Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 591(7851): 677-681, 2021 03.
Article in English | MEDLINE | ID: mdl-33658720

ABSTRACT

The human glycine transporter 1 (GlyT1) regulates glycine-mediated neuronal excitation and inhibition through the sodium- and chloride-dependent reuptake of glycine1-3. Inhibition of GlyT1 prolongs neurotransmitter signalling, and has long been a key strategy in the development of therapies for a broad range of disorders of the central nervous system, including schizophrenia and cognitive impairments4. Here, using a synthetic single-domain antibody (sybody) and serial synchrotron crystallography, we have determined the structure of GlyT1 in complex with a benzoylpiperazine chemotype inhibitor at 3.4 Å resolution. We find that the inhibitor locks GlyT1 in an inward-open conformation and binds at the intracellular gate of the release pathway, overlapping with the glycine-release site. The inhibitor is likely to reach GlyT1 from the cytoplasmic leaflet of the plasma membrane. Our results define the mechanism of inhibition and enable the rational design of new, clinically efficacious GlyT1 inhibitors.


Subject(s)
Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Glycine Plasma Membrane Transport Proteins/chemistry , Glycine/metabolism , Binding Sites , Biological Transport/drug effects , Crystallography , Humans , Models, Molecular , Piperazines/chemistry , Piperazines/pharmacology , Protein Binding , Protein Conformation , Protein Stability , Single-Domain Antibodies , Sulfones/chemistry , Sulfones/pharmacology , Synchrotrons
2.
Mol Cell ; 73(6): 1282-1291.e8, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30792174

ABSTRACT

Toxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA. To investigate the mechanism, we solved the 1.8 Å-resolution crystal structure of the MbcTA complex. We found that MbcT resembles secreted NAD+-dependent bacterial exotoxins, such as diphtheria toxin. Indeed, MbcT catalyzes NAD+ degradation in vitro and in vivo. Unexpectedly, the reaction is stimulated by inorganic phosphate, and our data reveal that MbcT is a NAD+ phosphorylase. In the absence of MbcA, MbcT triggers rapid M. tuberculosis cell death, which reduces mycobacterial survival in macrophages and prolongs the survival of infected mice. Our study expands the molecular activities employed by bacterial TA modules and uncovers a new class of enzymes that could be exploited to treat tuberculosis and other infectious diseases.


Subject(s)
Antitoxins/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Macrophages/microbiology , Mycobacterium tuberculosis/enzymology , Phosphorylases/metabolism , Toxin-Antitoxin Systems , Tuberculosis/microbiology , Animals , Antibiotics, Antitubercular/pharmacology , Antitoxins/chemistry , Antitoxins/genetics , Bacterial Load , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Cells, Cultured , Disease Models, Animal , Female , Host-Pathogen Interactions , Humans , Kinetics , Macrophages/drug effects , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Microbial Viability , Models, Molecular , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/pathogenicity , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , NAD/metabolism , Phosphorylases/chemistry , Phosphorylases/genetics , Protein Conformation , Toxin-Antitoxin Systems/genetics , Tuberculosis/drug therapy
3.
J Synchrotron Radiat ; 31(Pt 1): 186-194, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37971957

ABSTRACT

Here, high-throughput tomography (HiTT), a fast and versatile phase-contrast imaging platform for life-science samples on the EMBL beamline P14 at DESY in Hamburg, Germany, is presented. A high-photon-flux undulator beamline is used to perform tomographic phase-contrast acquisition in about two minutes which is linked to an automated data processing pipeline that delivers a 3D reconstructed data set less than a minute and a half after the completion of the X-ray scan. Combining this workflow with a sophisticated robotic sample changer enables the streamlined collection and reconstruction of X-ray imaging data from potentially hundreds of samples during a beam-time shift. HiTT permits optimal data collection for many different samples and makes possible the imaging of large sample cohorts thus allowing population studies to be attempted. The successful application of HiTT on various soft tissue samples in both liquid (hydrated and also dehydrated) and paraffin-embedded preparations is demonstrated. Furthermore, the feasibility of HiTT to be used as a targeting tool for volume electron microscopy, as well as using HiTT to study plant morphology, is demonstrated. It is also shown how the high-throughput nature of the work has allowed large numbers of `identical' samples to be imaged to enable statistically relevant sample volumes to be studied.


Subject(s)
Robotics , Synchrotrons , X-Rays , Tomography, X-Ray Computed , Germany
4.
Nature ; 545(7653): 248-251, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28467824

ABSTRACT

Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.


Subject(s)
Cryoelectron Microscopy , Mediator Complex/chemistry , RNA Polymerase II/chemistry , Schizosaccharomyces/chemistry , Transcription Factors, TFII/ultrastructure , Transcription Initiation, Genetic , Crystallography, X-Ray , Mediator Complex/genetics , Mediator Complex/metabolism , Mediator Complex/ultrastructure , Models, Molecular , Mutation , Phosphorylation , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/ultrastructure , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Transcription Factor TFIIH/chemistry , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/ultrastructure , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription Factors, TFII/chemistry , Transcription Factors, TFII/metabolism
5.
Proc Natl Acad Sci U S A ; 117(1): 752-760, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871183

ABSTRACT

Arabidopsis thaliana glutamate receptor-like (GLR) channels are amino acid-gated ion channels involved in physiological processes including wound signaling, stomatal regulation, and pollen tube growth. Here, fluorescence microscopy and genetics were used to confirm the central role of GLR3.3 in the amino acid-elicited cytosolic Ca2+ increase in Arabidopsis seedling roots. To elucidate the binding properties of the receptor, we biochemically reconstituted the GLR3.3 ligand-binding domain (LBD) and analyzed its selectivity profile; our binding experiments revealed the LBD preference for l-Glu but also for sulfur-containing amino acids. Furthermore, we solved the crystal structures of the GLR3.3 LBD in complex with 4 different amino acid ligands, providing a rationale for how the LBD binding site evolved to accommodate diverse amino acids, thus laying the grounds for rational mutagenesis. Last, we inspected the structures of LBDs from nonplant species and generated homology models for other GLR isoforms. Our results establish that GLR3.3 is a receptor endowed with a unique amino acid ligand profile and provide a structural framework for engineering this and other GLR isoforms to investigate their physiology.


Subject(s)
Amino Acids/metabolism , Arabidopsis Proteins/ultrastructure , Arabidopsis/metabolism , Protein Domains/genetics , Receptors, Glutamate/ultrastructure , Arabidopsis/genetics , Arabidopsis Proteins/agonists , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites/genetics , Calcium/metabolism , Crystallography, X-Ray , Cytosol/metabolism , Ligands , Mutation , Plant Roots/metabolism , Plants, Genetically Modified , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Seedlings/metabolism , Structure-Activity Relationship
6.
Nat Methods ; 16(10): 979-982, 2019 10.
Article in English | MEDLINE | ID: mdl-31527838

ABSTRACT

We introduce a liquid application method for time-resolved analyses (LAMA), an in situ mixing approach for serial crystallography. Picoliter-sized droplets are shot onto chip-mounted protein crystals, achieving near-full ligand occupancy within theoretical diffusion times. We demonstrate proof-of-principle binding of GlcNac to lysozyme, and resolve glucose binding and subsequent ring opening in a time-resolved study of xylose isomerase.


Subject(s)
Crystallography/methods , Synchrotrons , Acetylglucosamine/chemistry , Aldose-Ketose Isomerases/chemistry , Glucose/chemistry , Muramidase/chemistry , Proof of Concept Study
7.
Proteins ; 86(9): 912-923, 2018 09.
Article in English | MEDLINE | ID: mdl-29722065

ABSTRACT

RipA plays a vital role during cell division of Mycobacterium tuberculosis by degrading the cell wall peptidoglycan at the septum, allowing daughter cell separation. The peptidoglycan degrading activity relies on the NlpC/P60 domain, and as it is potentially harmful when deregulated, spatial and temporal control is necessary in this process. The N-terminal domain of RipA has been proposed to play an inhibitory role blocking the C-terminal NlpC/P60 domain. Accessibility of the active site cysteine residue is however not limited by the presence of the N-terminal domain, but by the lid-module of the inter-domain linker, which is situated in the peptide binding groove of the crystal structures of the catalytic domain. The 2.2 Å resolution structure of the N-terminal domain, determined by Se-SAD phasing, reveals an all-α-fold with 2 long α-helices, and shows similarity to bacterial periplasmic protein domains with scaffold-building role. Size exclusion chromatography and SAXS experiments are consistent with dimer formation of this domain in solution. The SAXS data from the periplasmic two-domain RipA construct suggest a rigid baton-like structure of the N-terminal module, with the catalytic domain connected by a 24 residue long flexible linker. This flexible linker allows for a catalytic zone, which is part of the spatiotemporal control of peptidoglycan degradation.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/enzymology , Hydrolases/metabolism , Bacterial Proteins/chemistry , Biocatalysis , Catalytic Domain , Hydrolases/chemistry , Mycobacterium tuberculosis/metabolism , Peptidoglycan/metabolism , Protein Conformation , Protein Multimerization
8.
J Synchrotron Radiat ; 24(Pt 1): 19-28, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28009543

ABSTRACT

High-quality high-multiplicity X-ray diffraction data were collected on five different crystals of thaumatin using a homogeneous-profile X-ray beam at E = 8 keV to investigate the counteracting effects of increased multiplicity and increased radiation damage on the quality of anomalous diffraction data collected on macromolecular crystals. By comparing sulfur substructures obtained from subsets of the data selected as a function of absorbed X-ray dose with sulfur positions in the respective refined reference structures, the doses at which the highest quality of anomalous differences could be obtained were identified for the five crystals. A statistic σ{ΔF}D, calculated as the width σ of the normalized distribution of a set {ΔF} of anomalous differences collected at a dose D, is suggested as a measure of anomalous data quality as a function of dose. An empirical rule is proposed to identify the dose at which the gains in data quality due to increased multiplicity are outbalanced by the losses due to decreases in signal-to-noise as a consequence of radiation damage. Identifying this point of diminishing returns allows the optimization of the choice of data collection parameters and the selection of data to be used in subsequent crystal structure determination steps.


Subject(s)
Crystallography, X-Ray , Macromolecular Substances , Data Collection , Models, Molecular , Sulfur , X-Ray Diffraction
9.
J Synchrotron Radiat ; 24(Pt 1): 323-332, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28009574

ABSTRACT

The macromolecular crystallography P13 beamline is part of the European Molecular Biology Laboratory Integrated Facility for Structural Biology at PETRA III (DESY, Hamburg, Germany) and has been in user operation since mid-2013. P13 is tunable across the energy range from 4 to 17.5 keV to support crystallographic data acquisition exploiting a wide range of elemental absorption edges for experimental phase determination. An adaptive Kirkpatrick-Baez focusing system provides an X-ray beam with a high photon flux and tunable focus size to adapt to diverse experimental situations. Data collections at energies as low as 4 keV (λ = 3.1 Å) are possible due to a beamline design minimizing background and maximizing photon flux particularly at low energy (up to 1011 photons s-1 at 4 keV), a custom calibration of the PILATUS 6M-F detector for use at low energies, and the availability of a helium path. At high energies, the high photon flux (5.4 × 1011 photons s-1 at 17.5 keV) combined with a large area detector mounted on a 2θ arm allows data collection to sub-atomic resolution (0.55 Å). A peak flux of about 8.0 × 1012 photons s-1 is reached at 11 keV. Automated sample mounting is available by means of the robotic sample changer `MARVIN' with a dewar capacity of 160 samples. In close proximity to the beamline, laboratories have been set up for sample preparation and characterization; a laboratory specifically equipped for on-site heavy atom derivatization with a library of more than 150 compounds is available to beamline users.

10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1360-72, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26057676

ABSTRACT

3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase (AcdDPN7; EC 3.13.1.4) was identified during investigation of the 3,3'-dithiodipropionic acid (DTDP) catabolic pathway in the betaproteobacterium Advenella mimigardefordensis strain DPN7(T). DTDP is an organic disulfide and a precursor for the synthesis of polythioesters (PTEs) in bacteria, and is of interest for biotechnological PTE production. AcdDPN7 catalyzes sulfur abstraction from 3SP-CoA, a key step during the catabolism of DTDP. Here, the crystal structures of apo AcdDPN7 at 1.89 Å resolution and of its complex with the CoA moiety from the substrate analogue succinyl-CoA at 2.30 Å resolution are presented. The apo structure shows that AcdDPN7 belongs to the acyl-CoA dehydrogenase superfamily fold and that it is a tetramer, with each subunit containing one flavin adenine dinucleotide (FAD) molecule. The enzyme does not show any dehydrogenase activity. Dehydrogenase activity would require a catalytic base (Glu or Asp residue) at either position 246 or position 366, where a glutamine and a glycine are instead found, respectively, in this desulfinase. The positioning of CoA in the crystal complex enabled the modelling of a substrate complex containing 3SP-CoA. This indicates that Arg84 is a key residue in the desulfination reaction. An Arg84Lys mutant showed a complete loss of enzymatic activity, suggesting that the guanidinium group of the arginine is essential for desulfination. AcdDPN7 is the first desulfinase with an acyl-CoA dehydrogenase fold to be reported, which underlines the versatility of this enzyme scaffold.


Subject(s)
Acyl-CoA Dehydrogenase/chemistry , Alcaligenaceae/enzymology , Coenzyme A/chemistry , Enzymes/chemistry , Propionates/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Folding
11.
PLoS Pathog ; 9(10): e1003673, 2013.
Article in English | MEDLINE | ID: mdl-24146618

ABSTRACT

Latency-associated nuclear antigen (LANA) mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Šresolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s).


Subject(s)
DNA, Viral/chemistry , Protein Folding , Rhadinovirus/chemistry , Viral Proteins/chemistry , Virus Latency , DNA, Viral/genetics , DNA, Viral/metabolism , Mutation , Protein Binding , Protein Structure, Tertiary , Rhadinovirus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism
12.
JAMA ; 323(2): 185, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31935019
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1366-74, 2014 May.
Article in English | MEDLINE | ID: mdl-24816105

ABSTRACT

Geobacillus thermoglucosidasius is a thermophilic bacterium that is able to ferment both C6 and C5 sugars to produce ethanol. During growth on hemicellulose biomass, an intracellular ß-xylosidase catalyses the hydrolysis of xylo-oligosaccharides to the monosaccharide xylose, which can then enter the pathways of central metabolism. The gene encoding a G. thermoglucosidasius ß-xylosidase belonging to CAZy glycoside hydrolase family GH52 has been cloned and expressed in Escherichia coli. The recombinant enzyme has been characterized and a high-resolution (1.7 Å) crystal structure has been determined, resulting in the first reported structure of a GH52 family member. A lower resolution (2.6 Å) structure of the enzyme-substrate complex shows the positioning of the xylobiose substrate to be consistent with the proposed retaining mechanism of the family; additionally, the deep cleft of the active-site pocket, plus the proximity of the neighbouring subunit, afford an explanation for the lack of catalytic activity towards the polymer xylan. Whilst the fold of the G. thermoglucosidasius ß-xylosidase is completely different from xylosidases in other CAZy families, the enzyme surprisingly shares structural similarities with other glycoside hydrolases, despite having no more than 13% sequence identity.


Subject(s)
Geobacillus/enzymology , Xylosidases/chemistry , Xylosidases/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Disaccharides/chemistry , Disaccharides/metabolism , Escherichia coli/genetics , Models, Molecular , Protein Conformation , Xylosidases/genetics
14.
Nat Commun ; 15(1): 1709, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402242

ABSTRACT

With the advent of serial X-ray crystallography on microfocus beamlines at free-electron laser and synchrotron facilities, the demand for protein microcrystals has significantly risen in recent years. However, by in vitro crystallization extensive efforts are usually required to purify proteins and produce sufficiently homogeneous microcrystals. Here, we present InCellCryst, an advanced pipeline for producing homogeneous microcrystals directly within living insect cells. Our baculovirus-based cloning system enables the production of crystals from completely native proteins as well as the screening of different cellular compartments to maximize chances for protein crystallization. By optimizing cloning procedures, recombinant virus production, crystallization and crystal detection, X-ray diffraction data can be collected 24 days after the start of target gene cloning. Furthermore, improved strategies for serial synchrotron diffraction data collection directly from crystals within living cells abolish the need to purify the recombinant protein or the associated microcrystals.


Subject(s)
Lasers , Synchrotrons , Crystallography, X-Ray , Crystallization , Recombinant Proteins/genetics
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 11): 2216-25, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24189233

ABSTRACT

A method is described for generating protein fragments suitable for use as molecular-replacement (MR) template models. The template model for a protein suspected to undergo a conformational change is perturbed along combinations of low-frequency normal modes of the elastic network model. The unperturbed structure is then compared with each perturbed structure in turn and the structurally invariant regions are identified by analysing the difference distance matrix. These fragments are scored with SCEDS, which is a combined measure of the sphericity of the fragments, the continuity of the fragments with respect to the polypeptide chain, the equality in number of atoms in the fragments and the density of C(α) atoms in the triaxial ellipsoid of the fragment extents. The fragment divisions with the highest SCEDS are then used as separate template models for MR. Test cases show that where the protein contains fragments that undergo a change in juxtaposition between template model and target, SCEDS can identify fragments that lead to a lower R factor after ten cycles of all-atom refinement with REFMAC5 than the original template structure. The method has been implemented in the software Phaser.


Subject(s)
Amino Acid Substitution , Models, Molecular , Peptide Fragments/chemistry , Peptides/chemistry , Software , Crystallography, X-Ray/instrumentation , Crystallography, X-Ray/methods , Elasticity , Likelihood Functions , Molecular Dynamics Simulation , Protein Conformation , Templates, Genetic
16.
Nat Struct Mol Biol ; 30(7): 970-979, 2023 07.
Article in English | MEDLINE | ID: mdl-37386213

ABSTRACT

Proton transport is indispensable for cell life. It is believed that molecular mechanisms of proton movement through different types of proton-conducting molecules have general universal features. However, elucidation of such mechanisms is a challenge. It requires true-atomic-resolution structures of all key proton-conducting states. Here we present a comprehensive function-structure study of a light-driven bacterial inward proton pump, xenorhodopsin, from Bacillus coahuilensis in all major proton-conducting states. The structures reveal that proton translocation is based on proton wires regulated by internal gates. The wires serve as both selectivity filters and translocation pathways for protons. The cumulative results suggest a general concept of proton translocation. We demonstrate the use of serial time-resolved crystallography at a synchrotron source with sub-millisecond resolution for rhodopsin studies, opening the door for principally new applications. The results might also be of interest for optogenetics since xenorhodopsins are the only alternative tools to fire neurons.


Subject(s)
Proton Pumps , Protons , Proton Pumps/chemistry , Ion Transport
17.
Science ; 374(6568): 717-723, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34735222

ABSTRACT

The evolutionary origin of metazoan cell types such as neurons and muscles is not known. Using whole-body single-cell RNA sequencing in a sponge, an animal without nervous system and musculature, we identified 18 distinct cell types. These include nitric oxide­sensitive contractile pinacocytes, amoeboid phagocytes, and secretory neuroid cells that reside in close contact with digestive choanocytes that express scaffolding and receptor proteins. Visualizing neuroid cells by correlative x-ray and electron microscopy revealed secretory vesicles and cellular projections enwrapping choanocyte microvilli and cilia. Our data show a communication system that is organized around sponge digestive chambers, using conserved modules that became incorporated into the pre- and postsynapse in the nervous systems of other animals.


Subject(s)
Biological Evolution , Porifera/cytology , Animals , Cell Communication , Cell Surface Extensions/ultrastructure , Cilia/physiology , Cilia/ultrastructure , Digestive System/cytology , Mesoderm/cytology , Nervous System/cytology , Nervous System Physiological Phenomena , Nitric Oxide/metabolism , Porifera/genetics , Porifera/metabolism , RNA-Seq , Secretory Vesicles/ultrastructure , Signal Transduction , Single-Cell Analysis , Transcriptome
18.
Nucleic Acids Res ; 36(Web Server issue): W42-6, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18460546

ABSTRACT

Rapid alignment of proteins in terms of domains (RAPIDO) is a web server for the 3D alignment of crystal structures of different protein molecules in the presence of conformational change. The structural alignment algorithm identifies groups of equivalent atoms whose interatomic distances are constant (within a defined tolerance) in the two structures being compared and considers these groups of atoms as rigid bodies. In addition to the functionalities provided by existing tools, RAPIDO can identify structurally equivalent regions also when these consist of fragments that are distant in terms of sequence and separated by other movable domains. Furthermore, RAPIDO takes the variation in the reliability of atomic coordinates into account in the comparison of distances between equivalent atoms by employing weighting-functions based on the refined B-values. The regions identified as equivalent by RAPIDO furnish reliable sets of residues for the superposition of the two structures for subsequent detailed analysis. The RAPIDO server, with related documentation, is available at http://webapps.embl-hamburg.de/rapido.


Subject(s)
Protein Structure, Tertiary , Software , Structural Homology, Protein , Algorithms , Carbon-Nitrogen Ligases/chemistry , Internet , Models, Molecular , User-Computer Interface
19.
Acta Crystallogr D Struct Biol ; 75(Pt 2): 192-199, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30821707

ABSTRACT

Harnessing the anomalous signal from macromolecular crystals with volumes of less than 10 000 µm3 for native phasing requires careful experimental planning. The type of anomalous scatterers that are naturally present in the sample, such as sulfur, phosphorus and calcium, will dictate the beam energy required and determine the level of radiation sensitivity, while the crystal size will dictate the beam size and the sample-mounting technique, in turn indicating the specifications of a suitable beamline. On the EMBL beamline P13 at PETRA III, Mesh&Collect data collection from concanavalin A microcrystals with linear dimensions of ∼20 µm or less using an accordingly sized microbeam at a wavelength of 1.892 Š(6.551 keV, close to the Mn edge at 6.549 keV) increases the expected Bijvoet ratio to 2.1% from an expected 0.7% at 12.6 keV (Se K edge), thus allowing experimental phase determination using the anomalous signal from naturally present Mn2+ and Ca2+ ions. Dozens of crystals were harvested and flash-cryocooled in micro-meshes, rapidly screened for diffraction (less than a minute per loop) and then used for serial Mesh&Collect collection of about 298 partial data sets (10° of crystal rotation per sample). The partial data sets were integrated and scaled. A genetic algorithm for combining partial data sets was used to select those to be merged into a single data set. This final data set showed high completeness, high multiplicity and sufficient anomalous signal to locate the anomalous scatterers, and provided phasing information which allowed complete auto-tracing of the polypeptide chain. To allow the complete experiment to run in less than 2 h, a practically acceptable time frame, the diffractometer and detector had to run together with limited manual intervention. The combination of several cutting-edge components allowed accurate anomalous signal to be measured from small crystals.


Subject(s)
Canavalia/chemistry , Concanavalin A/chemistry , Crystallization/methods , Crystallography, X-Ray/methods , Algorithms , Calcium/chemistry , Cations, Divalent/chemistry , Crystallization/instrumentation , Crystallography, X-Ray/instrumentation , Data Collection/instrumentation , Data Collection/methods , Equipment Design , Manganese/chemistry , Models, Molecular , Protein Conformation , Workflow
20.
Dent Mater J ; 38(4): 579-583, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31105159

ABSTRACT

Methacrylate monomers found in many dental materials cause toxicity to dental pulp cells but the mechanism of the toxicity is poorly understood. We used cultured human dental pulp cells to test the effects of three commonly used monomers; bisphenol-A-glycidyl methacrylate (Bis-GMA), urethane dimethacrylate (UDMA), and triethyleneglycol dimethacrylate (TEGDMA). The order of toxicity was Bis-GMA>UDMA>TEGDMA. The toxicity correlated inversely with cystine uptake, with TEGDMA stimulating uptake and BisGMA and UDMA inhibiting uptake. Bis-GMA and UDMA induced oxidative stress, while TEGDMA did not. Toxicity correlated poorly with glutathione levels, as all compounds decreased cellular glutathione. TEGDMA is less toxic than Bis-GMA and UDMA likely because it stimulates cystine uptake and does not induce oxidative stress, the enhanced uptake of cystine appears to compensate for TEGDMA's direct interaction with glutathione. Bis-GMA and UDMA both deplete glutathione and inhibit cystine uptake leading to oxidative stress and cell death.


Subject(s)
Composite Resins , Dental Pulp , Bisphenol A-Glycidyl Methacrylate , Dental Materials , Humans , Methacrylates , Polyethylene Glycols , Polymethacrylic Acids , Polyurethanes
SELECTION OF CITATIONS
SEARCH DETAIL