Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Nature ; 564(7736): E36, 2018 12.
Article in English | MEDLINE | ID: mdl-30425342

ABSTRACT

In this Article, the middle initial of author Kosei E. Yamaguchi (of the IODP-ICDP Expedition 364 Science Party) was missing and his affiliation is to Toho University (not Tohu University). These errors have been corrected online.

2.
Nature ; 562(7728): 511-518, 2018 10.
Article in English | MEDLINE | ID: mdl-30356184

ABSTRACT

Large meteorite impact structures on the terrestrial bodies of the Solar System contain pronounced topographic rings, which emerged from uplifted target (crustal) rocks within minutes of impact. To flow rapidly over large distances, these target rocks must have weakened drastically, but they subsequently regained sufficient strength to build and sustain topographic rings. The mechanisms of rock deformation that accomplish such extreme change in mechanical behaviour during cratering are largely unknown and have been debated for decades. Recent drilling of the approximately 200-km-diameter Chicxulub impact structure in Mexico has produced a record of brittle and viscous deformation within its peak-ring rocks. Here we show how catastrophic rock weakening upon impact is followed by an increase in rock strength that culminated in the formation of the peak ring during cratering. The observations point to quasi-continuous rock flow and hence acoustic fluidization as the dominant physical process controlling initial cratering, followed by increasingly localized faulting.

SELECTION OF CITATIONS
SEARCH DETAIL