Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Biol ; 20(7): e3001709, 2022 07.
Article in English | MEDLINE | ID: mdl-35788562

ABSTRACT

Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Herpes Simplex , Interferon Type I , Autoantibodies , Critical Illness , Humans , Immunoglobulin G , SARS-CoV-2
2.
PLoS Pathog ; 18(1): e1010176, 2022 01.
Article in English | MEDLINE | ID: mdl-35007290

ABSTRACT

COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU stay and ventilation-days in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.


Subject(s)
COVID-19/microbiology , Cytokine Release Syndrome/complications , Cytokines/metabolism , Monocytes/virology , Neutrophils/virology , COVID-19/virology , Cytokine Release Syndrome/microbiology , Cytokine Release Syndrome/virology , Humans , Lymphocytes/immunology , Lymphocytes/microbiology , Lymphocytes/virology , Monocytes/immunology , Monocytes/microbiology , Neutrophils/immunology , Neutrophils/microbiology , SARS-CoV-2/pathogenicity
3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33574060

ABSTRACT

Staphylococcus aureus causes invasive infections and easily acquires antibiotic resistance. Even antibiotic-susceptible S. aureus can survive antibiotic therapy and persist, requiring prolonged treatment and surgical interventions. These so-called persisters display an arrested-growth phenotype, tolerate high antibiotic concentrations, and are associated with chronic and recurrent infections. To characterize these persisters, we assessed S. aureus recovered directly from a patient suffering from a persistent infection. We show that host-mediated stress, including acidic pH, abscess environment, and antibiotic exposure promoted persister formation in vitro and in vivo. Multiomics analysis identified molecular changes in S. aureus in response to acid stress leading to an overall virulent population. However, further analysis of a persister-enriched population revealed major molecular reprogramming in persisters, including down-regulation of virulence and cell division and up-regulation of ribosomal proteins, nucleotide-, and amino acid-metabolic pathways, suggesting their requirement to fuel and maintain the persister phenotype and highlighting that persisters are not completely metabolically inactive. Additionally, decreased aconitase activity and ATP levels and accumulation of insoluble proteins involved in transcription, translation, and energy production correlated with persistence in S. aureus, underpinning the molecular mechanisms that drive the persister phenotype. Upon regrowth, these persisters regained their virulence potential and metabolically active phenotype, including reduction of insoluble proteins, exhibiting a reversible state, crucial for recurrent infections. We further show that a targeted antipersister combination therapy using retinoid derivatives and antibiotics significantly reduced lag-phase heterogeneity and persisters in a murine infection model. Our results provide molecular insights into persisters and help explain why persistent S. aureus infections are so difficult to treat.


Subject(s)
Drug Resistance, Bacterial , Metabolome , Phenotype , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Aconitate Hydratase/metabolism , Adenosine Triphosphate/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity
4.
Euro Surveill ; 29(2)2024 Jan.
Article in English | MEDLINE | ID: mdl-38214079

ABSTRACT

BackgroundWomen are overrepresented among individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Biological (sex) as well as sociocultural (gender) differences between women and men might account for this imbalance, yet their impact on PASC is unknown.AimWe assessed the impact of sex and gender on PASC in a Swiss population.MethodOur multicentre prospective cohort study included 2,856 (46% women, mean age 44.2 ± 16.8 years) outpatients and hospitalised patients with PCR-confirmed SARS-CoV-2 infection.ResultsAmong those who remained outpatients during their first infection, women reported persisting symptoms more often than men (40.5% vs 25.5% of men; p < 0.001). This sex difference was absent in hospitalised patients. In a crude analysis, both female biological sex (RR = 1.59; 95% CI: 1.41-1.79; p < 0.001) and a score summarising gendered sociocultural variables (RR = 1.05; 95% CI: 1.03-1.07; p < 0.001) were significantly associated with PASC. Following multivariable adjustment, biological female sex (RR = 0.96; 95% CI: 0.74-1.25; p = 0.763) was outperformed by feminine gender-related factors such as a higher stress level (RR = 1.04; 95% CI: 1.01-1.06; p = 0.003), lower education (RR = 1.16; 95% CI: 1.03-1.30; p = 0.011), being female and living alone (RR = 1.91; 95% CI: 1.29-2.83; p = 0.001) or being male and earning the highest income in the household (RR = 0.76; 95% CI: 0.60-0.97; p = 0.030).ConclusionSpecific sociocultural parameters that differ in prevalence between women and men, or imply a unique risk for women, are predictors of PASC and may explain, at least in part, the higher incidence of PASC in women. Once patients are hospitalised during acute infection, sex differences in PASC are no longer evident.


Subject(s)
COVID-19 , Female , Humans , Male , Adult , Middle Aged , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , Switzerland/epidemiology , Prospective Studies , SARS-CoV-2 , Disease Progression
5.
Cytokine ; 169: 156266, 2023 09.
Article in English | MEDLINE | ID: mdl-37354645

ABSTRACT

BACKGROUND: Angiopoietin-2 (Angpt-2) is involved in the pathogenesis of the capillary leak syndrome in sepsis and has been shown to be associated with worse outcomes in diverse critical illnesses. It is however unclear whether Angpt-2 plays a similar role in severely burned patients during the early phase characterized by massive capillary leakage. Our aim was to analyze the Angiopoietin-2/Angiopoietin-1 ratio (Angpt-2/Angpt-1 ratio) over the first two days in critically ill burn patients and examine its association with survival and further clinical parameters. METHODS: Adult burn patients with a total burn surface area (TBSA) ≥ 20% treated in the burn intensive care unit (ICU) of the University Hospital of Zurich, Switzerland, were included. Serum samples were collected prospectively and serum Angpt-1 and Angpt-2 were measured by enzyme-linked immunosorbent assay (ELISA) over the first two days after burn insult and stratified according to survival status, TBSA and the abbreviated burn severity index (ABSI). Due to hemodilution in the initial resuscitation phase, the Angpt-2/Angpt-1 ratio was normalized to albumin. RESULTS: Fifty-six patients were included with a median age of 51.5 years. Overall mortality was 14.3% (8/56 patients). The total amount of infused crystalloids was 12́902 ml (IQR 9́362-16́770 ml) at 24 h and 18́461 ml (IQR 13́024-23́766 ml) at 48 h. The amount of substituted albumin was 20 g (IQR 10-50 g) at 24 h and 50 g (IQR 20-60 g) at 48 h. The albumin-corrected Angpt-2/Angpt-1 ratios increased over the first 48 h after the burn insult (d0: 0.5 pg*l/ml*g [IQR 0.24 - 0.80 pg*l/ml*g]; d1: 0.83 pg*l/ml*g [IQR 0.29 - 1.98 pg*l/ml*g]; d2: 1.76 pg*l/ml*g [IQR 0.70 - 3.23 pg*l/ml*g]; p < 0.001) and were significantly higher in eventual ICU non-survivors (p = 0.005), in patients with a higher TBSA (p = 0.001) and in patients with a higher ABSI (p = 0.001). CONCLUSIONS: In analogy to the pathological host response in sepsis, the Angpt-2/Angpt-1 ratio steadily increases in the first two days in critically ill burn patients, suggesting a putative involvement in the pathogenesis of capillary leakage in burns. A higher Angpt-2/Angpt-1 ratio is associated with mortality, total burn surface area and burn scores.


Subject(s)
Angiopoietin-2 , Sepsis , Humans , Middle Aged , Angiopoietin-1 , Critical Illness , Intensive Care Units , Retrospective Studies
6.
Crit Care Med ; 50(6): e526-e538, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35020672

ABSTRACT

OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) is a potentially lifesaving procedure in acute respiratory distress syndrome (ARDS) due to COVID-19. Previous studies have shown a high prevalence of clinically silent cerebral microbleeds in patients with COVID-19. Based on this fact, together with the hemotrauma and the requirement of therapeutic anticoagulation on ECMO support, we hypothesized an increased risk of intracranial hemorrhages (ICHs). We analyzed ICH occurrence rate, circumstances and clinical outcome in patients that received ECMO support due to COVID-19-induced ARDS in comparison to viral non-COVID-19-induced ARDS intracerebral hemorrhage. DESIGN: Multicenter, retrospective analysis between January 2010 and May 2021. SETTING: Three tertiary care ECMO centers in Germany and Switzerland. PATIENTS: Two-hundred ten ARDS patients on ECMO support (COVID-19, n = 142 vs viral non-COVID, n = 68). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Evaluation of ICH occurrence rate, parameters of coagulation and anticoagulation strategies, inflammation, and ICU survival. COVID-19 and non-COVID-19 ARDS patients showed comparable disease severity regarding Sequential Organ Failure Assessment score, while the oxygenation index before ECMO cannulation was higher in the COVID group (82 vs 65 mm Hg). Overall, ICH of any severity occurred in 29 of 142 COVID-19 patients (20%) versus four of 68 patients in the control ECMO group (6%). Fifteen of those 29 ICH events in the COVID-19 group were classified as major (52%) including nine fatal cases (9/29, 31%). In the control group, there was only one major ICH event (1/4, 25%). The adjusted subhazard ratio for the occurrence of an ICH in the COVID-19 group was 5.82 (97.5% CI, 1.9-17.8; p = 0.002). The overall ICU mortality in the presence of ICH of any severity was 88%. CONCLUSIONS: This retrospective multicenter analysis showed a six-fold increased adjusted risk for ICH and a 3.5-fold increased incidence of ICH in COVID-19 patients on ECMO. Prospective studies are needed to confirm this observation and to determine whether the bleeding risk can be reduced by adjusting anticoagulation strategies.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Anticoagulants/therapeutic use , COVID-19/complications , COVID-19/therapy , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Humans , Intracranial Hemorrhages/drug therapy , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/etiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Retrospective Studies
7.
BMC Infect Dis ; 22(1): 168, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35189821

ABSTRACT

BACKGROUND: Necrotizing soft-tissue infections are infections with high mortality. The use of immunoglobulins within a combination therapy including broad-spectrum antibiotics has been debated. We assessed potential benefits of immunoglobulins and hypothesized that they were associated with a treatment benefit in a high-resource setting. METHODS: Patients with necrotizing soft-tissue infection hospitalized in the tertiary intensive care unit of the University Hospital of Zurich, Switzerland, between 2008 and 2020 were included retrospectively. The association between immunoglobulin administration and in-hospital survival, intensive care unit length of stay, the incidences of acute renal failure, acute respiratory distress syndrome and septic shock were analyzed. RESULTS: After adjustment for confounders, no difference for in-hospital survival (hazard ratio 2.20, 95% confidence interval [CI] 0.24-20.20, p = 0.5), intensive care unit length of stay (subhazard ratio [SHR] 0.90, CI 0.41-1.98, p = 0.8) and the development of acute respiratory distress syndrome (SHR 1.2, CI 0.36-4.03, p = 0.77) was observed in patients with or without immunoglobulin treatment. The Simplified Acute Physiology Score II, the risk of developing acute renal failure (SHR 2.86, CI 1.33-6.15, p = 0.01) and septic shock (SHR 1.86, CI 1.02-3.40, p = 0.04) was higher in patients treated with immunoglobulins, possibly reflecting a higher disease severity beyond measured confounders. CONCLUSIONS: No clear evidence for a benefit of immunoglobulins in our cohort with consistent antibiotic use was found. Patients receiving immunoglobulins appeared more severely ill. Complementary to high treatment standards and appropriate antibiotics including beta lactams and protein synthesis inhibitors, immunoglobulins should be administered on a case-to-case basis, at least while more evidence from larger randomized controlled trials is missing.


Subject(s)
Immunoglobulins, Intravenous , Soft Tissue Infections , Critical Illness , Humans , Immunoglobulins, Intravenous/therapeutic use , Intensive Care Units , Retrospective Studies , Soft Tissue Infections/drug therapy
8.
J Clin Monit Comput ; 35(6): 1511-1518, 2021 12.
Article in English | MEDLINE | ID: mdl-33296061

ABSTRACT

Patient safety is a priority in healthcare, yet it is unclear how sources of errors should best be analyzed. Eye tracking is a tool used to monitor gaze patterns in medicine. The aim of this study was to analyze the distribution of visual attention among critical care nurses performing non-simulated, routine patient care on invasively ventilated patients in an ICU. ICU nurses were tracked bedside in daily practice. Eight specific areas of interest were pre-defined (respirator, drug preparation, medication, patient data management system, patient, monitor, communication and equipment/perfusors). Main independent variable and primary outcome was dwell time, secondary outcomes were hit ratio, revisits, fixation count and average fixation time on areas of interest in a targeted tracking-time of 60 min. 28 ICU nurses were analyzed and the average tracking time was 65.5 min. Dwell time was significantly higher for the respirator (12.7% of total dwell time), patient data management system (23.7% of total dwell time) and patient (33.4% of total dwell time) compared to the other areas of interest. A similar distribution was observed for fixation count (respirator 13.3%, patient data management system 25.8% and patient 31.3%). Average fixation time and revisits of the respirator were markedly elevated. Apart from the respirator, average fixation time was highest for the patient data management system, communication and equipment/perfusors. Eye tracking is helpful to analyze the distribution of visual attention of critical care nurses. It demonstrates that the respirator, the patient data management system and the patient form cornerstones in the treatment of critically ill patients. This offers insights into complex work patterns in critical care and the possibility of improving work flows, avoiding human error and maximizing patient safety.


Subject(s)
Critical Care , Eye-Tracking Technology , Communication , Humans , Monitoring, Physiologic
9.
Thromb J ; 17: 22, 2019.
Article in English | MEDLINE | ID: mdl-31708692

ABSTRACT

[This corrects the article DOI: 10.1186/s12959-019-0194-8.].

10.
Thromb J ; 17: 4, 2019.
Article in English | MEDLINE | ID: mdl-30976204

ABSTRACT

Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.

11.
J Infect Dis ; 217(2): 270-279, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29099935

ABSTRACT

Background: Necrotizing fasciitis (NF) retains a very high mortality rate despite prompt and adequate antibiotic treatment and surgical debridement. Necrotizing fasciitis has recently been associated with Streptococcus dysgalactiae subspecies equisimilis (SDSE). Methods: We investigated the causes of a very severe clinical manifestation of SDSE-NF by assessing both host and pathogen factors. Results: We found a lack of streptokinase-function blocking antibodies in the patient resulting in increased streptokinase-mediated fibrinolysis and bacterial spread. At the same time, the clinical SDSE isolate produced very high levels of streptokinase. Exogenous immunoglobulin Gs (ex-IgGs) efficiently blocked streptokinase-mediated fibrinolysis in vitro, indicating a protective role against the action of streptokinase. In vivo, SDSE infection severity was also attenuated by ex-IgGs in a NF mouse model. Conclusions: These findings illustrate for the first time that the lack of specific antibodies against streptococcal virulence factors, such as streptokinase, may contribute to NF disease severity. This can be counteracted by ex-IgGs.


Subject(s)
Antibodies, Bacterial/immunology , Fasciitis, Necrotizing/pathology , Streptococcal Infections/pathology , Streptococcus/pathogenicity , Streptokinase/antagonists & inhibitors , Virulence Factors/antagonists & inhibitors , Adult , Animals , Fasciitis, Necrotizing/microbiology , Female , Fibrinolytic Agents/immunology , Fibrinolytic Agents/metabolism , Host-Pathogen Interactions , Humans , Mice, Inbred C57BL , Streptococcal Infections/microbiology , Streptococcus/immunology , Streptokinase/immunology , Virulence Factors/immunology
12.
Clin Transplant ; 32(5): e13251, 2018 05.
Article in English | MEDLINE | ID: mdl-29707826

ABSTRACT

Grade 3 primary graft dysfunction (PGD3) represents the most important risk factor for patient mortality during the first year after lung transplantation (LTX). We investigated whether pretransplant pulmonary hypertension (PH) is a risk factor for the development of PGD3. This retrospective, single-center cohort study included 96 candidates undergoing right heart catheterization (RHC) prior to being listed for LTX between March 2000 and October 2015. Based on their mean pulmonary artery pressure (mPAP) levels, the patients were classified into 3 groups: (1) <25 mm Hg, (2) 25-34 mm Hg and (3) ≥35 mm Hg. Forty-seven patients were classified in group 1, 31 in group 2, and 18 in group 3. Fifteen recipients (16%, 95%-CI 8-23) developed PGD3. In the univariate analysis, the diagnosis of interstitial lung disease (ILD) compared to COPD (OR: 7.06, P = .005), blood transfusion >1000 mL during surgery (OR: 5.25, P = .005), the need for intra-operative cardio-pulmonary bypass (CPB) or extra-corporeal membrane oxygenation (ECMO) (OR: 4, P = .027), mPAP (OR 1.06, P = .007) and serum high density lipoprotein-cholesterol (HDL-C) (OR 0.09, P = .005) were associated with PGD3. In the multivariable logistic regression analysis, only HDL-C (OR 0.10, P = .016) was associated with PGD3 based on our single-center cohort data analysis.


Subject(s)
Hypertension, Pulmonary/physiopathology , Lung Diseases, Interstitial/surgery , Lung Transplantation/adverse effects , Primary Graft Dysfunction/etiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Primary Graft Dysfunction/pathology , Prognosis , Retrospective Studies , Risk Factors
13.
BMC Health Serv Res ; 18(1): 84, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402271

ABSTRACT

BACKGROUND: In 2013 the Swiss Diagnosis Related Groups ((Swiss)-DRG) was implemented in Intensive Care Units (ICU). Its impact on hospitalizations has not yet been examined. We compared the number of ICU admissions, according to clinical severity and referring institution, and screened whether implementation of Swiss-DRG affected admission policy, ICU length-of-stay (ICU-LOS) or ICU mortality. METHODS: Retrospective, single centre, cohort study conducted at the University Hospital Zurich, Switzerland between January 2009 and end of September 2013. Demographic and clinical data was retrieved from a quality assurance database. RESULTS: Admissions (n = 17,231) before the introduction of Swiss-DRG were used to model expected admissions after DRG, and then compared to the observed admissions. Forecasting matched observations in patients with a high clinical severity admitted from internal units and external hospitals (admitted / predicted: 709 / 703, [95% Confidence Interval (CI), 658-748] and 302 / 332, [95% CI, 269-365] respectively). In patients with low severity of disease, in-house admissions became more frequent than expected and external admission were less frequent (admitted / predicted: 1972 / 1910, [95% CI, 1898-1940] and 436 / 518, [95% CI, 482-554] respectively). Various mechanisms related to Swiss-DRG may have led to these changes. DRG could not be linked to significant changes in regard to ICU-LOS and ICU mortality. CONCLUSIONS: DRG introduction had not affected ICU admissions policy, except for an increase of in-house patients with a low clinical severity of disease. DRG had neither affected ICU mortality nor ICU-LOS.


Subject(s)
Diagnosis-Related Groups , Hospital Mortality/trends , Intensive Care Units , Length of Stay/statistics & numerical data , Patient Admission/statistics & numerical data , Tertiary Care Centers , Adult , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies , Switzerland
14.
J Infect Dis ; 215(2): 269-277, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27247345

ABSTRACT

Group A Streptococcus (GAS) has acquired an arsenal of virulence factors, promoting life-threatening invasive infections such as necrotizing fasciitis. Current therapeutic regimens for necrotizing fasciitis include surgical debridement and treatment with cell wall-active antibiotics. Addition of clindamycin (CLI) is recommended, although clinical evidence is lacking. Reflecting the current clinical dilemma, an observational study showed that only 63% of the patients with severe invasive GAS infection received CLI. This work thus aimed to address whether CLI improves necrotizing fasciitis outcome by modulating virulence factors of CLI-susceptible and CLI-resistant GAS in vitro and in vivo. Treatment with CLI reduced extracellular DNase Sda1 and streptolysin O (SLO) activity in vivo, whereas subinhibitory CLI concentrations induced expression and activity of SLO, DNase, and Streptococcus pyogenes cell envelope protease in vitro. Our in vivo results suggest that CLI should be administered as soon as possible to patients with necrotizing fasciitis, while our in vitro studies emphasize that a high dosage of CLI is essential.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clindamycin/pharmacology , Fasciitis, Necrotizing/drug therapy , Streptococcal Infections/drug therapy , Streptococcus pyogenes/drug effects , Virulence Factors/antagonists & inhibitors , Animals , Anti-Bacterial Agents/administration & dosage , Clindamycin/administration & dosage , Disease Models, Animal , Fasciitis, Necrotizing/microbiology , Female , Humans , Mice, Inbred C57BL , Streptococcal Infections/microbiology , Treatment Outcome
15.
J Infect Dis ; 214(2): 321-8, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27338768

ABSTRACT

BACKGROUND: Neutrophils and monocytes are crucial for controlling bacterial infections. More-frequent bacterial infections are accordingly encountered in neutropenic patients undergoing chemotherapy. This is not the case for pegylated interferon α (IFN-α)-induced neutropenia. We hypothesized that IFN-α induces a compensatory innate antibacterial state that prevents bacterial infections despite the neutropenia. METHODS: To investigate whether patients with hepatitis C virus infection treated with IFN-α killed group A Streptococcus (GAS) better than before initiating therapy, whole blood was used to perform ex vivo GAS killing assays before, during, and after IFN-α therapy. RESULTS: We found that IFN-α therapy enhanced GAS killing in whole blood ex vivo despite the decreased neutrophil and monocyte numbers during IFN-α therapy. IFN-α also boosted neutrophil- and monocyte-mediated GAS killing in vitro. Underlying mechanisms included increased production of the antibacterial properdin, a regulator of the complement activation, as well as reactive oxygen species. CONCLUSIONS: These findings help to explain the rather discrepant facts of neutropenia but preserved antibacterial immune defenses in patients treated with IFN-α.


Subject(s)
Immunologic Factors/metabolism , Interferon-alpha/metabolism , Microbial Viability , Neutropenia , Streptococcus pyogenes/immunology , Blood Bactericidal Activity , Hepatitis C/drug therapy , Humans , Immunologic Factors/adverse effects , Interferon-alpha/administration & dosage , Interferon-alpha/adverse effects , Streptococcus pyogenes/physiology
16.
J Infect Dis ; 213(2): 305-13, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26188074

ABSTRACT

BACKGROUND: Staphylococcus aureus-infected patients treated with antibiotics that are effective in vitro often experience relapse of infection because the bacteria hide in privileged locations. These locations include abscesses and host cells, which contain low-pH compartments and are sites from which nonstable S. aureus small-colony variants (SCVs) are frequently recovered. METHODS: We assessed the effect of low pH on S. aureus colony phenotype and bacterial growth, using in vitro and in vivo models of long-term infection. RESULTS: We showed that low pH induced nonstable SCVs and nonreplicating persisters that are capable of regrowth. Within host cells, S. aureus was located in phagolysosomes, a low-pH compartment. Therapeutic neutralization of phagolysosomal pH with ammonium chloride, bafilomycin A1, or the antimalaria drug chloroquine reduced SCVs in infected host cells. In a systemic mouse infection model, treatment with chloroquine also reduced SCVs. CONCLUSIONS: Our results show that the acidic environment favors formation of nonstable SCVs, which reflect the SCVs found in clinics. They also provide evidence that treatment with alkalinizing agents, together with antibiotics, may provide a novel translational strategy for eradicating persisting intracellular reservoirs of staphylococci. This approach may also be extended to other intracellular bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Phagosomes/chemistry , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Ammonium Chloride/pharmacology , Animals , Cell Line, Tumor , Chloroquine/pharmacology , Gene Expression Regulation, Bacterial , Genetic Variation , Humans , Hydrogen-Ion Concentration , Macrolides/pharmacology , Mice , Mice, Inbred C57BL , Staphylococcus aureus/growth & development
18.
Crit Care ; 19: 142, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25887616

ABSTRACT

INTRODUCTION: This study was designed as an external validation of the recently proposed Predicting Death for Severe ARDS on V-V ECMO (PRESERVE) score, The respiratory extracorporeal membrane oxygenation survival prediction (RESP) score and a scoring system developed for externally retrieved patients on extracorporeal membrane oxygenation (ECMO) at our institution. All scores are proposed for the estimation of survival probability after ECMO treatment for severe adult respiratory distress syndrome. METHODS: Data from 51 patients (2008 to 2013) were analyzed in this retrospective single-center study. A calculation of an adapted PRESERVE score, the RESP score as well as the score developed for externally retrieved ECMO patients was performed. RESULTS: Seventy one percent of patients received veno-venous (v-v) and 29% venous-arterial (v-a) ECMO support during the study period. Overall survival at 6 months was 55%, with a 61% survival rate for v-v cannulated patients and a 40% survival rate for v-a cannulated patients. The PRESERVE score discriminated survivors and non-survivors with an area under the curve of 0.67 (95% CI 0.52 to 0.82, P = 0.03). Analyzing survival prediction according to cannulation modus, the PRESERVE score and the RESP score significantly predicted survival for patients on v-v ECMO with an area under the curve of 0.75 (95% CI 0.57 to 0.92, P = 0.01) and 0.81 (95% CI 0.67 to 0.95, P = 0.035), respectively, while the scoring system developed for externally retrieved ECMO patients failed to predict survival in our study population. All scores failed to predict mortality for patients on v-a ECMO. CONCLUSION: Our single-center validation confirms that the proposed PRESERVE and RESP score predict survival for patients treated with v-v ECMO for severe adult respiratory distress syndrome.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , Risk Assessment/methods , Adolescent , Adult , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Retrospective Studies , Young Adult
19.
J Infect Dis ; 210(3): 473-82, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24526740

ABSTRACT

The Gram-positive human pathogen Staphylococcus aureus causes a variety of human diseases such as skin infections, pneumonia, and endocarditis. The micrococcal nuclease Nuc1 is one of the major S. aureus virulence factors and allows the bacterium to avoid neutrophil extracellular trap (NET)-mediated killing. We found that addition of the protein synthesis inhibitor clindamycin to S. aureus LAC cultures decreased nuc1 transcription and subsequently blunted nuclease activity in a molecular beacon-based fluorescence assay. We also observed reduced NET degradation through Nuc1 inhibition translating into increased NET-mediated clearance. Similarly, pooled human immunoglobulin specifically inhibited nuclease activity in a concentration-dependent manner. Inhibition of nuclease activity by clindamycin and immunoglobulin enhanced S. aureus clearance and should be considered in the treatment of S. aureus infections.


Subject(s)
Clindamycin/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Immunoglobulins/pharmacology , Staphylococcus aureus/drug effects , Dose-Response Relationship, Drug , Humans
20.
PLoS Pathog ; 8(6): e1002736, 2012.
Article in English | MEDLINE | ID: mdl-22719247

ABSTRACT

Group A Streptococcus (GAS) has developed a broad arsenal of virulence factors that serve to circumvent host defense mechanisms. The virulence factor DNase Sda1 of the hyperinvasive M1T1 GAS clone degrades DNA-based neutrophil extracellular traps allowing GAS to escape extracellular killing. TLR9 is activated by unmethylated CpG-rich bacterial DNA and enhances innate immune resistance. We hypothesized that Sda1 degradation of bacterial DNA could alter TLR9-mediated recognition of GAS by host innate immune cells. We tested this hypothesis using a dual approach: loss and gain of function of DNase in isogenic GAS strains and presence and absence of TLR9 in the host. Either DNA degradation by Sda1 or host deficiency of TLR9 prevented GAS induced IFN-α and TNF-α secretion from murine macrophages and contributed to bacterial survival. Similarly, in a murine necrotizing fasciitis model, IFN-α and TNF-α levels were significantly decreased in wild type mice infected with GAS expressing Sda1, whereas no such Sda1-dependent effect was seen in a TLR9-deficient background. Thus GAS Sda1 suppressed both the TLR9-mediated innate immune response and macrophage bactericidal activity. Our results demonstrate a novel mechanism of bacterial innate immune evasion based on autodegradation of CpG-rich DNA by a bacterial DNase.


Subject(s)
Deoxyribonuclease I/metabolism , Host-Parasite Interactions/physiology , Immune Evasion/physiology , Streptococcal Infections/metabolism , Streptococcus pyogenes/pathogenicity , Toll-Like Receptor 9/metabolism , Animals , Cytokines/biosynthesis , Cytokines/immunology , DNA, Bacterial/metabolism , Deoxyribonuclease I/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Macrophages/immunology , Macrophages/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Streptococcal Infections/immunology , Streptococcus pyogenes/immunology , Streptococcus pyogenes/metabolism , Toll-Like Receptor 9/immunology , Virulence Factors/immunology , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL