Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Anal Chem ; 85(22): 10717-24, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24125497

ABSTRACT

Rapid and effective methods of pathogen identifications are of major interest in clinical microbiological analysis to administer timely tailored antibiotic therapy. Raman spectroscopy as a label-free, culture-independent optical method is suitable to identify even single bacteria. However, the low bacteria concentration in body fluids makes it difficult to detect their characteristic molecular fingerprint directly in suspension. Therefore, in this study, Raman spectroscopy is combined with dielectrophoresis, which enables the direct translational manipulation of bacteria in suspensions with spatial nonuniform electrical fields so as to perform specific Raman spectroscopic characterization. A quadrupole electrode design is used to capture bacteria directly from fluids in well-defined microsized regions. With live/dead fluorescence viability staining, it is verified, that the bacteria survive this procedure for the relevant range of field strengths. The dielectrophoretic enrichment of bacteria allows for obtaining high quality Raman spectra in dilute suspensions with an integration time of only one second. As proof-of-principle study, the setup was tested with Escherichia coli and Enterococcus faecalis, two bacterial strains that are commonly encountered in urinary tract infections. Furthermore, to verify the potential for dealing with real world samples, pathogens from patients' urine have been analyzed. With the additional help of multivariate statistical analysis, a robust classification model could be built and allowed the classification of those two strains within a few minutes. In contrast, the standard microbiological diagnostics are based on very time-consuming cultivation tests. This setup holds the potential to reduce the crucial parameter diagnosis time by orders of magnitude.


Subject(s)
Electrophoresis/methods , Enterococcus faecalis/isolation & purification , Escherichia coli/isolation & purification , Spectrum Analysis, Raman/methods , Urinary Tract Infections/classification , Urinary Tract Infections/microbiology , Enterococcus faecalis/pathogenicity , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/urine , Fluorescence , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/urine , Humans , Urinary Tract Infections/urine
2.
J Biophotonics ; 10(11): 1547-1557, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28464521

ABSTRACT

In times of rising antibiotic resistances, there is a high need for fast, sensitive and specific methods to determine antibiotic susceptibilities of bacterial pathogens. Here, we present an integrated microfluidic device in which bacteria from diluted suspensions are captured in well-defined regions using on-chip dielectrophoresis and further analyzed in a label-free and non-destructive manner using Raman spectroscopy. Minimal sample preparation and automated sample processing ensure safe handling of infectious material with minimal hands-on time for the operator. Clinical applicability of the presented device is demonstrated by antibiotic susceptibility testing of Escherichia coli towards the commonly prescribed second generation fluoroquinolone ciprofloxacin. Ciprofloxacin resistant E. coli were differentiated from sensitive E. coli with high accuracy within roughly three hours total analysis time paving the way for future point-of-care devices. Spectral changes leading to the discrimination between sensitive and resistant bacteria are in excellent agreement with expected metabolic changes in the bacteria due to the mode of action of the drug. The robustness of the method was confirmed with experiments involving different chip devices with different designs, both electrode as well as microfluidics design, and material. Furthermore, general applicability was demonstrated with different operators over an extended time period of half a year.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Lab-On-A-Chip Devices , Spectrum Analysis, Raman/instrumentation , Time Factors
3.
Biomicrofluidics ; 9(4): 044118, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26339318

ABSTRACT

This work presents a polymeric centrifugal microfluidic platform for the rapid and sensitive identification of bacteria directly from urine, thus eliminating time-consuming cultivation steps. This "Lab-on-a-Disc" platform utilizes the rotationally induced centrifugal field to efficiently capture bacteria directly from suspension within a glass-polymer hybrid chip. Once trapped in an array of small V-shaped structures, the bacteria are readily available for spectroscopic characterization, such as Raman spectroscopic fingerprinting, providing valuable information on the characteristics of the captured bacteria. Utilising fluorescence microscopy, quantification of the bacterial load has been achieved for concentrations above 2 × 10(-7) cells ml(-1) within a 4 µl sample. As a pilot application, we characterize urine samples from patients with urinary tract infections. Following minimal sample preparation, Raman spectra of the bacteria are recorded following centrifugal capture in stopped-flow sedimentation mode. Utilizing advanced analysis algorithms, including extended multiplicative scattering correction, high-quality Raman spectra of different pathogens, such as Escherichia coli or Enterococcus faecalis, are obtained from the analyzed patient samples. The whole procedure, including sample preparation, requires about 1 h to obtain a valuable result, marking a significant reduction in diagnosis time when compared to the 24 h and more typically required for standard microbiological methods. As this cost-efficient centrifugal cartridge can be operated using low-complexity, widely automated instrumentation, while providing valuable bacterial identification in urine samples in a greatly reduced time-period, our opto-microfluidic Lab-on-a-Disc device demonstrates great potential for next-generation patient diagnostics at the of point-of-care.

SELECTION OF CITATIONS
SEARCH DETAIL