Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Inorg Chem ; 62(25): 9904-9911, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37314410

ABSTRACT

The electronic structure and dynamics of ruthenium complexes are widely studied given their use in catalytic and light-harvesting materials. Here we investigate three model Ru complexes, [RuIII(NH3)6]3+, [RuII(bpy)3]2+, and [RuII(CN)6]4-, with L3-edge 2p3d resonant inelastic X-ray scattering (RIXS) to probe unoccupied 4d valence orbitals and occupied 3d orbitals and to gain insight into the interactions between these levels. The 2p3d RIXS maps contain a higher level of spectral information than the L3 X-ray absorption near edge structure (XANES). This study provides a direct measure of the 3d spin-orbit splittings of 4.3, 4.0, and 4.1 eV between the 3d5/2 and 3d3/2 orbitals of the [RuIII(NH3)6]3+, [RuII(bpy)3]2+, and [RuII(CN)6]4- complexes, respectively.

2.
J Chem Phys ; 154(21): 214107, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34240961

ABSTRACT

Femtosecond x-ray pump-x-ray probe experiments are currently possible at free electron lasers such as the linac coherent light source, which opens new opportunities for studying solvated transition metal complexes. In order to make the most effective use of these kinds of experiments, it is necessary to determine which chemical properties an x-ray probe pulse will measure. We have combined electron cascade calculations and excited-state time-dependent density functional theory calculations to predict the initial state prepared by an x-ray pump and the subsequent x-ray probe spectra at the Fe K-edge in the solvated model transition metal complex, K4FeII(CN)6. We find several key spectral features that report on the ligand-field splitting and the 3p and 3d electron interactions. We then show how these features could be measured in an experiment.

3.
Inorg Chem ; 58(14): 9341-9350, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31241335

ABSTRACT

We have employed a range of ultrafast X-ray spectroscopies in an effort to characterize the lowest energy excited state of [Fe(dcpp)2]2+ (where dcpp is 2,6-(dicarboxypyridyl)pyridine). This compound exhibits an unusually short excited-state lifetime for a low-spin Fe(II) polypyridyl complex of 270 ps in a room-temperature fluid solution, raising questions as to whether the ligand-field strength of dcpp had pushed this system beyond the 5T2/3T1 crossing point and stabilizing the latter as the lowest energy excited state. Kα and Kß X-ray emission spectroscopies have been used to unambiguously determine the quintet spin multiplicity of the long-lived excited state, thereby establishing the 5T2 state as the lowest energy excited state of this compound. Geometric changes associated with the photoinduced ligand-field state conversion have also been monitored with extended X-ray absorption fine structure. The data show the typical average Fe-ligand bond length elongation of ∼0.18 Å for a 5T2 state and suggest a high anisotropy of the primary coordination sphere around the metal center in the excited 5T2 state, in stark contrast to the nearly perfect octahedral symmetry that characterizes the low-spin 1A1 ground state structure. This study illustrates how the application of time-resolved X-ray techniques can provide insights into the electronic structures of molecules-in particular, transition metal complexes-that are difficult if not impossible to obtain by other means.

4.
J Am Chem Soc ; 140(21): 6554-6561, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29771112

ABSTRACT

We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH2S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

5.
J Am Chem Soc ; 139(13): 4797-4804, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28219243

ABSTRACT

We applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ∼70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemical reaction pathways and transient products of sulfur-containing molecules in solution.

6.
Acc Chem Res ; 48(11): 2957-66, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26488127

ABSTRACT

Polypyridyl transition-metal complexes are an intriguing class of compounds due to the relatively facile chemical designs and variations in ligand-field strengths that allow for spin-state changes and hence electronic configurations in response to external perturbations such as pressure and light. Light-activated spin-conversion complexes have possible applications in a variety of molecular-based devices, and ultrafast excited-state evolution in these complexes is of fundamental interest for understanding of the origins of spin-state conversion in metal complexes. Knowledge of the interplay of structure and valence charge distributions is important to understand which degrees of freedom drive spin-conversion and which respond in a favorable (or unfavorable) manner. To track the response of the constituent components, various types of time-resolved X-ray probe methods have been utilized for a broad range of chemical and biological systems relevant to catalysis, solar energy conversions, and functional molecular devices. In particular, transient soft X-ray spectroscopy of solvated molecules can offer complementary information on the detailed electronic structures and valence charge distributions of photoinduced intermediate species: First-row transition-metal L-edges consist of 2p-3d transitions, which directly probe the unoccupied valence density of states and feature lifetime broadening in the range of 100 meV, making them sensitive spectral probes of metal-ligand interactions. In this Account, we present some of our recent progress in employing picosecond and femtosecond soft X-ray pulses from synchrotron sources to investigate element specific valence charge distributions and spin-state evolutions in Fe(II) polypyridyl complexes via core-level transitions. Our results on transient L-edge spectroscopy of Fe(II) complexes clearly show that the reduction in σ-donation is compensated by significant attenuation of π-backbonding upon spin-crossover. This underscores the important information contained in transient metal L-edge spectroscopy on changes in the 3d orbitals including oxidation states, orbital symmetries, and covalency, which largely define the chemistry of these complexes. In addition, ligand K-edge spectroscopy reveals the "ligand view" of the valence charge density by probing 1s-2p core-level transitions at the K-edge of light elements such as nitrogen, carbon, and oxygen. In the case of Fe(II) spin-conversion complexes, additional details of the metal-ligand interactions can be obtained by this type of X-ray spectroscopy. With new initiatives in and construction of X-ray free-electron laser sources, we expect time-resolved soft X-ray spectroscopy to pave a new way to study electronic and molecular dynamics of functional materials, thereby answering many interesting scientific questions in inorganic chemistry and material science.


Subject(s)
Ferrous Compounds/chemistry , X-Ray Absorption Spectroscopy , Models, Chemical
7.
Inorg Chem ; 55(12): 5895-903, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27248860

ABSTRACT

We present a time-resolved X-ray spectroscopic study of the structural and electronic rearrangements of the photocatalyst Mn2(CO)10 upon photocleavage of the metal-metal bond. Our study of the manganese K-edge fine structure reveals details of both the molecular structure and valence charge distribution of the photodissociated radical product. Transient X-ray absorption spectra of the formation of the Mn(CO)5 radical demonstrate surprisingly small structural modifications between the parent molecule and the resulting two identical manganese monomers. Small modifications of the local valence charge distribution are decisive for the catalytic activity of the radical product. The spectral changes reflect altered hybridization of metal-3d, metal-4p, and ligand-2p orbitals, particularly loss of interligand interaction, accompanied by the necessary spin transition due to radical formation. The spectral changes in the manganese pre- and main-edge region are well-reproduced by time-dependent density functional theory and ab initio multiple scattering calculations.

8.
J Phys Chem A ; 117(21): 4444-54, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23635307

ABSTRACT

Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of Ru(II) and Ru(III) complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6](4-) and Ru(II) polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5M(II)-CN-Ru(III)(NH3)5](-) (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

9.
Nature ; 449(7158): 72-4, 2007 Sep 06.
Article in English | MEDLINE | ID: mdl-17805291

ABSTRACT

Controlling a phase of matter by coherently manipulating specific vibrational modes has long been an attractive (yet elusive) goal for ultrafast science. Solids with strongly correlated electrons, in which even subtle crystallographic distortions can result in colossal changes of the electronic and magnetic properties, could be directed between competing phases by such selective vibrational excitation. In this way, the dynamics of the electronic ground state of the system become accessible, and new insight into the underlying physics might be gained. Here we report the ultrafast switching of the electronic phase of a magnetoresistive manganite via direct excitation of a phonon mode at 71 meV (17 THz). A prompt, five-order-of-magnitude drop in resistivity is observed, associated with a non-equilibrium transition from the stable insulating phase to a metastable metallic phase. In contrast with light-induced and current-driven phase transitions, the vibrationally driven bandgap collapse observed here is not related to hot-carrier injection and is uniquely attributed to a large-amplitude Mn-O distortion. This corresponds to a perturbation of the perovskite-structure tolerance factor, which in turn controls the electronic bandwidth via inter-site orbital overlap. Phase control by coherent manipulation of selected metal-oxygen phonons should find extensive application in other complex solids--notably in copper oxide superconductors, in which the role of Cu-O vibrations on the electronic properties is currently controversial.

10.
Nat Commun ; 14(1): 3384, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37291130

ABSTRACT

Femtosecond pump-probe spectroscopy using ultrafast optical and infrared pulses has become an essential tool to discover and understand complex electronic and structural dynamics in solvated molecular, biological, and material systems. Here we report the experimental realization of an ultrafast two-color X-ray pump X-ray probe transient absorption experiment performed in solution. A 10 fs X-ray pump pulse creates a localized excitation by removing a 1s electron from an Fe atom in solvated ferro- and ferricyanide complexes. Following the ensuing Auger-Meitner cascade, the second X-ray pulse probes the Fe 1s → 3p transitions in resultant novel core-excited electronic states. Careful comparison of the experimental spectra with theory, extracts +2 eV shifts in transition energies per valence hole, providing insight into correlated interactions of valence 3d with 3p and deeper-lying electrons. Such information is essential for accurate modeling and predictive synthesis of transition metal complexes relevant for applications ranging from catalysis to information storage technology. This study demonstrates the experimental realization of the scientific opportunities possible with the continued development of multicolor multi-pulse X-ray spectroscopy to study electronic correlations in complex condensed phase systems.


Subject(s)
Coordination Complexes , X-Ray Absorption Spectroscopy , X-Rays
11.
J Phys Chem Lett ; 13(1): 378-386, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34985900

ABSTRACT

Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)5FeIICNRuIII(NH3)5]-, in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.6 ± 0.2, resulting from excited-state metal-to-metal charge transfer, on an ∼60 fs time scale. Our combined experimental and computational approach provides a spectroscopic ruler for quantifying excited-state valency in solvated complexes.

12.
Nat Rev Phys ; 3(4): 264-282, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34212130

ABSTRACT

The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.

13.
J Phys Chem Lett ; 12(4): 1182-1188, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33480697

ABSTRACT

Zinc porphyrin solar cell dyes with donor-π-acceptor architectures combine light absorber (π), electron-donor, and electron-acceptor moieties inside a single molecule with atomic precision. The donor-π-acceptor design promotes the separation of charge carriers following optical excitation. Here, we probe the excited-state electronic structure within such molecules by combining time-resolved X-ray absorption spectroscopy at the N K-edge with first-principles time-dependent density functional theory (TD-DFT) calculations. Customized Zn porphyrins with strong-donor triphenylamine groups or weak-donor tri-tert-butylbenzene groups were synthesized. Energetically well-separated N K-edge absorption features simultaneously probe the excited-state electronic structure from the perspectives of the macrocycle and triphenylamine N atoms. New absorption transitions between the macrocycle N atoms and the excited-state HOMO vacancy are observed, and the triphenylamine associated absorption feature blue-shifts, consistent with partial oxidation of the donor groups in the excited state.

14.
Chem Sci ; 12(10): 3713-3725, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-34163645

ABSTRACT

Ru-complexes are widely studied because of their use in biological applications and photoconversion technologies. We reveal novel insights into the chemical bonding of a series of Ru(ii)- and Ru(iii)-complexes by leveraging recent advances in high-energy-resolution tender X-ray spectroscopy and theoretical calculations. We perform Ru 2p4d resonant inelastic X-ray scattering (RIXS) to probe the valence excitations in dilute solvated Ru-complexes. Combining these experiments with a newly developed theoretical approach based on time-dependent density functional theory, we assign the spectral features and quantify the metal-ligand bonding interactions. The valence-to-core RIXS features uniquely identify the metal-centered and charge transfer states and allow extracting the ligand-field splitting for all the complexes. The combined experimental and theoretical approach described here is shown to reliably characterize the ground and excited valence states of Ru complexes, and serve as a basis for future investigations of ruthenium, or other 4d metals active sites, in biological and chemical applications.

15.
J Phys Chem Lett ; 12(28): 6676-6683, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34260255

ABSTRACT

We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.

16.
Nat Chem ; 13(4): 343-349, 2021 04.
Article in English | MEDLINE | ID: mdl-33589787

ABSTRACT

It is well known that the solvent plays a critical role in ultrafast electron-transfer reactions. However, solvent reorganization occurs on multiple length scales, and selectively measuring short-range solute-solvent interactions at the atomic level with femtosecond time resolution remains a challenge. Here we report femtosecond X-ray scattering and emission measurements following photoinduced charge-transfer excitation in a mixed-valence bimetallic (FeiiRuiii) complex in water, and their interpretation using non-equilibrium molecular dynamics simulations. Combined experimental and computational analysis reveals that the charge-transfer excited state has a lifetime of 62 fs and that coherent translational motions of the first solvation shell are coupled to the back electron transfer. Our molecular dynamics simulations identify that the observed coherent translational motions arise from hydrogen bonding changes between the solute and nearby water molecules upon photoexcitation, and have an amplitude of tenths of ångströms, 120-200 cm-1 frequency and ~100 fs relaxation time. This study provides an atomistic view of coherent solvent reorganization mediating ultrafast intramolecular electron transfer.

17.
J Am Chem Soc ; 132(19): 6809-16, 2010 May 19.
Article in English | MEDLINE | ID: mdl-20426414

ABSTRACT

Solution-phase photoinduced low-spin to high-spin conversion in the Fe(II) polypyridyl complex [Fe(tren(py)(3))](2+) (where tren(py)(3) is tris(2-pyridylmethyliminoethyl)amine) has been studied via picosecond soft X-ray spectroscopy. Following (1)A(1) --> (1)MLCT (metal-to-ligand charge transfer) excitation at 560 nm, changes in the iron L(2)- and L(3)-edges were observed concomitant with formation of the transient high-spin (5)T(2) state. Charge-transfer multiplet calculations coupled with data acquired on low-spin and high-spin model complexes revealed a reduction in ligand field splitting of approximately 1 eV in the high-spin state relative to the singlet ground state. A significant reduction in orbital overlap between the central Fe-3d and the ligand N-2p orbitals was directly observed, consistent with the expected ca. 0.2 A increase in Fe-N bond length upon formation of the high-spin state. The overall occupancy of the Fe-3d orbitals remains constant upon spin crossover, suggesting that the reduction in sigma-donation is compensated by significant attenuation of pi-back-bonding in the metal-ligand interactions. These results demonstrate the feasibility and unique potential of time-resolved soft X-ray absorption spectroscopy to study ultrafast reactions in the liquid phase by directly probing the valence orbitals of first-row metals as well as lighter elements during the course of photochemical transformations.

18.
J Chem Phys ; 131(23): 234505, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20025333

ABSTRACT

We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

19.
Nat Commun ; 9(1): 1989, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29777157

ABSTRACT

Ultrafast isomerization reactions underpin many processes in (bio)chemical systems and molecular materials. Understanding the coupled evolution of atomic and molecular structure during isomerization is paramount for control and rational design in molecular science. Here we report transient X-ray absorption studies of the photo-induced linkage isomerization of a Ru-based photochromic molecule. X-ray spectra reveal the spin and valence charge of the Ru atom and provide experimental evidence that metal-centered excited states mediate isomerization. Complementary X-ray spectra of the functional ligand S atoms probe the nuclear structural rearrangements, highlighting the formation of two metal-centered states with different metal-ligand bonding. These results address an essential open question regarding the relative roles of transient charge-transfer and metal-centered states in mediating photoisomerization. Global temporal and spectral data analysis combined with time-dependent density functional theory reveals a complex mechanism for photoisomerization with atomic details of the transient molecular and electronic structure not accessible by other means.

20.
J Phys Chem B ; 122(19): 5075-5086, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29613798

ABSTRACT

We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.

SELECTION OF CITATIONS
SEARCH DETAIL