Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 32(6): 1010-1031, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36282542

ABSTRACT

Emery-Dreifuss muscular dystrophy (EDMD) is a genetically and clinically variable disorder. Previous attempts to use gene expression changes to find its pathomechanism were unavailing, so we engaged a functional pathway analysis. RNA-Seq was performed on cells from 10 patients diagnosed with an EDMD spectrum disease with different mutations in seven genes. Upon comparing to controls, the pathway analysis revealed that multiple genes involved in fibrosis, metabolism, myogenic signaling and splicing were affected in all patients. Splice variant analysis revealed alterations of muscle-specific variants for several important muscle genes. Deeper analysis of metabolic pathways revealed a reduction in glycolytic and oxidative metabolism and reduced numbers of mitochondria across a larger set of 14 EDMD spectrum patients and 7 controls. Intriguingly, the gene expression signatures segregated the patients into three subgroups whose distinctions could potentially relate to differences in clinical presentation. Finally, differential expression analysis of miRNAs changing in the patients similarly highlighted fibrosis, metabolism and myogenic signaling pathways. This pathway approach revealed a transcriptome profile that can both be used as a template for establishing a biomarker panel for EDMD and direct further investigation into its pathomechanism. Furthermore, the segregation of specific gene changes into distinct groups that appear to correlate with clinical presentation may template development of prognostic biomarkers, though this will first require their testing in a wider set of patients with more clinical information.


Subject(s)
Muscular Dystrophy, Emery-Dreifuss , Humans , Muscular Dystrophy, Emery-Dreifuss/genetics , Mutation , Fibrosis , Biomarkers
2.
Mol Genet Metab ; 141(2): 108121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184428

ABSTRACT

BACKGROUND: The Phase 3 COMET trial (NCT02782741) comparing avalglucosidase alfa and alglucosidase alfa included health-related quality of life (HRQoL) assessments in treatment-naïve patients with late-onset Pompe disease (LOPD). Here, we further characterize results from disease-specific and general patient-reported outcome (PRO) measures. METHODS: Adults who participated in the COMET trial receiving avalglucosidase alfa or alglucosidase alfa (both 20 mg/kg biweekly) during the 49-week double-blind treatment period were included in the analysis. Proportions of patients exceeding meaningful change thresholds at Week 49 were compared post hoc between treatment groups. PROs and their meaningful change thresholds included: Pompe Disease Severity Scale (PDSS; decrease 1.0-1.5 points), Pompe Disease Impact Scale (PDIS; decrease 1.0-1.5 points), Rasch-built Pompe-specific Activity Scale (R-PAct; change from unable to able to complete activity), 12-item Short Form Health Survey (SF-12; physical component summary [PCS] score: increase ≥6 points, mental component summary [MCS] score: increase ≥7 points), EuroQol 5 Dimension 5 Level (EQ-5D-5L; improvement of ≥1 category), and Patient Global Impression of Change (PGIC; any improvement). RESULTS: The analysis included 99 adult patients (avalglucosidase alfa n = 50; alglucosidase alfa n = 49). Patients who received avalglucosidase alfa had significantly greater odds of achieving a meaningful change versus alglucosidase alfa for the PDSS Shortness of Breath (OR [95% CI] 11.79 [2.24; 62.18]), Fatigue/Pain (6.24 [1.20; 32.54]), Morning Headache (13.98 [1.71; 114.18]), and Overall Fatigue (5.88 [1.37; 25.11]) domains, and were significantly more likely to meet meaningful change thresholds across multiple PDSS domains (all nominal p < 0.05). A numerically greater proportion of patients in the avalglucosidase alfa group were able to complete selected activities of the R-PAct compared with the alglucosidase alfa group. Significantly greater proportions of patients who received avalglucosidase alfa achieved meaningful improvements for EQ-5D-5L usual activities dimension, EQ visual analog scale, and all four PGIC domains. The proportion of patients with improvements in SF-12 PCS and MCS was greater in the avalglucosidase alfa group versus alglucosidase alfa group, but was not significant (p > 0.05). CONCLUSIONS: These analyses show that avalglucosidase alfa improves multiple symptoms and aspects of daily functioning, including breathing and mobility. This supports the clinical relevance of the effects of avalglucosidase alfa on HRQoL for patients with LOPD.


Subject(s)
Glycogen Storage Disease Type II , Adult , Humans , alpha-Glucosidases/therapeutic use , Glycogen Storage Disease Type II/drug therapy , Quality of Life , Treatment Outcome
3.
Acta Neuropathol ; 147(1): 19, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38240888

ABSTRACT

Myotonic dystrophy type 2 (DM2) is an autosomal-dominant multisystemic disease with a core manifestation of proximal muscle weakness, muscle atrophy, myotonia, and myalgia. The disease-causing CCTG tetranucleotide expansion within the CNBP gene on chromosome 3 leads to an RNA-dominated spliceopathy, which is currently untreatable. Research exploring the pathophysiological mechanisms in myotonic dystrophy type 1 has resulted in new insights into disease mechanisms and identified mitochondrial dysfunction as a promising therapeutic target. It remains unclear whether similar mechanisms underlie DM2 and, if so, whether these might also serve as potential therapeutic targets. In this cross-sectional study, we studied DM2 skeletal muscle biopsy specimens on proteomic, molecular, and morphological, including ultrastructural levels in two separate patient cohorts consisting of 8 (explorative cohort) and 40 (confirmatory cohort) patients. Seven muscle biopsy specimens from four female and three male DM2 patients underwent proteomic analysis and respiratory chain enzymology. We performed bulk RNA sequencing, immunoblotting of respiratory chain complexes, mitochondrial DNA copy number determination, and long-range PCR (LR-PCR) to study mitochondrial DNA deletions on six biopsies. Proteomic and transcriptomic analyses revealed a downregulation of essential mitochondrial proteins and their respective RNA transcripts, namely of subunits of respiratory chain complexes I, III, and IV (e.g., mt-CO1, mt-ND1, mt-CYB, NDUFB6) and associated translation factors (TACO1). Light microscopy showed mitochondrial abnormalities (e.g., an age-inappropriate amount of COX-deficient fibers, subsarcolemmal accumulation) in most biopsy specimens. Electron microscopy revealed widespread ultrastructural mitochondrial abnormalities, including dysmorphic mitochondria with paracrystalline inclusions. Immunofluorescence studies with co-localization of autophagy (p62, LC-3) and mitochondrial marker proteins (TOM20, COX-IV), as well as immunohistochemistry for mitophagy marker BNIP3 indicated impaired mitophagic flux. Immunoblotting and LR-PCR did not reveal significant differences between patients and controls. In contrast, mtDNA copy number measurement showed a reduction of mtDNA copy numbers in the patient group compared to controls. This first multi-level study of DM2 unravels thus far undescribed functional and structural mitochondrial abnormalities. However, the molecular link between the tetranucleotide expansion and mitochondrial dysfunction needs to be further elucidated.


Subject(s)
Mitochondrial Diseases , Myotonic Dystrophy , Humans , Male , Female , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/pathology , Cross-Sectional Studies , Proteomics , RNA , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics
4.
Acta Neuropathol ; 148(1): 6, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012547

ABSTRACT

Myositis with anti-Ku-autoantibodies is a rare inflammatory myopathy associated with various connective tissue diseases. Histopathological studies have identified inflammatory and necrotizing aspects, but a precise morphological analysis and pathomechanistic disease model are lacking. We therefore aimed to carry out an in-depth morpho-molecular analysis to uncover possible pathomechanisms. Muscle biopsy specimens from 26 patients with anti-Ku-antibodies and unequivocal myositis were analyzed by immunohistochemistry, immunofluorescence, transcriptomics, and proteomics and compared to biopsy specimens of non-disease controls, immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM). Clinical findings and laboratory parameters were evaluated retrospectively and correlated with morphological and molecular features. Patients were mainly female (92%) with a median age of 56.5 years. Isolated myositis and overlap with systemic sclerosis were reported in 31%, respectively. Isolated myositis presented with higher creatine kinase levels and cardiac involvement (83%), whereas systemic sclerosis-overlap patients often had interstitial lung disease (57%). Histopathology showed a wide spectrum from mild to pronounced myositis with diffuse sarcolemmal MHC-class I (100%) and -II (69%) immunoreactivity, myofiber necrosis (88%), endomysial inflammation (85%), thickened capillaries (84%), and vacuoles (60%). Conspicuous sarcoplasmic protein aggregates were p62, BAG3, myotilin, or immunoproteasomal beta5i-positive. Proteomic and transcriptomic analysis identified prominent up-regulation of autophagy, proteasome, and hnRNP-related cell stress. To conclude, Ku + myositis is morphologically characterized by myofiber necrosis, MHC-class I and II positivity, variable endomysial inflammation, and distinct protein aggregation varying from IBM and IMNM, and it can be placed in the spectrum of scleromyositis and overlap myositis. It features characteristic sarcoplasmic protein aggregation on an acquired basis being functionally associated with altered chaperone, proteasome, and autophagy function indicating that Ku + myositis exhibit aspects of an acquired inflammatory protein-aggregate myopathy.


Subject(s)
Autoantibodies , Ku Autoantigen , Myositis , Humans , Female , Middle Aged , Male , Myositis/pathology , Myositis/immunology , Myositis/metabolism , Aged , Autoantibodies/immunology , Adult , Ku Autoantigen/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Retrospective Studies , Myositis, Inclusion Body/pathology , Myositis, Inclusion Body/metabolism
5.
Eur J Neurol ; 31(3): e15909, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37294693

ABSTRACT

BACKGROUND AND PURPOSE: Neurology residency programmes, which were first established at the beginning of the 20th century, have become mandatory all over Europe in the last 40-50 years. The first European Training Requirements in Neurology (ETRN) were published in 2005 and first updated in 2016. This paper reports the most recent revisions of the ETRN. METHODS: Members of the EAN board performed an in depth revision of the ETNR 2016-version, which was reviewed by members of the European Board and Section of Neurology of the UEMS, the Education and Scientific Panels, the Resident and Research Fellow Section and the Board of the EAN, as well as the presidents of the 47 European National Societies. RESULTS: The new (2022) ETRN suggest a 5-year training subdivided in three phases: a first phase (2 years) of general neurology training, a second phase (2 years) of training in neurophysiology/neurological subspecialties and a third phase (1 year) to expand clinical training (e.g., in other neurodisciplines) or for research (path for clinical neuroscientist). The necessary theoretical and clinical competences as well as learning objectives in diagnostic tests have been updated, are newly organized in four levels and include 19 neurological subspecialties. Finally, the new ETRN require, in addition to a programme director, a team of clinician-educators who regularly review the resident's progress. The 2022 update of the ETRN reflects emerging requirements for the practice of neurology and contributes to the international standardization of training necessary for the increasing needs of residents and specialists across Europe.


Subject(s)
Internship and Residency , Neurology , Humans , Neurology/education , Europe , Educational Status , Internationality
6.
Eur J Neurol ; : e16397, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39205420

ABSTRACT

BACKGROUND AND PURPOSE: The Rasch-Built Pompe-Specific Activity (R-PAct) scale is a patient-reported outcome measure specifically designed to quantify the effects of Pompe disease on daily life activities, developed for use in Dutch- and English-speaking countries. This study aimed to validate the R-PAct for use in other countries. METHODS: Four other language versions (German, French, Italian, and Spanish) of the R-PAct were created and distributed among Pompe patients (≥16 years old) in Germany, France, Spain, Italy, and Switzerland and pooled with data of newly diagnosed patients from Australia, Belgium, Canada, the Netherlands, New Zealand, the USA, and the UK and the original validation cohort (n = 186). The psychometric properties of the scale were assessed by exploratory factor analysis and Rasch analysis. RESULTS: Data for 520 patients were eligible for analysis. Exploratory factor analysis suggested that the items separated into two domains: Activities of Daily Living and Mobility. Both domains independently displayed adequate Rasch model measurement properties, following the removal of one item ("Are you able to practice a sport?") from the Mobility domain, and can be added together to form a "higher order" factor as well. Differential item functioning (DIF)-by-language assessment indicated DIF for several items; however, the impact of accounting for DIF was negligible. We recalibrated the nomogram (raw score interval-level transformation) for the updated 17-item R-PAct scale. The minimal detectable change value was 13.85 for the overall R-PAct. CONCLUSIONS: After removing one item, the modified-R-PAct scale is a valid disease-specific patient-reported outcome measure for patients with Pompe disease across multiple countries.

7.
Eur J Neurol ; 31(9): e16383, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38873957

ABSTRACT

BACKGROUND AND PURPOSE: Two novel enzyme replacement therapies (ERTs), studied in phase 3 trials in late-onset Pompe patients, reached marketing authorization by the European Medicines Agency in 2022 and 2023. The European Pompe Consortium (EPOC) updates and extends the scope of the 2017 recommendations for starting, switching and stopping ERT. METHODS: The European Pompe Consortium consists of 25 neuromuscular and metabolic experts from eight European countries. This update was performed after an in-person meeting, three rounds of discussion and voting to provide a consensus recommendation. RESULTS: The patient should be symptomatic, that is, should have skeletal muscle weakness or respiratory muscle involvement. Muscle magnetic resonance imaging findings showing substantial fat replacement can support the decision to start in a patient-by-patient scenario. Limited evidence supports switching ERT if there is no indication that skeletal muscle and/or respiratory function have stabilized or improved during standard ERT of 12 months or after severe infusion-associated reactions. Switching of ERT should be discussed on a patient-by-patient shared-decision basis. If there are severe, unmanageable infusion-associated reactions and no stabilization in skeletal muscle function during the first 2 years after starting or switching treatment, stopping ERT should be considered. After stopping ERT for inefficacy, restarting ERT can be considered. Six-monthly European Pompe Consortium muscle function assessments are recommended. CONCLUSIONS: The triple-S criteria on ERT start, switch and stop include muscle magnetic resonance imaging as a supportive finding and the potential option of home infusion therapy. Six-monthly long-term monitoring of muscle function is highly recommended to cover insights into the patient's trajectory under ERT.


Subject(s)
Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Glycogen Storage Disease Type II/drug therapy , Humans , Enzyme Replacement Therapy/methods , Europe
8.
Brain ; 146(5): 1831-1843, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36227727

ABSTRACT

Instability of simple DNA repeats has been known as a common cause of hereditary ataxias for over 20 years. Routine genetic diagnostics of these phenotypically similar diseases still rely on an iterative workflow for quantification of repeat units by PCR-based methods of limited precision. We established and validated clinical nanopore Cas9-targeted sequencing, an amplification-free method for simultaneous analysis of 10 repeat loci associated with clinically overlapping hereditary ataxias. The method combines target enrichment by CRISPR-Cas9, Oxford Nanopore long-read sequencing and a bioinformatics pipeline using the tools STRique and Megalodon for parallel detection of length, sequence, methylation and composition of the repeat loci. Clinical nanopore Cas9-targeted sequencing allowed for the precise and parallel analysis of 10 repeat loci associated with adult-onset ataxia and revealed additional parameter such as FMR1 promotor methylation and repeat sequence required for diagnosis at the same time. Using clinical nanopore Cas9-targeted sequencing we analysed 100 clinical samples of undiagnosed ataxia patients and identified causative repeat expansions in 28 patients. Parallel repeat analysis enabled a molecular diagnosis of ataxias independent of preconceptions on the basis of clinical presentation. Biallelic expansions within RFC1 were identified as the most frequent cause of ataxia. We characterized the RFC1 repeat composition of all patients and identified a novel repeat motif, AGGGG. Our results highlight the power of clinical nanopore Cas9-targeted sequencing as a readily expandable workflow for the in-depth analysis and diagnosis of phenotypically overlapping repeat expansion disorders.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Degenerations , Adult , Humans , Ataxia/genetics , Cerebellar Ataxia/genetics , Computational Biology , High-Throughput Nucleotide Sequencing , Fragile X Mental Retardation Protein
9.
Brain ; 146(4): 1388-1402, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36100962

ABSTRACT

Genetic diagnosis of facioscapulohumeral muscular dystrophy (FSHD) remains a challenge in clinical practice as it cannot be detected by standard sequencing methods despite being the third most common muscular dystrophy. The conventional diagnostic strategy addresses the known genetic parameters of FSHD: the required presence of a permissive haplotype, a size reduction of the D4Z4 repeat of chromosome 4q35 (defining FSHD1) or a pathogenic variant in an epigenetic suppressor gene (consistent with FSHD2). Incomplete penetrance and epistatic effects of the underlying genetic parameters as well as epigenetic parameters (D4Z4 methylation) pose challenges to diagnostic accuracy and hinder prediction of clinical severity. In order to circumvent the known limitations of conventional diagnostics and to complement genetic parameters with epigenetic ones, we developed and validated a multistage diagnostic workflow that consists of a haplotype analysis and a high-throughput methylation profile analysis (FSHD-MPA). FSHD-MPA determines the average global methylation level of the D4Z4 repeat array as well as the regional methylation of the most distal repeat unit by combining bisulphite conversion with next-generation sequencing and a bioinformatics pipeline and uses these as diagnostic parameters. We applied the diagnostic workflow to a cohort of 148 patients and compared the epigenetic parameters based on FSHD-MPA to genetic parameters of conventional genetic testing. In addition, we studied the correlation of repeat length and methylation level within the most distal repeat unit with age-corrected clinical severity and age at disease onset in FSHD patients. The results of our study show that FSHD-MPA is a powerful tool to accurately determine the epigenetic parameters of FSHD, allowing discrimination between FSHD patients and healthy individuals, while simultaneously distinguishing FSHD1 and FSHD2. The strong correlation between methylation level and clinical severity indicates that the methylation level determined by FSHD-MPA accounts for differences in disease severity among individuals with similar genetic parameters. Thus, our findings further confirm that epigenetic parameters rather than genetic parameters represent FSHD disease status and may serve as a valuable biomarker for disease status.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/pathology , DNA Methylation/genetics , Haplotypes , Chromosomes, Human, Pair 4/genetics
10.
Brain ; 146(9): 3800-3815, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36913258

ABSTRACT

Anoctamin-5 related muscle disease is caused by biallelic pathogenic variants in the anoctamin-5 gene (ANO5) and shows variable clinical phenotypes: limb-girdle muscular dystrophy type 12 (LGMD-R12), distal muscular dystrophy type 3 (MMD3), pseudometabolic myopathy or asymptomatic hyperCKaemia. In this retrospective, observational, multicentre study we gathered a large European cohort of patients with ANO5-related muscle disease to study the clinical and genetic spectrum and genotype-phenotype correlations. We included 234 patients from 212 different families, contributed by 15 centres from 11 European countries. The largest subgroup was LGMD-R12 (52.6%), followed by pseudometabolic myopathy (20.5%), asymptomatic hyperCKaemia (13.7%) and MMD3 (13.2%). In all subgroups, there was a male predominance, except for pseudometabolic myopathy. Median age at symptom onset of all patients was 33 years (range 23-45 years). The most frequent symptoms at onset were myalgia (35.3%) and exercise intolerance (34.1%), while at last clinical evaluation most frequent symptoms and signs were proximal lower limb weakness (56.9%) and atrophy (38.1%), myalgia (45.1%) and atrophy of the medial gastrocnemius muscle (38.4%). Most patients remained ambulatory (79.4%). At last evaluation, 45.9% of patients with LGMD-R12 additionally had distal weakness in the lower limbs and 48.4% of patients with MMD3 also showed proximal lower limb weakness. Age at symptom onset did not differ significantly between males and females. However, males had a higher risk of using walking aids earlier (P = 0.035). No significant association was identified between sportive versus non-sportive lifestyle before symptom onset and age at symptom onset nor any of the motor outcomes. Cardiac and respiratory involvement that would require treatment occurred very rarely. Ninety-nine different pathogenic variants were identified in ANO5 of which 25 were novel. The most frequent variants were c.191dupA (p.Asn64Lysfs*15) (57.7%) and c.2272C>T (p.Arg758Cys) (11.1%). Patients with two loss-of function variants used walking aids at a significantly earlier age (P = 0.037). Patients homozygous for the c.2272C>T variant showed a later use of walking aids compared to patients with other variants (P = 0.043). We conclude that there was no correlation of the clinical phenotype with the specific genetic variants, and that LGMD-R12 and MMD3 predominantly affect males who have a significantly worse motor outcome. Our study provides useful information for clinical follow up of the patients and for the design of clinical trials with novel therapeutic agents.


Subject(s)
Muscular Diseases , Muscular Dystrophies, Limb-Girdle , Female , Male , Humans , Myalgia/genetics , Retrospective Studies , Anoctamins/genetics , Mutation/genetics , Muscular Diseases/epidemiology , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/epidemiology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/diagnosis , Atrophy/pathology
11.
Nervenarzt ; 95(8): 721-729, 2024 Aug.
Article in German | MEDLINE | ID: mdl-38683354

ABSTRACT

BACKGROUND: Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES: The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS: This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS: The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS: The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.


Subject(s)
Magnetic Resonance Imaging , Muscle, Skeletal , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/methods , Humans , Germany , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/diagnostic imaging , Practice Guidelines as Topic , Radiology/standards , Neurology/standards
12.
Fortschr Neurol Psychiatr ; 92(4): 139-156, 2024 Apr.
Article in German | MEDLINE | ID: mdl-38636491

ABSTRACT

Myasthenia gravis - still a challenge for sufferers and doctors in 2023. But which therapy is best suited? Our clinically experienced experts have summarized the current guidelines for diagnosis and treatment in order to provide optimal support for those affected. Find out how you can carry out a quick and targeted diagnosis and which treatment options are available to alleviate the course of the disease.


Subject(s)
Myasthenia Gravis , Humans , Myasthenia Gravis/diagnosis , Myasthenia Gravis/therapy
13.
Curr Opin Neurol ; 36(5): 474-478, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37639480

ABSTRACT

PURPOSE OF REVIEW: Myotonic dystrophy type 2 (DM2) is a genetic disorder belonging to the spectrum of myotonic dystrophies. DM2 is characterized by progressive muscle weakness, wasting and muscle pain (myalgia), but can also affect many other organ systems. In this review, we provide an updated overview on the research literature on DM2 with a focus on the management of multisystemic involvement and atypical clinical phenotypes. RECENT FINDINGS: Recent studies have focused on different aspects of multisystemic involvement. Early and severe cardiac involvement can occur in DM2 and needs to be managed appropriately. Diabetes has been shown to be more common in DM2 than in DM1, while a combination of symptoms (cataracts, myotonia, tremor) can be used to raise clinical suspicion and initiate genetic testing for DM2. Autoimmune disease has been shown to occur in up to one-third of DM2 patients, possibly due to altered immune pathways. New evidence also suggests a childhood-onset phenotype presenting with foot deformities. SUMMARY: The multisystemic aspects of the disease require a multidisciplinary approach for some patients, most likely even including state-of-the-art cardiac and brain imaging to detect and treat complications earlier. Of note, our concept of DM2 as an adult-onset disease is somewhat challenged by evidence suggesting a few pediatric DM2 patients and possibly anticipation, at least in some DM2 families. More studies, including larger cohorts, are needed to better understand this possible early-onset DM2 phenotype variant.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 2 , Myotonic Dystrophy , Humans , Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/genetics , Myotonic Dystrophy/therapy , Affect , Perception
14.
Am J Pathol ; 192(8): 1151-1166, 2022 08.
Article in English | MEDLINE | ID: mdl-35605642

ABSTRACT

Late-onset Pompe disease (LOPD) is a rare genetic disorder produced by mutations in the GAA gene and is characterized by progressive muscle weakness. LOPD muscle biopsies show accumulation of glycogen along with the autophagic vacuoles associated with atrophic muscle fibers. The expression of molecules related to muscle fiber atrophy in muscle biopsies of LOPD patients was studied using immunofluorescence and real-time PCR. BCL2 and adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a well-known atrogene, was identified as a potential mediator of muscle fiber atrophy in LOPD muscle biopsies. Vacuolated fibers in LOPD patient muscle biopsies were smaller than nonvacuolated fibers and expressed BNIP3. The current data suggested that BNIP3 expression is regulated by inhibition of the AKT-mammalian target of rapamycin pathway, leading to phosphorylation of Unc-51 like autophagy activating kinase 1 (ULK1) at Ser317 by AMP-activated protein kinase. Myoblasts and myotubes obtained from LOPD patients and age-matched controls were studied to confirm these results using different molecular techniques. Myotubes derived from LOPD patients were likewise smaller and expressed BNIP3. Conclusively, transfection of BNIP3 into control myotubes led to myotube atrophy. These findings suggest a cascade that starts with the inhibition of the AKT-mammalian target of rapamycin pathway and activation of BNIP3 expression, leading to progressive muscle fiber atrophy. These results open the door to potential new treatments targeting BNIP3 to reduce its deleterious effects on muscle fiber atrophy in Pompe disease.


Subject(s)
Glycogen Storage Disease Type II , Atrophy/pathology , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Humans , Membrane Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Proto-Oncogene Proteins , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases/metabolism
15.
Acta Neuropathol ; 146(5): 725-745, 2023 11.
Article in English | MEDLINE | ID: mdl-37773216

ABSTRACT

Inclusion body myositis (IBM) is unique across the spectrum of idiopathic inflammatory myopathies (IIM) due to its distinct clinical presentation and refractoriness to current treatment approaches. One explanation for this resistance may be the engagement of cell-autonomous mechanisms that sustain or promote disease progression of IBM independent of inflammatory activity. In this study, we focused on senescence of tissue-resident cells as potential driver of disease. For this purpose, we compared IBM patients to non-diseased controls and immune-mediated necrotizing myopathy patients. Histopathological analysis suggested that cellular senescence is a prominent feature of IBM, primarily affecting non-myogenic cells. In-depth analysis by single nuclei RNA sequencing allowed for the deconvolution and study of muscle-resident cell populations. Among these, we identified a specific cluster of fibro-adipogenic progenitors (FAPs) that demonstrated key hallmarks of senescence, including a pro-inflammatory secretome, expression of p21, increased ß-galactosidase activity, and engagement of senescence pathways. FAP function is required for muscle cell health with changes to their phenotype potentially proving detrimental. In this respect, the transcriptomic landscape of IBM was also characterized by changes to the myogenic compartment demonstrating a pronounced loss of type 2A myofibers and a rarefication of acetylcholine receptor expressing myofibers. IBM muscle cells also engaged a specific pro-inflammatory phenotype defined by intracellular complement activity and the expression of immunogenic surface molecules. Skeletal muscle cell dysfunction may be linked to FAP senescence by a change in the collagen composition of the latter. Senescent FAPs lose collagen type XV expression, which is required to support myofibers' structural integrity and neuromuscular junction formation in vitro. Taken together, this study demonstrates an altered phenotypical landscape of muscle-resident cells and that FAPs, and not myofibers, are the primary senescent cell type in IBM.


Subject(s)
Myositis, Inclusion Body , Myositis , Humans , Myositis, Inclusion Body/metabolism , Adipogenesis , Collagen/metabolism , Muscle, Skeletal/metabolism
16.
Eur J Neurol ; 30(2): 399-412, 2023 02.
Article in English | MEDLINE | ID: mdl-36303290

ABSTRACT

BACKGROUND AND PURPOSE: Clinical outcome information on patients with neuromuscular diseases (NMDs) who have been infected with SARS-CoV-2 is limited. The aim of this study was to determine factors associated with the severity of COVID-19 outcomes in people with NMDs. METHODS: Cases of NMD, of any age, and confirmed/presumptive COVID-19, submitted to the International Neuromuscular COVID-19 Registry up to 31 December 2021, were included. A mutually exclusive ordinal COVID-19 severity scale was defined as follows: (1) no hospitalization; (2) hospitalization without oxygenation; (3) hospitalization with ventilation/oxygenation; and (4) death. Multivariable ordinal logistic regression analyses were used to estimate odds ratios (ORs) for severe outcome, adjusting for age, sex, race/ethnicity, NMD, comorbidities, baseline functional status (modified Rankin scale [mRS]), use of immunosuppressive/immunomodulatory medication, and pandemic calendar period. RESULTS: Of 315 patients from 13 countries (mean age 50.3 [±17.7] years, 154 [48.9%] female), 175 (55.5%) were not hospitalized, 27 (8.6%) were hospitalized without supplemental oxygen, 91 (28.9%) were hospitalized with ventilation/supplemental oxygen, and 22 (7%) died. Higher odds of severe COVID-19 outcomes were observed for: age ≥50 years (50-64 years: OR 2.4, 95% confidence interval [CI] 1.33-4.31; >64 years: OR 4.16, 95% CI 2.12-8.15; both vs. <50 years); non-White race/ethnicity (OR 1.81, 95% CI 1.07-3.06; vs. White); mRS moderately severe/severe disability (OR 3.02, 95% CI 1.6-5.69; vs. no/slight/moderate disability); history of respiratory dysfunction (OR 3.16, 95% CI 1.79-5.58); obesity (OR 2.24, 95% CI 1.18-4.25); ≥3 comorbidities (OR 3.2, 95% CI 1.76-5.83; vs. ≤2; if comorbidity count used instead of specific comorbidities); glucocorticoid treatment (OR 2.33, 95% CI 1.14-4.78); and Guillain-Barré syndrome (OR 3.1, 95% CI 1.35-7.13; vs. mitochondrial disease). CONCLUSIONS: Among people with NMDs, there is a differential risk of COVID-19 outcomes according to demographic and clinical characteristics. These findings could be used to develop tailored management strategies and evidence-based recommendations for NMD patients.


Subject(s)
COVID-19 , Neuromuscular Diseases , Humans , Female , Middle Aged , Male , SARS-CoV-2 , Neuromuscular Diseases/epidemiology , Registries , Oxygen
17.
Neurol Sci ; 44(4): 1301-1310, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36544079

ABSTRACT

OBJECTIVE: The connectivity between somatosensory evoked potentials (SEPs) and cortical plasticity remains elusive due to a lack of supporting data. This study investigates changes in pathological latencies and amplitudes of SEPs caused by an acute stroke after 2 weeks of rehabilitation with functional electrical stimulation (FES). Furthermore, changes in SEPs and the efficacy of FES against foot drop (FD) stroke symptoms were correlated using the 10-m walk test and foot-ankle strength. METHODS: A randomised controlled two-period crossover design plus a control group (group C) was designed. Group A (n = 16) was directly treated with FES, while group B (n = 16) was treated after 2 weeks. The untreated control group of 20 healthy adults underwent repeated SEP measurements for evaluation only. RESULTS: The repeated-measures ANOVA showed a decrease in tibial nerve (TN) P40 and N50 latencies in group A after the intervention, followed by a decline in non-paretic TN SEP in latency N50 (p < 0.05). Moreover, compared to groups B and C from baseline to 4 weeks, group A showed a decrease in paretic TN latency P40 and N50 (p < 0.05). An increase in FD strength and a reduction in step cadence in group B (p < 0.05) and a positive tendency in FD strength (p = 0.12) and step cadence (p = 0.08) in group A were observed after the treatment time. The data showed a moderate (r = 0.50-0.70) correlation between non-paretic TN latency N50 and step cadence in groups A and B after the intervention time. CONCLUSION: The FES intervention modified the pathological gait in association with improved SEP afferent feedback. Registered on 25 February 2021 on ClinicalTrials.gov under identifier number: NCT04767360.


Subject(s)
Electric Stimulation Therapy , Peroneal Neuropathies , Stroke Rehabilitation , Stroke , Adult , Humans , Peroneal Neuropathies/complications , Stroke/complications , Stroke/therapy , Evoked Potentials, Somatosensory , Electric Stimulation
18.
Aging Clin Exp Res ; 35(12): 3073-3083, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37943405

ABSTRACT

BACKGROUND: Glucocorticoids play a significant role in metabolic processes and pathways that impact muscle size, mass, and function. The expression of 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) has been previously described as a major regulator of skeletal muscle function in glucocorticoid-induced muscle atrophy and aging humans. Our study aimed to investigate glucocorticoid metabolism, including the expression of HSD11B1 in skeletal muscle, in patients with sarcopenia. METHODS: Muscle biopsies were taken from the vastus lateralis muscle of thirty-three patients over 60 years of age with hip fractures. Sarcopenia status was assessed according to the criteria of the European Working Group on Sarcopenia in Older People 2. Skeletal muscle mass was measured by bioelectrical impedance analysis. Cortisol and cortisone concentrations were measured in serum. Gene expression analysis of HSD11B1, NR3C1, FBXO32, and TRIM63 in muscle biopsies was performed. Serial cross sections of skeletal muscle were labeled with myosin heavy chain slow (fiber type-1) and fast (fiber type-2) antibodies. RESULTS: The study included 33 patients (21 women) with a mean age of 82.5 ± 6.3 years, 17 patients revealed sarcopenic (n = 16 non-sarcopenic). Serum cortisone concentrations were negatively correlated with muscle mass (ß = - 0.425; p = 0.034) and type-2 fiber diameter (ß = - 0.591; p = 0.003). Gene expression of HSD11B1 (ß = - 0.673; p = 0.008) showed a negative correlation with muscle mass in the sarcopenic group. A significant correlation was found for the non-sarcopenic group for NR3C1 (ß = 0.548; p = 0.028) and muscle mass. CONCLUSION: These findings suggest a pathogenetic role of HSD11B1 in sarcopenic muscle.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1 , Cortisone , Sarcopenia , Aged , Aged, 80 and over , Female , Humans , Middle Aged , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Cortisone/metabolism , Gene Expression , Glucocorticoids/metabolism , Muscle, Skeletal , Sarcopenia/genetics
19.
Nervenarzt ; 94(6): 473-487, 2023 Jun.
Article in German | MEDLINE | ID: mdl-37221259

ABSTRACT

BACKGROUND: The possibilities in the field of molecular therapies of neuromuscular diseases have rapidly developed in recent years. First compounds are already available in clinical practice and numerous other substances are in advanced phases of clinical trials. This article gives an exemplary overview of the current state of clinical research in molecular therapies of neuromuscular diseases. It also gives a view into the near future of the clinical application, including the challenges. DISCUSSION: Using Duchenne muscular dystrophy (DMD) and myotubular myopathy as examples, the principles of gene addition in monogenetic skeletal muscle diseases, which are already manifested in childhood are described. In addition to initial successes, the challenges and setbacks hindering the approval and regular clinical application of further compounds are demonstrated. Furthermore, the state of current clinical research in Becker-Kiener muscular dystrophy (BMD) and the numerous forms of limb-girdle muscular dystrophy (LGMD) are summarized. Numerous new therapeutic approaches and a corresponding outlook are also shown for facioscapulohumeral muscular dystrophy (FSHD), Pompe disease, and myotonic dystrophy. CONCLUSION: Clinical research in the field of molecular therapy of neuromuscular diseases is one of the pacesetters of modern precision medicine; however, challenges need to be seen, jointly addressed and overcome in the future.


Subject(s)
Muscular Dystrophy, Duchenne , Neuromuscular Diseases , Humans , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics , Neuromuscular Diseases/therapy , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Precision Medicine
20.
Fortschr Neurol Psychiatr ; 91(4): 164-168, 2023 Apr.
Article in German | MEDLINE | ID: mdl-36347473

ABSTRACT

Several types of molecular therapy have become a novel opportunity in the precision treatment of hereditary neuromuscular disorders. This cursive review of gene therapy in hereditary myopathies will focus on selected current phase 1 to 3 trials of common adult hereditary myopathies such as Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, calpainopathy, and dysferlinopathy. The treatment options for Pompe disease serve as an example for hereditary metabolic myopathies.


Subject(s)
Muscular Diseases , Muscular Dystrophies, Limb-Girdle , Neuromuscular Diseases , Adult , Humans , Genetic Therapy , Muscular Diseases/genetics , Muscular Diseases/therapy , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/therapy , Neuromuscular Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL