbB3/ErbB2 heterodimers, it only slightly blocked ErbB3 homodimerization. The results imply that a dynamic equilibrium exists between constitutive and ligand-induced homo- and heterodimers capable of shaping transmembrane signaling.


Subject(s)
Protein Multimerization , Receptor, ErbB-3/metabolism , Actin Cytoskeleton/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Diffusion , Fluorescence Recovery After Photobleaching , Humans , Immobilized Proteins/metabolism , Neuregulin-1/metabolism , Receptor, ErbB-2/metabolism
5.
Hum Mol Genet ; 24(22): 6361-73, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26310622

ABSTRACT

High-temperature requirement A1 (HTRA1) is a secreted serine protease reported to play a role in the development of several cancers and neurodegenerative diseases. Still, the mechanism underlying the disease processes largely remains undetermined. In age-related macular degeneration (AMD), a common cause of vision impairment and blindness in industrialized societies, two synonymous polymorphisms (rs1049331:C>T, and rs2293870:G>T) in exon 1 of the HTRA1 gene were associated with a high risk to develop disease. Here, we show that the two polymorphisms result in a protein with altered thermophoretic properties upon heat-induced unfolding, trypsin accessibility and secretion behavior, suggesting unique structural features of the AMD-risk-associated HTRA1 protein. Applying MicroScale Thermophoresis and protease digestion analysis, we demonstrate direct binding and proteolysis of transforming growth factor ß1 (TGF-ß1) by normal HTRA1 but not the AMD-risk-associated isoform. As a consequence, both HTRA1 isoforms strongly differed in their ability to control TGF-ß mediated signaling, as revealed by reporter assays targeting the TGF-ß1-induced serpin peptidase inhibitor (SERPINE1, alias PAI-1) promoter. In addition, structurally altered HTRA1 led to an impaired autocrine TGF-ß signaling in microglia, as measured by a strong down-regulation of downstream effectors of the TGF-ß cascade such as phosphorylated SMAD2 and PAI-1 expression. Taken together, our findings demonstrate the effects of two synonymous HTRA1 variants on protein structure and protein interaction with TGF-ß1. As a consequence, this leads to an impairment of TGF-ß signaling and microglial regulation. Functional implications of the altered properties on AMD pathogenesis remain to be clarified.


Subject(s)
Macular Degeneration/genetics , Macular Degeneration/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Silent Mutation , Transforming Growth Factor beta1/metabolism , Down-Regulation , Exons , Genetic Predisposition to Disease , HEK293 Cells , High-Temperature Requirement A Serine Peptidase 1 , Humans , Macular Degeneration/enzymology , Plasminogen Activator Inhibitor 1/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , RNA, Messenger/genetics , Risk Factors , Signal Transduction
6.
Exp Eye Res ; 142: 49-55, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26321510

ABSTRACT

Glaucoma is defined as a progressive optic neuropathy and is characterized by an irreversible loss of retinal ganglion cells. The main risk factor to develop glaucoma is an increased intraocular pressure (IOP). During the course of glaucoma structural changes in the optic nerve head (ONH) take place which lead to the characteristic excavation or cupping of the ONH. In this review we will focus on mechanisms and processes involved in structural alterations of the extracellular matrix in the lamina cribrosa (LC) of the ONH, which are associated with astrocytes. In glaucoma, a disordered deposition of elastic and collagen fibers and a typical pronounced thickening of the connective tissue septae surrounding the nerve fibers can be observed in the LC region. The remodeling process of the LC and the loss of ON axons are associated with a conversion of astrocytes from quiescent to a reactivated state. The extracellular matrix changes in the LC are thought to be due to a disturbed homeostatic balance of growth factors and the reactivated astrocytes are part of this process. Reactivated astrocytes, remodeling of the ECM within the LC and an elevated IOP are taking part in the retinal ganglion cell loss in glaucoma.


Subject(s)
Astrocytes/physiology , Extracellular Matrix/pathology , Fibrosis/pathology , Glaucoma , Optic Disk , Astrocytes/metabolism , Bone Morphogenetic Proteins/metabolism , Endothelins/metabolism , Extracellular Matrix/metabolism , Fibrosis/metabolism , Glaucoma/metabolism , Glaucoma/pathology , Humans , Optic Disk/metabolism , Optic Disk/pathology , Transforming Growth Factor beta/metabolism
7.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168170

ABSTRACT

Fluorescence microscopy is an invaluable tool in biology, yet its performance is compromised when the wavefront of light is distorted due to optical imperfections or the refractile nature of the sample. Such optical aberrations can dramatically lower the information content of images by degrading image contrast, resolution, and signal. Adaptive optics (AO) methods can sense and subsequently cancel the aberrated wavefront, but are too complex, inefficient, slow, or expensive for routine adoption by most labs. Here we introduce a rapid, sensitive, and robust wavefront sensing scheme based on phase diversity, a method successfully deployed in astronomy but underused in microscopy. Our method enables accurate wavefront sensing to less than λ/35 root mean square (RMS) error with few measurements, and AO with no additional hardware besides a corrective element. After validating the method with simulations, we demonstrate calibration of a deformable mirror > 100-fold faster than comparable methods (corresponding to wavefront sensing on the ~100 ms scale), and sensing and subsequent correction of severe aberrations (RMS wavefront distortion exceeding λ/2), restoring diffraction-limited imaging on extended biological samples.

8.
Clin Genitourin Cancer ; 22(2): 458-466.e1, 2024 04.
Article in English | MEDLINE | ID: mdl-38267304

ABSTRACT

INTRODUCTION: Two randomized trials demonstrated a survival benefit of triplet therapy (androgen deprivation therapy [ADT]) plus androgen receptor pathway inhibitor [ARPI] plus docetaxel) over doublet therapy (ADT plus docetaxel), thus changing treatment strategies in metastatic hormonesensitive prostate cancer (mHSPC). PATIENTS AND METHODS: We conducted the first real-world analysis comprising 97 mHSPC patients from 16 Austrian medical centers, among them 79.4% of patients received abiraterone and 17.5% darolutamide treatment. Baseline characteristics and clinical parameters during triplet therapy were documented. Mann-Whitney U test for continuous or X²-test for categorical variables was used. Variables on progression were tested using logistic regression analysis and tabulated as hazard ratios (HR), 95% confidence interval (CI). RESULTS: Of 83.5% patients with synchronous and 16.5% with metachronous disease were included. 83.5% had high-volume disease diagnosed by conventional imaging (48.9%) or PSMA PET-CT (51.1%). While docetaxel and ARPI were administered consistent with pivotal trials, prednisolone, prophylactic gCSF and osteoprotective agents were not applied guideline conform in 32.5%, 37%, and 24.3% of patients, respectively. Importantly, a nonsimultaneous onset of chemotherapy and ARPI, performed in 44.3% of patients, was associated with significantly worse treatment response (P = .015, HR 0.245). Starting ARPI before chemotherapy was associated with significantly higher probability for progression (P = .023, HR 15.781) than vice versa. Strikingly, 15.6% (abiraterone) and 25.5% (darolutamide) low-volume patients as well as 14.4% (abiraterone) and 17.6% (darolutamide) metachronous patients received triplet therapy. Adverse events (AE) occurred in 61.9% with grade 3 to 5 in 15% of patient without age-related differences. All patients achieved a PSA decline of 99% and imaging response was confirmed in 88% of abiraterone and 75% of darolutamide patients. CONCLUSIONS: Triplet therapy arrived in clinical practice primarily for synchronous high-volume mHSPC. Regardless of selected therapy regimen, treatment is highly effective and tolerable. Preferably therapy should be administered simultaneously, however if not possible, chemotherapy should be started first.


Subject(s)
Prostatic Neoplasms , Humans , Male , Androgen Antagonists/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Austria , Docetaxel/therapeutic use , Hormones , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Randomized Controlled Trials as Topic
9.
Front Mol Biosci ; 10: 1045411, 2023.
Article in English | MEDLINE | ID: mdl-37251082

ABSTRACT

TGF-ß2 is the predominant TGF-ß isoform within the eye. One function of TGF-ß2 is to provide the eye with immune protection against intraocular inflammation. The beneficial function of TGF-ß2 within the eye must be under tight control of a network of different factors. A disbalance of the network can result in different eye diseases. In Primary Open-Angle Glaucoma (POAG), one of the leading causes of irreversible blindness worldwide, TGF-ß2 is significantly elevated in the aqueous humor and antagonistic molecules like BMPs are reduced. The changes provoke an altering of the quantity and quality of the extracellular matrix and the actin cytoskeleton in the outflow tissues, leading to an increased outflow resistance and thereby to an increased intraocular pressure (IOP), the major risk factor for primary open-angle glaucoma. The pathologic effect of TGF-ß2 in primary open-angle glaucoma is mainly meditated by CCN2/CTGF. CCN2/CTGF can modulate TGF-ß and BMP signaling by direct binding. The eye specific overexpression of CCN2/CTGF caused an increase in IOP and led to a loss of axons, the hallmark of primary open-angle glaucoma. CCN2/CTGF appears to play a critical role in the homeostatic balance of the eye, so we investigated if CCN2/CTGF can modulate BMP and TGF-ß signaling pathways in the outflow tissues. To this end, we analyzed the direct effect of CCN2/CTGF on both signaling pathways in two transgenic mouse models with a moderate (ßB1-CTGF1) and a high CCN2/CTGF (ßB1-CTGF6) overexpression and in immortalized human trabecular meshwork (HTM) cells. Additionally, we investigate whether CCN2/CTGF mediates TGF-ß effects via different pathways. We observed developmental malformations in the ciliary body in ßB1-CTGF6 caused by an inhibition of the BMP signaling pathway. In ßB1-CTGF1, we detected a dysregulation of the BMP and TGF-ß signaling pathways, with reduced BMP activity and increased TGF-ß signaling. A direct CCN2/CTGF effect on BMP and TGF-ß signaling was shown in immortalized HTM cells. Finally, CCN2/CTGF mediated its effects on TGF-ß via the RhoA/ROCK and ERK signaling in immortalized HTM cells. We conclude that CCN2/CTGF functions as a modulator of the homeostatic balance of BMP and TGF-ß signaling pathways, which is shifted in primary open-angle glaucoma.

10.
Front Bioinform ; 2: 811053, 2022.
Article in English | MEDLINE | ID: mdl-36304307

ABSTRACT

The human mind shows extraordinary capability at recognizing patterns, while at the same time tending to underestimate the natural scope of random processes. Taken together, this easily misleads researchers in judging whether the observed characteristics of their data are of significance or just the outcome of random effects. One of the best tools to assess whether observed features fall into the scope of pure randomness is statistical significance testing, which quantifies the probability to falsely reject a chosen null hypothesis. The central parameter in this context is the p-value, which can be calculated from the recorded data sets. In case of p-values smaller than the level of significance, the null hypothesis is rejected, otherwise not. While significance testing has found widespread application in many sciences including the life sciences, it is hardly used in (bio-)physics. We propose here that significance testing provides an important and valid addendum to the toolbox of quantitative (single molecule) biology. It allows to support a quantitative judgement (the hypothesis) about the data set with a probabilistic assessment. In this manuscript we describe ways for obtaining valid p-values in two selected applications of single molecule microscopy: (i) Nanoclustering in single molecule localization microscopy. Previously, we developed a method termed 2-CLASTA, which allows to calculate a valid p-value for the null hypothesis of an underlying random distribution of molecules of interest while circumventing overcounting issues. Here, we present an extension to this approach, yielding a single overall p-value for data pooled from multiple cells or experiments. (ii) Single molecule trajectories. Data from a single molecule trajectory are inherently correlated, thus prohibiting a direct analysis via conventional statistical tools. Here, we introduce a block permutation test, which yields a valid p-value for the analysis and comparison of single molecule trajectory data. We exemplify the approach based on FRET trajectories.

11.
Front Cell Dev Biol ; 10: 864433, 2022.
Article in English | MEDLINE | ID: mdl-35493079

ABSTRACT

In primary open-angle glaucoma (POAG), a neurodegenerative disease of the optic nerve (ON) and leading cause of blindness, the optic nerve head (ONH) undergoes marked structural extracellular matrix (ECM) changes, which contribute to its permanent deformation and to degeneration of ON axons. The remodeling process of the ECM causes changes in the biomechanical properties of the ONH and the peripapillary sclera, which is accompanied by an increased reactivity of the resident astrocytes. The molecular factors involved in the remodeling process belong to the Transforming growth factor (TGF)-ß superfamily, especially TGF-ß2. In previous publications we showed that TGF-ß2 induced ECM alterations are mediated by Cellular Communication Network Factor (CCN)2/Connective Tissue Growth Factor (CTGF) and recently we showed that CCN2/CTGF is expressed by astrocytes of the ON under normal conditions. In this study we wanted to get a better understanding of the function of CCN2/CTGF under normal and pathologic conditions. To this end, we analyzed the glial lamina and peripapillary sclera of CCN2/CTGF overexpressing mice and studied the effect of CCN2/CTGF and increasing substratum stiffness on murine ON astrocytes in vitro. We observed enhanced astrocyte reactivity in the ONH, increased ECM protein synthesis in the peripapillary sclera and increased Ccn2/Ctgf expression in the ONH during the pathologic development in situ. CCN2/CTGF treatment of primary murine ON astrocytes induced a higher migration rate, and increase of ECM proteins including fibronectin, elastin and collagen type III. Furthermore, the astrocytes responded to stiffer substratum with increased glial fibrillary acidic protein, vimentin, actin and CCN2/CTGF synthesis. Finally, we observed the reinforced appearance of CCN2/CTGF in the lamina cribrosa of glaucomatous patients. We conclude that reactive changes in ONH astrocytes, induced by the altered biomechanical characteristics of the region, give rise to a self-amplifying process that includes increased TGF-ß2/CCN2/CTGF signaling and leads to the synthesis of ECM molecules and cytoskeleton proteins, a process that in turn augments the stiffness at the ONH. Such a scenario may finally result in a vicious circle in the pathogenesis of POAG. The transgenic CTGF-overexpressing mouse model might be an optimal model to study the chronic pathological POAG changes in the ONH.

12.
PLoS One ; 17(2): e0263500, 2022.
Article in English | MEDLINE | ID: mdl-35120171

ABSTRACT

Single molecule localization microscopy (SMLM) has the potential to resolve structural details of biological samples at the nanometer length scale. Compared to room temperature experiments, SMLM performed under cryogenic temperature achieves higher photon yields and, hence, higher localization precision. However, to fully exploit the resolution it is crucial to account for the anisotropic emission characteristics of fluorescence dipole emitters with fixed orientation. In case of slight residual defocus, localization estimates may well be biased by tens of nanometers. We show here that astigmatic imaging in combination with information about the dipole orientation allows to extract the position of the dipole emitters without localization bias and down to a precision of 1 nm, thereby reaching the corresponding Cramér Rao bound. The approach is showcased with simulated data for various dipole orientations, and parameter settings realistic for real life experiments.


Subject(s)
Microscopy, Fluorescence/methods , Microscopy/methods , Algorithms , Biological Phenomena , Cold Temperature , Fluorescence , Likelihood Functions , Normal Distribution , Photons , Probability , Reproducibility of Results , Single Molecule Imaging , Temperature
13.
PLoS One ; 16(1): e0245693, 2021.
Article in English | MEDLINE | ID: mdl-33471861

ABSTRACT

Single molecule localization microscopy (SMLM) has enormous potential for resolving subcellular structures below the diffraction limit of light microscopy: Localization precision in the low digit nanometer regime has been shown to be achievable. In order to record localization microscopy data, however, sample fixation is inevitable to prevent molecular motion during the rather long recording times of minutes up to hours. Eventually, it turns out that preservation of the sample's ultrastructure during fixation becomes the limiting factor. We propose here a workflow for data analysis, which is based on SMLM performed at cryogenic temperatures. Since molecular dipoles of the fluorophores are fixed at low temperatures, such an approach offers the possibility to use the orientation of the dipole as an additional information for image analysis. In particular, assignment of localizations to individual dye molecules becomes possible with high reliability. We quantitatively characterized the new approach based on the analysis of simulated oligomeric structures. Side lengths can be determined with a relative error of less than 1% for tetramers with a nominal side length of 5 nm, even if the assumed localization precision for single molecules is more than 2 nm.


Subject(s)
Image Processing, Computer-Assisted , Single Molecule Imaging , Reproducibility of Results , Workflow
14.
ACS Nano ; 15(9): 15057-15068, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34463486

ABSTRACT

DNA origami structures provide flexible scaffolds for the organization of single biomolecules with nanometer precision. While they find increasing use for a variety of biological applications, the functionalization with proteins at defined stoichiometry, high yield, and under preservation of protein function remains challenging. In this study, we applied single molecule fluorescence microscopy in combination with a cell biological functional assay to systematically evaluate different strategies for the site-specific decoration of DNA origami structures, focusing on efficiency, stoichiometry, and protein functionality. Using an activating ligand of the T-cell receptor (TCR) as the protein of interest, we found that two commonly used methodologies underperformed with regard to stoichiometry and protein functionality. While strategies employing tetravalent wildtype streptavidin for coupling of a biotinylated TCR-ligand yielded mixed populations of DNA origami structures featuring up to three proteins, the use of divalent (dSAv) or DNA-conjugated monovalent streptavidin (mSAv) allowed for site-specific attachment of a single biotinylated TCR-ligand. The most straightforward decoration strategy, via covalent DNA conjugation, resulted in a 3-fold decrease in ligand potency, likely due to charge-mediated impairment of protein function. Replacing DNA with charge-neutral peptide nucleic acid (PNA) in a ligand conjugate emerged as the coupling strategy with the best overall performance in our study, as it produced the highest yield with no multivalent DNA origami structures and fully retained protein functionality. With our study we aim to provide guidelines for the stoichiometrically defined, site-specific functionalization of DNA origami structures with proteins of choice serving a wide range of biological applications.


Subject(s)
DNA , Nanostructures
15.
Matrix Biol ; 97: 1-19, 2021 03.
Article in English | MEDLINE | ID: mdl-33582236

ABSTRACT

Primary open-angle glaucoma, a neurodegenerative disorder characterized by degeneration of optic nerve axons, is a frequent cause of vision loss and blindness worldwide. Several randomized multicenter studies have identified intraocular pressure as the major risk factor for its development, caused by an increased outflow resistance to the aqueous humor within the trabecular meshwork. However, the molecular mechanism for increased outflow resistance in POAG has not been fully established. One of the proposed players is the pro-fibrotic transforming growth factor (TGF)-ß2, which is found in higher amounts in the aqueous humor of patients with POAG. In this study we elucidated the role of decorin, a small leucine-rich proteoglycan and known antagonist of TGF-ß, in the region of aqueous humor outflow tissue. Utilizing decorin deficient mice, we discovered that decorin modulated TGF-ß signaling in the canonical outflow pathways and the lack of decorin in vivo caused an increase in intraocular pressure. Additionally, the Dcn-/- mice showed significant loss of optic nerve axons and morphological changes in the glial lamina, typical features of glaucoma. Moreover, using human trabecular meshwork cells we discovered that soluble decorin attenuated TGF-ß2 mediated synthesis and expression of typical downstream target genes including CCN2/CTGF, FN and COL IV.  Finally, we found a negative reciprocal regulation of decorin and TGF-ß, with a dramatic downregulation of decorin in the canonical outflow pathways of patients with primary open-angle glaucoma. Collectively, our results indicate that decorin plays an important role in the pathogenesis of primary open-angle glaucoma and offers novel perspectives in the treatment of this serious disease.


Subject(s)
Aqueous Humor/metabolism , Decorin/genetics , Glaucoma, Open-Angle/pathology , Transforming Growth Factor beta/metabolism , Animals , Disease Models, Animal , Gene Expression Regulation , Gene Knockout Techniques , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , Humans , Mice , Primary Cell Culture , Signal Transduction , Trabecular Meshwork/metabolism , Trabecular Meshwork/pathology
16.
Sci Rep ; 10(1): 4230, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144344

ABSTRACT

While single-molecule localization microscopy (SMLM) offers the invaluable prospect to visualize cellular structures below the diffraction limit of light microscopy, its potential has not yet been fully capitalized due to its inherent susceptibility to blinking artifacts. Particularly, overcounting of single molecule localizations has impeded a reliable and sensitive detection of biomolecular nanoclusters. Here we introduce a 2-Color Localization microscopy And Significance Testing Approach (2-CLASTA), providing a parameter-free statistical framework for the qualitative analysis of two-dimensional SMLM data via significance testing methods. 2-CLASTA yields p-values for the null hypothesis of random biomolecular distributions, independent of the blinking behavior of the chosen fluorescent labels. The method is parameter-free and does not require any additional measurements nor grouping of localizations. We validated the method both by computer simulations as well as experimentally, using protein concatemers as a mimicry of biomolecular clustering. As the new approach is not affected by overcounting artifacts, it is able to detect biomolecular clustering of various shapes at high sensitivity down to a level of dimers.

17.
Nat Commun ; 11(1): 4993, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020470

ABSTRACT

Determining nanoscale protein distribution via Photoactivated Localization Microscopy (PALM) mandates precise knowledge of the applied fluorophore's blinking properties to counteract overcounting artifacts that distort the resulting biomolecular distributions. Here, we present a readily applicable methodology to determine, optimize and quantitatively account for the blinking behavior of any PALM-compatible fluorophore. Using a custom-designed platform, we reveal complex blinking of two photoswitchable fluorescence proteins (PS-CFP2 and mEOS3.2) and two photoactivatable organic fluorophores (PA Janelia Fluor 549 and Abberior CAGE 635) with blinking cycles on time scales of several seconds. Incorporating such detailed information in our simulation-based analysis package allows for robust evaluation of molecular clustering based on individually recorded single molecule localization maps.

18.
Adv Drug Deliv Rev ; 129: 352-375, 2018 04.
Article in English | MEDLINE | ID: mdl-29278683

ABSTRACT

Due to the increasing age of our society and a rise in engagement of young people in extreme and/or competitive sports, both tendinopathies and tendon ruptures present a clinical and financial challenge. Tendon has limited natural healing capacity and often responds poorly to treatments, hence it requires prolonged rehabilitation in most cases. Till today, none of the therapeutic options has provided successful long-term solutions, meaning that repaired tendons do not recover their complete strength and functionality. Our understanding of tendon biology and healing increases only slowly and the development of new treatment options is insufficient. In this review, following discussion on tendon structure, healing and the clinical relevance of tendon injury, we aim to elucidate the role of stem cells in tendon healing and discuss new possibilities to enhance stem cell treatment of injured tendon. To date, studies mainly apply stem cells, often in combination with scaffolds or growth factors, to surgically created tendon defects. Deeper understanding of how stem cells and vasculature in the healing tendon react to growth factors, common drugs used to treat injured tendons and promising cellular boosters could help to develop new and more efficient ways to manage tendon injuries.


Subject(s)
Achilles Tendon/metabolism , Stem Cells/metabolism , Wound Healing , Animals , Humans
19.
J Biomech ; 64: 26-31, 2017 11 07.
Article in English | MEDLINE | ID: mdl-28916397

ABSTRACT

The quantification of arterial wave reflection is an important area of interest in arterial pulse wave analysis. It can be achieved by wave separation analysis (WSA) if both the aortic pressure waveform and the aortic flow waveform are known. For better applicability, several mathematical models have been established to estimate aortic flow solely based on pressure waveforms. The aim of this study is to investigate and verify the model-based wave separation of the ARCSolver method on virtual pulse wave measurements. The study is based on an open access virtual database generated via simulations. Seven cardiac and arterial parameters were varied within physiological healthy ranges, leading to a total of 3325 virtual healthy subjects. For assessing the model-based ARCSolver method computationally, this method was used to perform WSA based on the aortic root pressure waveforms of the virtual patients. Asa reference, the values of WSA using both the pressure and flow waveforms provided by the virtual database were taken. The investigated parameters showed a good overall agreement between the model-based method and the reference. Mean differences and standard deviations were -0.05±0.02AU for characteristic impedance, -3.93±1.79mmHg for forward pressure amplitude, 1.37±1.56mmHg for backward pressure amplitude and 12.42±4.88% for reflection magnitude. The results indicate that the mathematical blood flow model of the ARCSolver method is a feasible surrogate for a measured flow waveform and provides a reasonable way to assess arterial wave reflection non-invasively in healthy subjects.


Subject(s)
Arteries/physiology , Models, Cardiovascular , Databases, Factual , Electric Impedance , Heart/physiology , Hemodynamics , Humans , Pulse Wave Analysis
20.
Mol Imaging Biol ; 17(1): 76-86, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25011975

ABSTRACT

PURPOSE: Peptides containing the asparagine-glycine-arginine (NGR) motif bind to aminopeptidase N (CD13), which is expressed on inflammatory cells, endothelial cells, and fibroblasts. It is unclear whether radiolabeled NGR-containing tracers could be used for in vivo imaging of the early wound-healing phase after myocardial infarction (MI) using positron emission tomography (PET). PROCEDURES: Uptake of novel tracer [(68)Ga]NGR was assessed together with [(68)Ga]arginine-glycine-aspartic acid ([(68)Ga]RGD) and 2-deoxy-2-[(18) F]fluoro-D-glucose after myocardial ischemia/reperfusion (MI/R) injury using µ-PET and autoradiography, and relative expressions of CD13 and integrin ß3 were assessed in fibroblasts, inflammatory cells, and endothelial cells by immunohistochemistry. RESULTS: In the infarcted myocardium, uptake of [(68)Ga]NGR was maximal from days 3 to 7 after MI/R, and correlated with fibroblast and inflammatory cell infiltration as well as [(68)Ga]RGD uptake. CONCLUSIONS: [(68)Ga]NGR allows noninvasive and sequential determination of CD13 expression in fibroblasts and inflammatory cells by PET. This will facilitate monitoring of CD13 in the individual wound healing processes, allowing patient-specific therapies to improve outcome after MI.


Subject(s)
Heart/diagnostic imaging , Myocardial Infarction/diagnostic imaging , Positron-Emission Tomography , Amino Acid Motifs , Animals , CD13 Antigens/metabolism , Fibroblasts/diagnostic imaging , Fibroblasts/pathology , Gallium Radioisotopes , Humans , Immunohistochemistry , Inflammation , Male , Myocardial Ischemia/diagnostic imaging , Myocardium/pathology , Oligopeptides/chemistry , Rats , Rats, Wistar , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL