Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
Hepatology ; 72(2): 626-641, 2020 08.
Article in English | MEDLINE | ID: mdl-30053321

ABSTRACT

Clinical data have provided evidence that schistosomiasis can promote hepatocellular carcinogenesis. c-Jun and STAT3 are critical regulators of liver cancer development and progression. The aim of the present study was to investigate the hepatocellular activation of c-Jun and STAT3 by Schistosoma mansoni infection. Expression and function of c-Jun and STAT3 as well as proliferation and DNA repair were analyzed by western blotting, electrophoretic mobility-shift assay, and immunohistochemistry in liver of S. mansoni-infected hamsters, Huh7 cells, primary hepatocytes, and human liver biopsies. Hepatocellular activation of c-Jun was demonstrated by nuclear translocation of c-Jun, enhanced phosphorylation (Ser73), and AP-1/DNA-binding in response to S. mansoni infection. Nuclear c-Jun staining pattern around lodged eggs without ambient immune reaction, and directionally from granuloma to the central veins, suggested that substances released from schistosome eggs were responsible for the observed effects. In addition, hepatocytes with c-Jun activation show cell activation and DNA double-strand breaks. These findings from the hamster model were confirmed by analyses of human biopsies from patients with schistosomiasis. Cell culture experiments finally demonstrated that activation of c-Jun and STAT3 as well as DNA repair were induced by an extract from schistosome eggs (soluble egg antigens) and culture supernatants of live schistosome egg (egg-conditioned medium), and in particular by IPSE/alpha-1, the major component secreted by live schistosome eggs. The permanent activation of hepatocellular carcinoma-associated proto-oncogenes such as c-Jun and associated transcription factors including STAT3 by substances released from tissue-trapped schistosome eggs may be important factors contributing to the development of liver cancer in S. mansoni-infected patients. Therefore, identification and therapeutic targeting of the underlying pathways is a useful strategy to prevent schistosomiasis-associated carcinogenesis.


Subject(s)
Antigens, Helminth/physiology , Carcinoma, Hepatocellular , Hepatocytes , Liver Neoplasms , Ovum/immunology , Proto-Oncogene Proteins c-jun/physiology , STAT3 Transcription Factor/physiology , Schistosoma mansoni/immunology , Animals , Antigens, Helminth/metabolism , Carcinoma, Hepatocellular/genetics , Cricetinae , Female , Humans , Liver Neoplasms/genetics , Ovum/metabolism
2.
PLoS Biol ; 16(4): e2005504, 2018 04.
Article in English | MEDLINE | ID: mdl-29668708

ABSTRACT

The molecular mechanisms through which dendritic cells (DCs) prime T helper 2 (Th2) responses, including those elicited by parasitic helminths, remain incompletely understood. Here, we report that soluble egg antigen (SEA) from Schistosoma mansoni, which is well known to drive potent Th2 responses, triggers DCs to produce prostaglandin E2 (PGE2), which subsequently-in an autocrine manner-induces OX40 ligand (OX40L) expression to license these DCs to drive Th2 responses. Mechanistically, SEA was found to promote PGE2 synthesis through Dectin-1 and Dectin-2, and via a downstream signaling cascade involving spleen tyrosine kinase (Syk), extracellular signal-regulated kinase (ERK), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase 1 and 2 (COX-1 and COX-2). In addition, this pathway was activated independently of the actions of omega-1 (ω-1), a previously described Th2-priming glycoprotein present in SEA. These findings were supported by in vivo murine data showing that ω-1-independent Th2 priming by SEA was mediated by Dectin-2 and Syk signaling in DCs. Finally, we found that Dectin-2-/-, and to a lesser extent Dectin-1-/- mice, displayed impaired Th2 responses and reduced egg-driven granuloma formation following S. mansoni infection, highlighting the physiological importance of this pathway in Th2 polarization during a helminth infection. In summary, we identified a novel pathway in DCs involving Dectin-1/2-Syk-PGE2-OX40L through which Th2 immune responses are induced.


Subject(s)
Dendritic Cells/immunology , Dinoprostone/immunology , Lectins, C-Type/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Th2 Cells/immunology , Animals , Antigens, Helminth/immunology , Antigens, Helminth/pharmacology , Autocrine Communication , Cell Differentiation , Cyclooxygenase 1/genetics , Cyclooxygenase 1/immunology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/immunology , Dendritic Cells/drug effects , Dendritic Cells/parasitology , Dinoprostone/metabolism , Enterotoxins/pharmacology , Gene Expression Regulation , Humans , Lectins, C-Type/deficiency , Lectins, C-Type/genetics , MAP Kinase Signaling System , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , OX40 Ligand , Phospholipases A2/genetics , Phospholipases A2/immunology , Primary Cell Culture , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Schistosomiasis mansoni/genetics , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology , Syk Kinase/genetics , Syk Kinase/immunology , Th2 Cells/drug effects , Th2 Cells/parasitology , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/immunology
3.
PLoS Pathog ; 13(7): e1006539, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28753651

ABSTRACT

Infection with the helminth Schistosoma (S.) mansoni drives the development of interleukin (IL)-10-producing regulatory B (Breg) cells in mice and man, which have the capacity to reduce experimental allergic airway inflammation and are thus of high therapeutic interest. However, both the involved antigen and cellular mechanisms that drive Breg cell development remain to be elucidated. Therefore, we investigated whether S. mansoni soluble egg antigens (SEA) directly interact with B cells to enhance their regulatory potential, or act indirectly on B cells via SEA-modulated macrophage subsets. Intraperitoneal injections of S. mansoni eggs or SEA significantly upregulated IL-10 and CD86 expression by marginal zone B cells. Both B cells as well as macrophages of the splenic marginal zone efficiently bound SEA in vivo, but macrophages were dispensable for Breg cell induction as shown by macrophage depletion with clodronate liposomes. SEA was internalized into acidic cell compartments of B cells and induced a 3-fold increase of IL-10, which was dependent on endosomal acidification and was further enhanced by CD40 ligation. IPSE/alpha-1, one of the major antigens in SEA, was also capable of inducing IL-10 in naïve B cells, which was reproduced by tobacco plant-derived recombinant IPSE. Other major schistosomal antigens, omega-1 and kappa-5, had no effect. SEA depleted of IPSE/alpha-1 was still able to induce Breg cells indicating that SEA contains more Breg cell-inducing components. Importantly, SEA- and IPSE-induced Breg cells triggered regulatory T cell development in vitro. SEA and recombinant IPSE/alpha-1 also induced IL-10 production in human CD1d+ B cells. In conclusion, the mechanism of S. mansoni-induced Breg cell development involves a direct targeting of B cells by SEA components such as the secretory glycoprotein IPSE/alpha-1.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Egg Proteins/immunology , Helminth Proteins/immunology , Ovum/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Animals , Antigens, Helminth/genetics , Antigens, Helminth/immunology , Egg Proteins/genetics , Female , Helminth Proteins/genetics , Humans , Interleukin-10/immunology , Mice , Mice, Inbred C57BL , Schistosoma mansoni/genetics , Schistosomiasis mansoni/genetics , Schistosomiasis mansoni/parasitology
4.
J Allergy Clin Immunol ; 140(2): 356-368, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28479330

ABSTRACT

Glycan-specific IgE antibodies cross-react with highly similar or even identical carbohydrate structures on a variety of different natural allergens, the so-called cross-reactive carbohydrate determinants (CCDs). In clinical practice CCDs often interfere with the specificity of in vitro allergy diagnostics, thus impairing allergy therapy decisions for individual patients. Strikingly, these IgE antibodies directed against CCDs often do not cause clinically relevant allergy symptoms. On the other hand, the IgE-binding glycan allergen galactose-α-(1,3)-galactose (α-Gal) is associated with IgE-mediated delayed anaphylaxis in meat allergy. The reason for this discrepancy is not known. The discovery of α-Gal stimulated new discussions and investigations regarding the relevance of anti-glycan IgE for allergic diseases. In this review the effect of glycans and glycan-specific IgE on sensitization to allergens and allergy diagnosis is described. Because parasite infections elicit a similar immunologic environment as allergic diseases, the association of glycan-specific antibodies against parasite glycoproteins with glycan structures on allergens is discussed.


Subject(s)
Allergens/immunology , Immunoglobulin E/immunology , Polysaccharides/immunology , Cross Reactions , Humans , Hypersensitivity/immunology , Immune Tolerance , Th2 Cells/immunology
5.
J Immunol ; 194(7): 2999-3010, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25712216

ABSTRACT

Humoral immunity requires cross-talk between T follicular helper (Tfh) cells and B cells. Nevertheless, a detailed understanding of this intercellular interaction during secondary immune responses is lacking. We examined this by focusing on the response to a soluble, unadjuvanted, pathogen-derived Ag (soluble extract of Schistosoma mansoni egg [SEA]) that induces type 2 immunity. We found that activated Tfh cells persisted for long periods within germinal centers following primary immunization. However, the magnitude of the secondary response did not appear to depend on pre-existing Tfh cells. Instead, Tfh cell populations expanded through a process that was dependent on memory T cells recruited into the reactive LN, as well as the participation of B cells. We found that, during the secondary response, IL-4 was critical for the expansion of a population of plasmablasts that correlated with increased SEA-specific IgG1 titers. Additionally, following immunization with SEA (but not with an Ag that induced type 1 immunity), IL-4 and IL-21 were coproduced by individual Tfh cells, revealing a potential mechanism through which appropriate class-switching can be coupled to plasmablast proliferation to enforce type 2 immunity. Our findings demonstrate a pivotal role for IL-4 in the interplay between T and B cells during a secondary Th2 response and have significant implications for vaccine design.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Communication/immunology , Immunologic Memory , Interleukin-4/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Antigens/immunology , Antigens, Helminth/immunology , B-Lymphocytes/cytology , Cell Differentiation/immunology , Immunization , Immunophenotyping , Interleukins/biosynthesis , Lymph Nodes/metabolism , Lymphocyte Depletion , Mice , Mice, Transgenic , Phenotype , Plasma Cells/cytology , Plasma Cells/immunology , Plasma Cells/metabolism , Schistosoma mansoni/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/cytology
6.
J Biol Chem ; 290(36): 22111-26, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26163514

ABSTRACT

The IL-4-inducing principle from Schistosoma mansoni eggs (IPSE/α-1), the major secretory product of eggs from the parasitic worm S. mansoni, efficiently triggers basophils to release the immunomodulatory key cytokine interleukin-4. Activation by IPSE/α-1 requires the presence of IgE on the basophils, but the detailed molecular mechanism underlying activation is unknown. NMR and crystallographic analysis of IPSEΔNLS, a monomeric IPSE/α-1 mutant, revealed that IPSE/α-1 is a new member of the ßγ-crystallin superfamily. We demonstrate that this molecule is a general immunoglobulin-binding factor with highest affinity for IgE. NMR binding studies of IPSEΔNLS with the 180-kDa molecule IgE identified a large positively charged binding surface that includes a flexible loop, which is unique to the IPSE/α-1 crystallin fold. Mutational analysis of amino acids in the binding interface showed that residues contributing to IgE binding are important for IgE-dependent activation of basophils. As IPSE/α-1 is unable to cross-link IgE, we propose that this molecule, by taking advantage of its unique IgE-binding crystallin fold, activates basophils by a novel, cross-linking-independent mechanism.


Subject(s)
Antigens, Helminth/metabolism , Basophils/metabolism , Crystallins/immunology , Egg Proteins/metabolism , Helminth Proteins/metabolism , Immunoglobulin E/metabolism , Amino Acid Sequence , Animals , Antigens, Helminth/chemistry , Antigens, Helminth/genetics , Binding Sites/genetics , Blotting, Western , Chromatography, Gel , Crystallins/genetics , Crystallins/metabolism , Crystallography, X-Ray , Egg Proteins/chemistry , Egg Proteins/genetics , Helminth Proteins/chemistry , Helminth Proteins/genetics , Humans , Immunoglobulin E/chemistry , Interleukin-4/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Interaction Mapping , Protein Structure, Secondary , Protein Structure, Tertiary , Schistosoma mansoni/genetics , Schistosoma mansoni/metabolism , Sequence Homology, Amino Acid
7.
J Biol Chem ; 289(31): 21374-85, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24939849

ABSTRACT

Cyclophilin (Cyp) allergens are considered pan-allergens due to frequently reported cross-reactivity. In addition to well studied fungal Cyps, a number of plant Cyps were identified as allergens (e.g. Bet v 7 from birch pollen, Cat r 1 from periwinkle pollen). However, there are conflicting data regarding their antigenic/allergenic cross-reactivity, with no plant Cyp allergen structures available for comparison. Because amino acid residues are fairly conserved between plant and fungal Cyps, it is particularly interesting to check whether they can cross-react. Cat r 1 was identified by immunoblotting using allergic patients' sera followed by N-terminal sequencing. Cat r 1 (∼ 91% sequence identity to Bet v 7) was cloned from a cDNA library and expressed in Escherichia coli. Recombinant Cat r 1 was utilized to confirm peptidyl-prolyl cis-trans-isomerase (PPIase) activity by a PPIase assay and the allergenic property by an IgE-specific immunoblotting and rat basophil leukemia cell (RBL-SX38) mediator release assay. Inhibition-ELISA showed cross-reactive binding of serum IgE from Cat r 1-allergic individuals to fungal allergenic Cyps Asp f 11 and Mala s 6. The molecular structure of Cat r 1 was determined by NMR spectroscopy. The antigenic surface was examined in relation to its plant, animal, and fungal homologues. The structure revealed a typical cyclophilin fold consisting of a compact ß-barrel made up of seven anti-parallel ß-strands along with two surrounding α-helices. This is the first structure of an allergenic plant Cyp revealing high conservation of the antigenic surface particularly near the PPIase active site, which supports the pronounced cross-reactivity among Cyps from various sources.


Subject(s)
Allergens/chemistry , Cyclophilins/chemistry , Pollen/chemistry , Adult , Allergens/immunology , Amino Acid Sequence , Animals , Base Sequence , Blotting, Western , Case-Control Studies , Cell Line, Tumor , Circular Dichroism , Cross Reactions , Cyclophilins/immunology , DNA Primers , DNA, Complementary , Female , Humans , Hypersensitivity/immunology , Magnetic Resonance Spectroscopy , Male , Middle Aged , Models, Molecular , Molecular Sequence Data , Pollen/immunology , Rats , Sequence Homology, Amino Acid , Young Adult
8.
Glycobiology ; 25(12): 1465-79, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26347524

ABSTRACT

During the complex lifecycle of Schistosoma mansoni, a large variety of glycans is expressed. To many of these glycans, antibodies are induced by the infected host and some might be targets for vaccines or diagnostic tests. Spatial changes in glycan expression during schistosome development are largely unexplored. To study the surface-exposed glycans during the important initial stages of infection, we analyzed the binding of a panel of anti-glycan monoclonal antibodies (mAbs) to cercariae and schistosomula up to 72 h after transformation by immunofluorescence microscopy. The mAb specificity toward their natural targets was studied using a microarray containing a wide range of schistosomal N-glycans, O-glycans and glycosphingolipid glycans. With the exception of GalNAcß1-4(Fucα1-3)GlcNAc (LDN-F), mono- and multifucosylated GalNAcß1-4GlcNAc (LDN)-motifs were exposed at the surface of all developmental stages studied. Multifucosylated LDN-motifs were present on cercarial glycocalyx-derived O-glycans as well as cercarial glycolipids. In contrast, the Galß1-4(Fucα1-3)GlcNAc (Lewis X) and LDN-F-motifs, also expressed on cercarial glycolipids, and in addition on a range of cercarial N- and O-glycans, became surface expressed only after transformation of cercariae to schistosomula. In line with the documented shedding of the O-glycan-rich cercarial glycocalyx after transformation these observations suggest that surface accessible multifucosylated LDN-motifs are mostly expressed by O-glycans in cercariae, but principally by glycosphingolipids in schistosomula. We hypothesize that these temporal changes in surface exposure of glycan antigens are relevant to the interaction with the host during the initial stages of infection with schistosomes and discuss the potential of these glycan antigens as intervention targets.


Subject(s)
Cercaria/immunology , Glycocalyx/immunology , Polysaccharides/immunology , Schistosoma mansoni/immunology , Animals , Antibodies, Helminth/immunology , Antibodies, Monoclonal/immunology , Schistosoma mansoni/growth & development
9.
Cell Mol Gastroenterol Hepatol ; 17(1): 107-117, 2024.
Article in English | MEDLINE | ID: mdl-37696392

ABSTRACT

BACKGROUND & AIMS: Schistosomiasis is one of the most prominent parasite-induced infectious diseases, affecting more than 250 million people. Schistosoma mansoni causes metabolic exhaustion and a strong redox imbalance in the liver, causing parenchymal damage, and may predispose for cancer. We investigated whether oxidative stress provokes hepatocellular proliferation upon S. mansoni infection. METHODS: The cell cycle, replication stress response, and proliferation were analyzed on transcriptional and protein levels in the livers of S. mansoni-infected hamsters and by mechanistic gain- and loss-of-function experiments in human hepatoma cells. Major results were validated in human biopsy specimens of S. mansoni-infected patients. RESULTS: S. mansoni infection induced licensing factors of DNA replication and cell-cycle checkpoint cyclins in parallel with a DNA damage response in hamster hepatocytes. Moreover, even unisexual infection without egg effects, as a reflection of a chronic inflammatory process, resulted in a moderate activation of several cell-cycle markers. S. mansoni soluble egg antigens induced proliferation of human hepatoma cells that could be abolished by reduced glutathione. CONCLUSIONS: Our data suggest that hepatocellular proliferation is triggered by S. mansoni egg-induced oxidative stress.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Schistosomiasis mansoni , Cricetinae , Animals , Humans , Schistosoma mansoni/physiology , Schistosomiasis mansoni/metabolism , Oxidative Stress , Cell Proliferation
10.
Front Immunol ; 15: 1372927, 2024.
Article in English | MEDLINE | ID: mdl-38742105

ABSTRACT

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Subject(s)
Dinoprostone , Lectins, C-Type , Mannose , Polysaccharides , Schistosoma mansoni , Th2 Cells , Animals , Mice , Antigens, Helminth/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dinoprostone/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Mannose/metabolism , Mannose/immunology , Mice, Inbred C57BL , Ovum/immunology , Ovum/metabolism , OX40 Ligand/metabolism , Polysaccharides/immunology , Polysaccharides/metabolism , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Th2 Cells/immunology , Th2 Cells/metabolism
11.
Immunol Cell Biol ; 91(7): 486-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23835553

ABSTRACT

Recent reports have attributed an immunoregulatory role to the mammalian target of rapamycin (mTOR), a key serine/threonine protein kinase integrating input from growth factors and nutrients to promote cell growth and differentiation. In the present study, we investigated the role of the mTOR pathway in Th2 induction by human monocyte-derived dendritic cells (moDCs). Using a co-culture system of human lipopolysaccharide (LPS)-matured moDCs and allogeneic naive CD4(+) T cells, we show that inhibition of mTOR by the immunosuppressive drug rapamycin reduced moDC maturation and promoted Th2 skewing. Next, we investigated whether antigens from helminth parasites, the strongest natural inducers of Th2 responses, modulate moDCs via the mTOR pathway. In contrast to rapamycin, neither Schistosoma mansoni-soluble egg antigens (SEA) nor its major immunomodulatory component omega-1 affected the phosphorylation of S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1), downstream targets of mTORC1. Finally, we found that the effects of rapamycin and SEA/omega-1 on Th2 skewing were additive, suggesting two distinct underlying molecular mechanisms. We conclude that conditioning human moDCs to skew immune responses towards Th2 can be achieved via an mTOR-dependent and -independent pathway triggered by rapamycin and helminth antigens, respectively.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Schistosoma mansoni/immunology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antigens, Helminth/immunology , Cell Cycle Proteins , Cell Differentiation/drug effects , Cells, Cultured , Coculture Techniques , Egg Proteins/immunology , Helminth Proteins/immunology , Humans , Isoantigens/immunology , Lipopolysaccharides/immunology , Phosphoproteins/metabolism , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/immunology , Th1-Th2 Balance/drug effects
12.
Mol Cell Proteomics ; 10(5): M110.005710, 2011 May.
Article in English | MEDLINE | ID: mdl-21372247

ABSTRACT

Glycans present on glycoproteins from the eggs of the parasite Schistosoma mansoni are mediators of various immune responses of the human host, including T-cell modulation and granuloma formation, and they are the target of glycan-specific antibodies. Here we have analyzed the glycosylation of kappa-5, a major glycoprotein antigen from S. mansoni eggs using a targeted approach of lectin purification followed by mass spectrometry of glycopeptides as well as released glycans. We demonstrate that kappa-5 has four fully occupied N-glycosylation sites carrying unique triantennary glycans composed of a difucosylated and xylosylated core region, and immunogenic GalNAcß1-4GlcNAc (LDN) termini. Furthermore, we show that the kappa-5 specific IgE antibodies in sera of S. mansoni-infected individuals are directed against the core region of the kappa-5 glycans. Whereas two previously analyzed immunomodulatory egg glycoproteins, IPSE/alpha-1 and omega-1, both express diantennary N-glycans with a difucosylated core and one or two Galß1-4(Fucα1-3)GlcNAc (Lewis X) antennae, the kappa-5 glycosylation appears unique among the major soluble egg antigens of S. mansoni. The distinct structural and antigenic properties of kappa-5 glycans suggest a specific role for kappa-5 in schistosome egg immunogenicity.


Subject(s)
Antibodies, Helminth/blood , Egg Proteins/metabolism , Glycoproteins/metabolism , Helminth Proteins/metabolism , Schistosoma mansoni/metabolism , Schistosomiasis mansoni/blood , Amino Acid Motifs , Animals , Antibodies, Helminth/chemistry , Antigens, Helminth , Egg Proteins/immunology , Glycoproteins/immunology , Glycoside Hydrolases/chemistry , Glycosylation , Helminth Proteins/immunology , Host-Parasite Interactions , Humans , Immunoglobulin E/blood , Immunoglobulin E/chemistry , Lactose/analogs & derivatives , Lactose/immunology , Lactose/metabolism , Peptide Fragments/chemistry , Polysaccharides/chemistry , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
13.
JHEP Rep ; 5(2): 100625, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36590323

ABSTRACT

Background & Aims: Schistosomiasis is a parasitic infection which affects more than 200 million people globally. Schistosome eggs, but not the adult worms, are mainly responsible for schistosomiasis-specific morbidity in the liver. It is unclear if S. mansoni eggs consume host metabolites, and how this compromises the host parenchyma. Methods: Metabolic reprogramming was analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging, liquid chromatography with high-resolution mass spectrometry, metabolite quantification, confocal laser scanning microscopy, live cell imaging, quantitative real-time PCR, western blotting, assessment of DNA damage, and immunohistology in hamster models and functional experiments in human cell lines. Major results were validated in human biopsies. Results: The infection with S. mansoni provokes hepatic exhaustion of neutral lipids and glycogen. Furthermore, the distribution of distinct lipid species and the regulation of rate-limiting metabolic enzymes is disrupted in the liver of S. mansoni infected animals. Notably, eggs mobilize, incorporate, and store host lipids, while the associated metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes. Administration of reactive oxygen species scavengers ameliorates these deleterious effects. Conclusions: Our findings indicate that S. mansoni eggs completely reprogram lipid and carbohydrate metabolism via soluble factors, which results in oxidative stress-induced cell damage in the host parenchyma. Impact and implications: The authors demonstrate that soluble egg products of the parasite S. mansoni induce hepatocellular reprogramming, causing metabolic exhaustion and a strong redox imbalance. Notably, eggs mobilize, incorporate, and store host lipids, while the metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes, independent of the host's immune response. S. mansoni eggs take advantage of the host environment through metabolic reprogramming of hepatocytes and enterocytes. By inducing DNA damage, this neglected tropical disease might promote hepatocellular damage and thus influence international health efforts.

14.
Eur J Immunol ; 41(9): 2709-18, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21710488

ABSTRACT

Immunization with Schistosoma mansoni soluble antigen preparations protects non-obese diabetic (NOD) mice against the development of type 1 diabetes. These preparations have long been known to induce Th2 responses in vitro and in vivo. Recently, two separate groups have reported that ω-1, a well-characterized glycoprotein in S. mansoni soluble egg antigens (SEA), which with IL-4 inducing principle of S. mansoni eggs (IPSE/α-1) is one of the two major glycoproteins secreted by live eggs, is a major SEA component responsible for this effect. We found that ω-1 induces Foxp3 as well as IL-4 expression when injected in vivo. We confirmed that ω-1 conditions DCs to drive Th2 responses and further demonstrated that ω-1 induces Foxp3(+) T cells from NOD mouse naïve T cells. In contrast, IPSE/α-1 did not drive Foxp3 responses. The in vitro development of Foxp3-expressing T cells by ω-1 was TGF-ß- and retinoic acid-dependent. Our work, therefore, identifies ω-1 as an important factor for the induction of Foxp3(+) T cells by SEA in NOD mice.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Diabetes Mellitus, Type 1/immunology , Forkhead Transcription Factors/metabolism , Interleukin-4/metabolism , Schistosoma mansoni/immunology , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Cell Differentiation/drug effects , Cells, Cultured , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Diabetes Mellitus, Type 1/prevention & control , Egg Proteins/administration & dosage , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Helminth Proteins/administration & dosage , Immunization , Interleukin-4/genetics , Interleukin-4/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Schistosoma mansoni/metabolism , Th2 Cells/immunology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Tretinoin/metabolism
15.
Infect Immun ; 79(4): 1779-88, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21220486

ABSTRACT

Interleukin-4-inducing principle from schistosome eggs (IPSE/alpha-1) is a protein produced exclusively by the eggs of the trematode Schistosoma mansoni. IPSE/alpha-1 is a secretory glycoprotein which activates human basophils via an IgE-dependent but non-antigen-specific mechanism. Sequence analyses revealed a potential nuclear localization signal (NLS) at the C terminus of IPSE/alpha-1. Here we show that this sequence (125-PKRRRTY-131) is both necessary and sufficient for nuclear localization of IPSE or IPSE-enhanced green fluorescent protein (EGFP) fusions. While transiently expressed EGFP-IPSE/alpha-1 was exclusively nuclear in the Huh7 and U-2 OS cell lines, a mutant lacking amino acids 125 to 134 showed both nuclear and cytoplasmic staining. Moreover, insertion of the IPSE/alpha-1 NLS into a tetra-EGFP construct rendered the protein nuclear. Alanine scanning mutagenesis revealed a requirement for the KRRR residues. Fluorescence microscopy depicted, and Western blotting further confirmed, that recombinant IPSE/alpha-1 protein added exogenously is rapidly internalized by CHO cells and accumulates in nuclei in an NLS-dependent manner. A mutant protein in which the NLS motif was disrupted by triple mutation (RRR to AAA) was able to penetrate CHO cells but did not translocate to the nucleus. Furthermore, the uptake of native glycosylated IPSE/alpha-1 was confirmed in human primary monocyte-derived dendritic cells and was found to be a calcium- and temperature-dependent process. Live-cell imaging showed that IPSE/alpha-1 is not targeted to lysosomes. In contrast, peripheral blood basophils do not take up IPSE/alpha-1 and do not require the presence of an intact NLS for activation. Taken together, our results suggest that IPSE/alpha-1 may have additional nuclear functions in host cells.


Subject(s)
Egg Proteins/metabolism , Helminth Proteins/metabolism , Host-Parasite Interactions/physiology , Nuclear Localization Signals/metabolism , Schistosomiasis mansoni/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Cell Line , Cell Nucleus/metabolism , Cell Separation , Egg Proteins/genetics , Egg Proteins/immunology , Flow Cytometry , Fluorescent Antibody Technique , Helminth Proteins/genetics , Helminth Proteins/immunology , Humans , Nuclear Localization Signals/genetics , Nuclear Localization Signals/immunology , Ovum/metabolism , Polymerase Chain Reaction , Protein Transport/physiology , Schistosoma mansoni/genetics , Schistosoma mansoni/immunology , Schistosoma mansoni/metabolism , Schistosomiasis mansoni/genetics , Schistosomiasis mansoni/immunology
16.
Front Immunol ; 12: 750160, 2021.
Article in English | MEDLINE | ID: mdl-34712239

ABSTRACT

Epidermolysis bullosa acquisita (EBA) is an autoimmune blistering disorder characterized and caused by autoantibodies against type VII collagen (COL7). Although it has been noticed that EBA in both patients and mice is associated with an increased scratching, it is not clear whether and how the scratching contributes to disease manifestation. Hence, we here aimed to validate this clinical observation and also to investigate the potential contribution of increased scratching in EBA pathogenesis in mice. Longitudinal assessment of scratching behavior revealed an increased frequency of scratching as early as 12 hours after injection of anti-COL7 IgG into the skin of mice. Subsequently, scratching events became even more frequent in mice. In contrast, mice injected with a control antibody showed an unaltered scratching behavior throughout the observation period. Based on these observations, we hypothesized that mechanical irritation may promote the induction of inflammation in experimental EBA. To challenge this assumption, the local anesthetic dyclonine hydrochloride was topically applied before injection of anti-COL7 IgG. Dyclonine hydrochloride reduced the scratching events and impaired clinical disease manifestation. In therapeutic experimental settings, i.e. administration of the local anesthetic 24 hours after injection of anti-COL7 IgG, dyclonine hydrochloride only inhibited the scratching behavior, but had no significant effect on clinical disease development. In addition, eosinophils were detected in the skin before the injection of anti-COL7 IgG and significantly increased 48 hours after the antibody injection. Collectively, our results suggest that scratching behavior contributes to the initiation phase of disease manifestation in experimental EBA.


Subject(s)
Anesthetics, Local/administration & dosage , Epidermolysis Bullosa Acquisita/drug therapy , Propiophenones/administration & dosage , Administration, Topical , Animals , Collagen Type VII/immunology , Disease Models, Animal , Female , Immunoglobulin G/administration & dosage , Mice, Inbred BALB C
17.
PLoS Negl Trop Dis ; 15(1): e0008814, 2021 01.
Article in English | MEDLINE | ID: mdl-33465071

ABSTRACT

Infections by schistosomes result in granulomatous lesions around parasite eggs entrapped within the host tissues. The host and parasite determinants of the Schistosoma mansoni egg-induced granulomatous response are areas of active investigation. Some studies in mice implicate Tumor Necrosis Factor (TNF) produced in response to the infection whereas others fail to find a role for it. In addition, in the mouse model, the S. mansoni secreted egg antigen omega-1 is found to induce granulomas but the underlying mechanism remains unknown. We have recently developed the zebrafish larva as a model to study macrophage recruitment and granuloma formation in response to Schistosoma mansoni eggs. Here we use this model to investigate the mechanisms by which TNF and omega-1 shape the early granulomatous response. We find that TNF, specifically signaling through TNF receptor 1, is not required for macrophage recruitment to the egg and granuloma initiation but does mediate granuloma enlargement. In contrast, omega-1 mediates initial macrophage recruitment, with this chemotactic activity being dependent on its RNase activity. Our findings further the understanding of the role of these host- and parasite-derived factors and show that they impact distinct facets of the granulomatous response to the schistosome egg.


Subject(s)
Granuloma/etiology , Helminth Proteins/immunology , Schistosoma mansoni/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Antigens, Helminth/immunology , Glycoproteins/immunology , Granuloma/immunology , Larva , Macrophages/immunology , Mutation , Ovum/immunology , Receptors, Tumor Necrosis Factor, Type I/genetics , Ribonucleases , Schistosomiasis mansoni/immunology , Tumor Necrosis Factor-alpha/genetics , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/parasitology
18.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34196299

ABSTRACT

The inflammatory response after myocardial infarction (MI) is a precisely regulated process that greatly affects subsequent remodeling. Here, we show that basophil granulocytes infiltrated infarcted murine hearts, with a peak occurring between days 3 and 7. Antibody-mediated and genetic depletion of basophils deteriorated cardiac function and resulted in enhanced scar thinning after MI. Mechanistically, we found that basophil depletion was associated with a shift from reparative Ly6Clo macrophages toward increased numbers of inflammatory Ly6Chi monocytes in the infarcted myocardium. Restoration of basophils in basophil-deficient mice by adoptive transfer reversed this proinflammatory phenotype. Cellular alterations in the absence of basophils were accompanied by lower cardiac levels of IL-4 and IL-13, two major cytokines secreted by basophils. Mice with basophil-specific IL-4/IL-13 deficiency exhibited a similarly altered myeloid response with an increased fraction of Ly6Chi monocytes and aggravated cardiac function after MI. In contrast, IL-4 induction in basophils via administration of the glycoprotein IPSE/α-1 led to improved post-MI healing. These results in mice were corroborated by the finding that initially low counts of blood basophils in patients with acute MI were associated with a worse cardiac outcome after 1 year, characterized by a larger scar size. In conclusion, we show that basophils promoted tissue repair after MI by increasing cardiac IL-4 and IL-13 levels.


Subject(s)
Basophils/immunology , Interleukin-13/immunology , Interleukin-4/immunology , Myocardial Infarction/immunology , Animals , Basophils/pathology , Basophils/physiology , Disease Models, Animal , Humans , Interleukin-13/deficiency , Interleukin-13/genetics , Interleukin-4/deficiency , Interleukin-4/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/immunology , ST Elevation Myocardial Infarction/pathology , ST Elevation Myocardial Infarction/physiopathology
19.
J Proteome Res ; 9(5): 2630-42, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20178377

ABSTRACT

Soluble egg antigens (SEA) of the human parasite Schistosoma mansoni are among the strongest natural stimuli of Th2 responses. Omega-1, a major glycoprotein in SEA, initiates these characteristic Th2 responses through conditioning of dendritic cells (DCs). In view of the reported immunomodulatory potential of SEA glycans, we have investigated omega-1 glycosylation, using an approach combining mass spectrometric techniques and enzyme treatments at the glycopeptide level. We demonstrate that omega-1 has two fully occupied N-glycosylation sites, each mainly carrying core-difucosylated diantennary glycans with one or more Lewis X motifs in the antennae. Using a specific approach of nanoscale LC-MS(/MS) and MALDI-TOF(/TOF) MS in combination with exoglycosidase treatments of tryptic glycopeptides, we were able to provide a detailed, site-specific glycosylation analysis of a single, native S. mansoni glycoprotein. The obtained knowledge of the glycans present on omega-1 contributes to a full understanding of the mode of action of this immunomodulatory glycoprotein.


Subject(s)
Antigens, Helminth/chemistry , Egg Proteins/chemistry , Glycoproteins/chemistry , Polysaccharides/analysis , Schistosoma mansoni/chemistry , Animals , Antigens, Helminth/immunology , Egg Proteins/immunology , Egg Proteins/metabolism , Glycoproteins/immunology , Glycoproteins/metabolism , Glycosylation , Immunity, Humoral/drug effects , Peptide Fragments/analysis , Peptide Fragments/metabolism , Polysaccharides/immunology , Polysaccharides/metabolism , Schistosoma mansoni/immunology , Tandem Mass Spectrometry , Th2 Cells/drug effects , Th2 Cells/immunology , Trypsin/metabolism , alpha-L-Fucosidase/metabolism , beta-Galactosidase/metabolism
20.
Malar J ; 9: 5, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-20051114

ABSTRACT

BACKGROUND: Plasmodium and Schistosoma are two of the most common parasites in tropical areas. Deregulation of the immune response to Plasmodium falciparum, characterized by a Th1 response, leads to cerebral malaria (CM), while a Th2 response accompanies chronic schistosomiasis. METHODS: The development of CM was examined in mice with concomitant Schistosoma mansoni and Plasmodium berghei ANKA infections. The effect of S. mansoni egg antigen injection on disease development and survival was also determined. Cytokine serum levels were estimated using ELISA. Statistical analysis was performed using t-test. RESULTS: The results demonstrate that concomitant S. mansoni and P. berghei ANKA infection leads to a reduction in CM. This effect is dependent on infection schedule and infecting cercariae number, and is correlated with a Th2 response. Schistosomal egg antigen injection delays the death of Plasmodium-infected mice, indicating immune involvement. CONCLUSIONS: This research supports previous claims of a protective effect of helminth infection on CM development. The presence of multiple parasitic infections in patients from endemic areas should therefore be carefully noted in clinical trials, and in the development of standard treatment protocols for malaria. Defined helminth antigens may be considered for alleviation of immunopathological symptoms.


Subject(s)
Malaria, Cerebral/complications , Malaria, Cerebral/epidemiology , Plasmodium falciparum/pathogenicity , Schistosomiasis mansoni/complications , Animals , Cytokines/blood , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Incidence , Malaria, Cerebral/parasitology , Malaria, Cerebral/pathology , Male , Mice , Plasmodium berghei/immunology , Plasmodium berghei/pathogenicity , Plasmodium falciparum/immunology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL