Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Pharmacol Rev ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955509

ABSTRACT

The class F of G protein-coupled receptors (GPCRs) consists of ten Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched (PTCH). The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to a rapid development of our knowledge about structure-function relationships providing a great starting point for drug development. Despite the progress questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. Significance Statement The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.

2.
Hepatology ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870288

ABSTRACT

BACKGROUND AND AIMS: The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/ß-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS: Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS: Our results showed that, unlike in rodents, activation of Wnt/ß-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFß inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/ß-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/ß-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS: This study revealed a network of NFκB, TGFß, and Wnt/ß-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.

3.
Bioorg Chem ; 151: 107681, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39106711

ABSTRACT

Aberrant activation of the Hedgehog (Hh) signalling pathway has been associated with the development and progression of pancreatic cancer. For this reason, blockade of Hh pathway by inhibitors targeting the G protein-coupled receptor Smoothened (SMO) has been considered as a therapeutic target for the treatment of this cancer. In our previous work, we obtained a new SMO ligand based on a purine scaffold (compound I), which showed interesting antitumor activity in several cancer cell lines. In this work, we report the design and synthesis of 17 new purine derivatives, some of which showed high cytotoxic effect on Mia-PaCa-2 (Hh-dependent pancreatic cancer cell lines) and low toxicity on non-neoplastic HEK-293 cells compared with gemcitabine, such as 8f, 8g and 8h (IC50 = 4.56, 4.11 and 3.08 µM, respectively). Two of these purines also showed their ability to bind to SMO through NanoBRET assays (pKi = 5.17 for 8f and 5.01 for 8h), with higher affinities to compound I (pKi = 1.51). In addition, docking studies provided insight the purine substitution pattern is related to the affinity on SMO. Finally, studies of Hh inhibition for selected purines, using a transcriptional functional assay based on luciferase activity in NIH3T3 Shh-Light II cells, demonstrated that 8g reduced GLI activity with a IC50 = 6.4 µM as well as diminished the expression of Hh target genes in two specific Hh-dependent cell models, Med1 cells and Ptch1-/- mouse embryonic fibroblasts. Therefore, our results provide a platform for the design of SMO ligands that could be potential selective cytotoxic agents for the treatment of pancreatic cancer.

4.
J Biol Chem ; 298(9): 102328, 2022 09.
Article in English | MEDLINE | ID: mdl-35933013

ABSTRACT

Within the intestine, the human G protein-coupled receptor (GPCR) GPR35 is involved in oncogenic signaling, bacterial infections, and inflammatory bowel disease. GPR35 is known to be expressed as two distinct isoforms that differ only in the length of their extracellular N-termini by 31 amino acids, but detailed insights into their functional differences are lacking. Through gene expression analysis in immune and gastrointestinal cells, we show that these isoforms emerge from distinct promoter usage and alternative splicing. Additionally, we employed optical assays in living cells to thoroughly profile both GPR35 isoforms for constitutive and ligand-induced activation and signaling of 10 different heterotrimeric G proteins, ligand-induced arrestin recruitment, and receptor internalization. Our results reveal that the extended N-terminus of the long isoform limits G protein activation yet elevates receptor-ß-arrestin interaction. To better understand the structural basis for this bias, we examined structural models of GPR35 and conducted experiments with mutants of both isoforms. We found that a proposed disulfide bridge between the N-terminus and extracellular loop 3, present in both isoforms, is crucial for constitutive G13 activation, while an additional cysteine contributed by the extended N-terminus of the long GPR35 isoform limits the extent of agonist-induced receptor-ß-arrestin2 interaction. The pharmacological profiles and mechanistic insights of our study provide clues for the future design of isoform-specific GPR35 ligands that selectively modulate GPR35-transducer interactions and allow for mechanism-based therapies against, for example, inflammatory bowel disease or bacterial infections of the gastrointestinal system.


Subject(s)
Receptors, G-Protein-Coupled , Allosteric Regulation , Cysteine/chemistry , Disulfides/chemistry , GTP-Binding Proteins/chemistry , Humans , Inflammatory Bowel Diseases/metabolism , Ligands , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism
5.
J Biol Chem ; 295(26): 8759-8774, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32381507

ABSTRACT

The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1-10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/ß-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.


Subject(s)
Frizzled Receptors/metabolism , Wnt Signaling Pathway , Wnt3A Protein/metabolism , Animals , Frizzled Receptors/analysis , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mice , Microscopy, Confocal/methods , Protein Interaction Maps , Protein Transport , Wnt3A Protein/analysis , Xenopus
6.
Handb Exp Pharmacol ; 269: 101-115, 2021.
Article in English | MEDLINE | ID: mdl-34463848

ABSTRACT

The Frizzled (FZD) family of WNT receptors consists of ten paralogues in mammals. They belong to the superfamily of G protein-coupled receptors and regulate crucial processes during embryonic development. Dysregulated FZD signaling leads to disease, most prominently to diverse forms of cancer, which renders these receptors attractive for drug discovery. Recent advances in assay development and the design of genetically encoded biosensors monitoring ligand-receptor interaction, conformational dynamics, and protein-protein interaction have allowed for a better pharmacological understanding of WNT/FZD signal transduction and open novel avenues for mechanism-based drug discovery and screening. In this chapter, we summarize the recent progress in the molecular dissection of FZD activation based on advanced biosensors.


Subject(s)
Frizzled Receptors , Wnt Proteins , Animals , Cell Membrane , Frizzled Receptors/genetics , Humans , Ligands , Wnt Proteins/genetics , Wnt Signaling Pathway
7.
Mol Pharmacol ; 97(2): 62-71, 2020 02.
Article in English | MEDLINE | ID: mdl-31591260

ABSTRACT

The class Frizzled (FZD) or class F of G protein-coupled receptors consists of 10 FZD paralogues and Smoothened (SMO). FZDs coordinate wingless/Int-1 signaling and SMO mediates Hedgehog signaling. Class F receptor signaling is intrinsically important for embryonic development and its dysregulation leads to diseases, including diverse forms of tumors. With regard to the importance of class F signaling in human disease, these receptors provide an attractive target for therapeutics, exemplified by the use of SMO antagonists for the treatment of basal cell carcinoma. Here, we review recent structural insights in combination with a more detailed functional understanding of class F receptor activation, G protein coupling, conformation-based functional selectivity, and mechanistic details of activating cancer mutations, which will lay the basis for further development of class F-targeting small molecules for human therapy. SIGNIFICANCE STATEMENT: Stimulated by recent insights into the activation mechanisms of class F receptors from structural and functional analysis of Frizzled and Smoothened, we aim to summarize what we know about the molecular details of ligand binding, agonist-driven conformational changes, and class F receptor activation. A better understanding of receptor activation mechanisms will allow us to engage in structure- and mechanism-driven drug discovery with the potential to develop more isoform-selective and potentially pathway-selective drugs for human therapy.


Subject(s)
Embryonic Development/drug effects , Frizzled Receptors/agonists , Ligands , Molecular Targeted Therapy/methods , Smoothened Receptor/agonists , Animals , Drug Discovery/methods , Embryonic Development/physiology , Frizzled Receptors/metabolism , Hedgehog Proteins/metabolism , Humans , Protein Binding , Signal Transduction/drug effects , Signal Transduction/physiology , Smoothened Receptor/metabolism , Structure-Activity Relationship , Wnt Proteins/metabolism
8.
Mol Pharmacol ; 97(1): 23-34, 2020 01.
Article in English | MEDLINE | ID: mdl-31707356

ABSTRACT

Smoothened (SMO) is a GPCR that mediates hedgehog signaling. Hedgehog binds the transmembrane protein Patched, which in turn regulates SMO activation. Overactive SMO signaling is oncogenic and is therefore a clinically established drug target. Here we establish a nanoluciferase bioluminescence resonance energy transfer (NanoBRET)-based ligand binding assay for SMO providing a sensitive and high throughput-compatible addition to the toolbox of GPCR pharmacologists. In the NanoBRET-based binding assay, SMO is N terminally tagged with nanoluciferase (Nluc) and binding of BODIPY-cyclopamine is assessed by quantifying resonance energy transfer between receptor and ligand. The assay allowed kinetic analysis of ligand-receptor binding in living HEK293 cells, competition binding experiments using commercially available SMO ligands (SANT-1, cyclopamine-KAAD, SAG1.3 and purmorphamine), and pharmacological dissection of two BODIPY-cyclopamine binding sites. This high throughput-compatible assay is superior to commonly used SMO ligand binding assays in the separation of specific from non-specific ligand binding and, provides a suitable complement to chemical biology strategies for the discovery of novel SMO-targeting drugs. SIGNIFICANCE STATEMENT: We established a NanoBRET-based binding assay for SMO with superior sensitivity compared to fluorescence-based assays. This assay allows distinction of two separate binding sites for BODIPY-cyclopamine on the SMO transmembrane core in live cells in real time. The assay is a valuable complement for drug discovery efforts and will support a better understanding of Class F GPCR pharmacology.


Subject(s)
Binding Sites/genetics , Biological Assay/methods , Signal Transduction/drug effects , Smoothened Receptor/antagonists & inhibitors , Veratrum Alkaloids/pharmacology , Bioluminescence Resonance Energy Transfer Techniques/methods , Boron Compounds/chemistry , Cinnamates/pharmacology , Drug Discovery/methods , Gene Knockout Techniques , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Ligands , Luciferases/chemistry , Morpholines/pharmacology , Nanostructures/chemistry , Purines/pharmacology , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Veratrum Alkaloids/chemistry
9.
J Biol Chem ; 294(31): 11677-11684, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31235524

ABSTRACT

The network of Wingless/Int-1 (WNT)-induced signaling pathways includes ß-catenin-dependent and -independent pathways. ß-Catenin regulates T cell factor/lymphoid enhancer-binding factor (TCF/LEF)-mediated gene transcription, and in response to WNTs, ß-catenin signaling is initiated through engagement of a Frizzled (FZD)/LDL receptor-related protein 5/6 (LRP5/6) receptor complex. FZDs are G protein-coupled receptors, but the question of whether heterotrimeric G proteins are involved in WNT/ß-catenin signaling remains unanswered. Here, we investigate whether acute activation of WNT/ß-catenin signaling by purified WNT-3A requires functional signaling through heterotrimeric G proteins. Using genome editing, we ablated expression of Gs/Golf/Gq/G11/G12/G13/Gz in HEK293 (ΔG7) cells, leaving the expression of pertussis toxin (PTX)-sensitive Gi/o proteins unchanged, to assess whether WNT-3A activates WNT/ß-catenin signaling in WT and ΔG7 cells devoid of functional G protein signaling. We monitored WNT-3A-induced activation by detection of phosphorylation of LDL receptor-related protein 6 (LRP6), electrophoretic mobility shift of the phosphoprotein Dishevelled (DVL), ß-catenin stabilization and dephosphorylation, and TCF-dependent transcription. We found that purified, recombinant WNT-3A efficiently induces WNT/ß-catenin signaling in ΔG7 cells in both the absence and presence of Gi/o-blocking PTX. Furthermore, cells completely devoid of G protein expression, so called Gα-depleted HEK293 cells, maintain responsiveness to WNT-3A with regard to the hallmarks of WNT/ß-catenin signaling. These findings corroborate the concept that heterotrimeric G proteins are not required for this FZD- and DVL-mediated signaling branch. Our observations agree with previous results arguing for FZD conformation-dependent functional selectivity between DVL and heterotrimeric G proteins. In conclusion, WNT/ß-catenin signaling through FZDs does not require the involvement of heterotrimeric G proteins.


Subject(s)
Heterotrimeric GTP-Binding Proteins/metabolism , Wnt Signaling Pathway/drug effects , Wnt3A Protein/pharmacology , Dishevelled Proteins , Gene Editing , HEK293 Cells , Heterotrimeric GTP-Binding Proteins/genetics , Humans , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Pertussis Toxin/pharmacology , Phosphorylation , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , TCF Transcription Factors/metabolism , Wnt3A Protein/genetics , Wnt3A Protein/metabolism , beta Catenin/metabolism
10.
J Biol Chem ; 293(46): 17875-17887, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30237173

ABSTRACT

The Frizzled (FZD) proteins belong to class F of G protein-coupled receptors (GPCRs) and are essential for various pathways involving the secreted lipoglycoproteins of the wingless/int-1 (WNT) family. A WNT-binding cysteine-rich domain (CRD) in FZDs is N-terminally located and connected to the seven transmembrane domain-spanning receptor core by a linker domain that has a variable length in different FZD homologs. However, the function and importance of this linker domain are poorly understood. Here we used systematic mutagenesis of FZD6 to define the minimal N-terminal domain sufficient for receptor surface expression and recruitment of the intracellular scaffold protein Dishevelled (DVL). Further, we identified a triad of evolutionarily conserved cysteines in the FZD linker domain that is crucial for receptor membrane expression and recruitment of DVL. Our results are in agreement with the concept that the conserved cysteines in the linker domain of FZDs assist with the formation of a common secondary structure in this region. We propose that this structure could be involved in agonist binding and receptor activation mechanisms that are similar to the binding and activation mechanisms known for other GPCRs.


Subject(s)
Dishevelled Proteins/metabolism , Frizzled Receptors/metabolism , Acyltransferases/antagonists & inhibitors , Benzeneacetamides/pharmacology , Binding Sites , Cell Membrane/metabolism , Cysteine/chemistry , Frizzled Receptors/genetics , HEK293 Cells , Humans , Membrane Proteins/antagonists & inhibitors , Mutagenesis , Mutation , Protein Domains , Pyridines/pharmacology , Wnt Proteins/metabolism , Wnt Signaling Pathway
11.
J Biol Chem ; 293(48): 18477-18493, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30309985

ABSTRACT

Frizzleds (FZDs) are receptors for secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, initiating an important signal transduction network in multicellular organisms. FZDs are G protein-coupled receptors (GPCRs), which are well known to be regulated by phosphorylation, leading to specific downstream signaling or receptor desensitization. The role and underlying mechanisms of FZD phosphorylation remain largely unexplored. Here, we investigated the phosphorylation of human FZD6 Using MS analysis and a phospho-state- and -site-specific antibody, we found that Ser-648, located in the FZD6 C terminus, is efficiently phosphorylated by casein kinase 1 ϵ (CK1ϵ) and that this phosphorylation requires the scaffolding protein Dishevelled (DVL). In an overexpression system, DVL1, -2, and -3 promoted CK1ϵ-mediated FZD6 phosphorylation on Ser-648. This DVL activity required an intact DEP domain and FZD-mediated recruitment of this domain to the cell membrane. Substitution of the CK1ϵ-targeted phosphomotif reduced FZD6 surface expression, suggesting that Ser-648 phosphorylation controls membrane trafficking of FZD6 Phospho-Ser-648 FZD6 immunoreactivity in human fallopian tube epithelium was predominantly apical, associated with cilia in a subset of epithelial cells, compared with the total FZD6 protein expression, suggesting that FZD6 phosphorylation contributes to asymmetric localization of receptor function within the cell and to epithelial polarity. Given the key role of FZD6 in planar cell polarity, our results raise the possibility that asymmetric phosphorylation of FZD6 rather than asymmetric protein distribution accounts for polarized receptor signaling.


Subject(s)
Casein Kinase I/metabolism , Dishevelled Proteins/physiology , Frizzled Receptors/metabolism , Amino Acid Sequence , Antibodies/immunology , Cell Membrane/metabolism , Dishevelled Proteins/chemistry , Epithelium/metabolism , Fallopian Tubes/metabolism , Female , Frizzled Receptors/chemistry , HEK293 Cells , Humans , Mass Spectrometry , Phosphoproteins/immunology , Phosphorylation , Serine/metabolism , Signal Transduction
12.
Proc Natl Acad Sci U S A ; 113(33): 9304-9, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27486244

ABSTRACT

Dishevelled (DVL) is a key scaffolding protein and a branching point in Wnt signaling pathways. Here, we present conclusive evidence that DVL regulates the centrosomal cycle. We demonstrate that DVL dishevelled and axin (DIX) domain, but not DIX domain-mediated multimerization, is essential for DVL's centrosomal localization. DVL accumulates during the cell cycle and associates with NIMA-related kinase 2 (NEK2), which is able to phosphorylate DVL at a multitude of residues, as detected by a set of novel phospho-specific antibodies. This creates interfaces for efficient binding to CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) and centrosomal Nek2-associated protein 1 (C-NAP1), two proteins of the centrosomal linker. Displacement of DVL from the centrosome and its release into the cytoplasm on NEK2 phosphorylation is coupled to the removal of linker proteins, an event necessary for centrosomal separation and proper formation of the mitotic spindle. Lack of DVL prevents NEK2-controlled dissolution of loose centrosomal linker and subsequent centrosomal separation. Increased DVL levels, in contrast, sequester centrosomal NEK2 and mimic monopolar spindle defects induced by a dominant negative version of this kinase. Our study thus uncovers molecular crosstalk between centrosome and Wnt signaling.


Subject(s)
Autoantigens/metabolism , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Dishevelled Proteins/physiology , Intracellular Signaling Peptides and Proteins/metabolism , NIMA-Related Kinases/physiology , Nerve Tissue Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Phosphorylation , Wnt Signaling Pathway
13.
Mol Pharmacol ; 90(4): 447-59, 2016 10.
Article in English | MEDLINE | ID: mdl-27458145

ABSTRACT

Frizzleds (FZDs) are unconventional G protein-coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD-G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles-in a DVL-independent manner-with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq The FZD4-G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein-transfected cells depend on Gα12/13 Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development.


Subject(s)
Frizzled Receptors/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Wnt Proteins/pharmacology , Dishevelled Proteins/metabolism , Fluorescence Recovery After Photobleaching , Fluorescence Resonance Energy Transfer , Frizzled Receptors/chemistry , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Protein Binding/drug effects , Protein Domains , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction/drug effects
14.
J Biol Chem ; 290(11): 6789-98, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25605717

ABSTRACT

The seven-transmembrane-spanning receptors of the FZD1-10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-ß-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and ß-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs.


Subject(s)
Frizzled Receptors/metabolism , Protein Interaction Maps , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Cell Line , Mice , Phosphorylation , Protein Interaction Mapping , Protein Isoforms/metabolism , beta Catenin/metabolism
15.
Am J Physiol Regul Integr Comp Physiol ; 310(3): R297-304, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26632602

ABSTRACT

Monocytes/macrophages (MOs/MΦs) are suggested to be crucial for skeletal muscle repair and remodeling. This has been attributed to their proangiogenic potential, secretion of growth factors, and clearance of tissue debris. Skeletal muscle injury increases the number of MΦs in the tissue, and their importance for muscle regeneration has been supported by studies demonstrating that depletion of MOs/MΦs greatly impairs repair after muscle injury. Whether noninjurious exercise leads to induced expression of chemoattractants for MOs/MΦs is poorly investigated. To this end, we analyzed the expression of CX3CL1 (fractalkine), CCL2 (MCP-1), and CCL22 (MDC) in human skeletal muscle after a bout of exercise, all of which are established MO/MΦ chemotactic factors that are expressed by human myoblasts. Muscle biopsies from the musculus vastus lateralis were obtained up to 24 h after 1 h of cycle exercise in healthy individuals and in age-matched nonexercised controls. CX3CL1 increased at both the mRNA and protein level in human skeletal muscle after one bout of exercise. It was not possible to distinguish changes in CCL2 or CCL22 mRNA levels between biopsy vs. exercise effects, and the expression of CCL22 was very low. CX3CL1 mainly localized to the skeletal muscle endothelium, and it increased in human umbilical vein endothelial cells stimulated with tissue fluid from exercised muscle. CX3CL1 increased the expression of proinflammatory and proangiogenic factors in THP-1 monocytes (a human acute monocytic leukemia cell line) and in human primary myoblasts and myotubes. Altogether, this suggests that CX3CL1 participates in cross-talk mechanisms between endothelium and other muscle tissue cells and may promote a shift in the microenvironment toward a more regenerative milieu.


Subject(s)
Chemokine CX3CL1/metabolism , Chemotaxis , Exercise/physiology , Macrophages/metabolism , Muscle Contraction , Quadriceps Muscle/metabolism , Adult , Bicycling , Biopsy , Cell Line, Tumor , Cellular Microenvironment , Chemokine CCL2/metabolism , Chemokine CCL22/metabolism , Chemokine CX3CL1/genetics , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Microdialysis , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Quadriceps Muscle/cytology , RNA, Messenger/metabolism , Random Allocation , Time Factors , Up-Regulation , Young Adult
16.
Exp Cell Res ; 339(2): 280-8, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26511503

ABSTRACT

Malignant gliomas are among the most severe types of cancer, and the most common primary brain tumors. Treatment options are limited and the prognosis is poor. WNT-5A, a member of the WNT family of lipoglycoproteins, plays a role in oncogenesis and tumor progression in various cancers, whereas the role of WNT-5A in glioma remains obscure. Based on the role of WNT-5A as an oncogene, its potential to regulate microglia cells and the glioma-promoting capacities of microglia cells, we hypothesize that WNT-5A has a role in regulation of immune functions in glioma. We investigated WNT-5A expression by in silico analysis of the cancer genome atlas (TCGA) transcript profiling of human glioblastoma samples and immunohistochemistry experiments of human glioma tissue microarrays (TMA). Our results reveal higher WNT-5A protein levels and mRNA expression in a subgroup of gliomas (WNT-5A(high)) compared to non-malignant control brain tissue. Furthermore, we show a significant correlation between WNT-5A in the tumor and presence of major histocompatibility complex Class II-positive microglia/monocytes. Our data pinpoint a positive correlation between WNT-5A and a proinflammatory signature in glioma. We identify increased presence of microglia/monocytes as an important aspect in the inflammatory transformation suggesting a novel role for WNT-5A in human glioma.


Subject(s)
Glioma/metabolism , Glioma/pathology , Microglia/metabolism , Monocytes/metabolism , Proto-Oncogene Proteins/metabolism , Wnt Proteins/metabolism , Computational Biology , Female , Humans , Male , Microglia/pathology , Monocytes/pathology , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , Tissue Array Analysis , Wnt Proteins/biosynthesis , Wnt Proteins/genetics , Wnt-5a Protein
17.
J Biol Chem ; 289(2): 1128-41, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24265322

ABSTRACT

ß-Arrestin is a scaffold protein that regulates signal transduction by seven transmembrane-spanning receptors. Among other functions it is also critically required for Wnt/ß-catenin signal transduction. In the present study we provide for the first time a mechanistic basis for the ß-arrestin function in Wnt/ß-catenin signaling. We demonstrate that ß-arrestin is required for efficient Wnt3a-induced Lrp6 phosphorylation, a key event in downstream signaling. ß-Arrestin regulates Lrp6 phosphorylation via a novel interaction with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding protein Amer1/WTX/Fam123b. Amer1 has been shown very recently to bridge Wnt-induced and Dishevelled-associated PtdIns(4,5)P2 production to the phosphorylation of Lrp6. Using fluorescence recovery after photobleaching we show here that ß-arrestin is required for the Wnt3a-induced Amer1 membrane dynamics and downstream signaling. Finally, we show that ß-arrestin interacts with PtdIns kinases PI4KIIα and PIP5KIß. Importantly, cells lacking ß-arrestin showed higher steady-state levels of the relevant PtdInsP and were unable to increase levels of these PtdInsP in response to Wnt3a. In summary, our data show that ß-arrestins regulate Wnt3a-induced Lrp6 phosphorylation by the regulation of the membrane dynamics of Amer1. We propose that ß-arrestins via their scaffolding function facilitate Amer1 interaction with PtdIns(4,5)P2, which is produced locally upon Wnt3a stimulation by ß-arrestin- and Dishevelled-associated kinases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arrestins/metabolism , Cell Membrane/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Tumor Suppressor Proteins/metabolism , Wnt3A Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Arrestins/genetics , Blotting, Western , Cells, Cultured , Dishevelled Proteins , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mice , Mice, Knockout , Microscopy, Confocal , Minor Histocompatibility Antigens , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , RNA Interference , Tumor Suppressor Proteins/genetics , Wnt3A Protein/genetics , beta-Arrestins
18.
EMBO J ; 30(8): 1433-43, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21304492

ABSTRACT

Phosphorylation of the Wnt receptor low-density lipoprotein receptor-related protein 6 (LRP6) by glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1γ (CK1γ) is a key step in Wnt/ß-catenin signalling, which requires Wnt-induced formation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Here, we show that adenomatous polyposis coli membrane recruitment 1 (Amer1) (also called WTX), a membrane associated PtdIns(4,5)P(2)-binding protein, is essential for the activation of Wnt signalling at the LRP6 receptor level. Knockdown of Amer1 reduces Wnt-induced LRP6 phosphorylation, Axin translocation to the plasma membrane and formation of LRP6 signalosomes. Overexpression of Amer1 promotes LRP6 phosphorylation, which requires interaction of Amer1 with PtdIns(4,5)P(2). Amer1 translocates to the plasma membrane in a PtdIns(4,5)P(2)-dependent manner after Wnt treatment and is required for LRP6 phosphorylation stimulated by application of PtdIns(4,5)P(2). Amer1 binds CK1γ, recruits Axin and GSK3ß to the plasma membrane and promotes complex formation between Axin and LRP6. Fusion of Amer1 to the cytoplasmic domain of LRP6 induces LRP6 phosphorylation and stimulates robust Wnt/ß-catenin signalling. We propose a mechanism for Wnt receptor activation by which generation of PtdIns(4,5)P(2) leads to recruitment of Amer1 to the plasma membrane, which acts as a scaffold protein to stimulate phosphorylation of LRP6.


Subject(s)
LDL-Receptor Related Proteins/metabolism , Membrane Proteins/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Wnt Proteins/metabolism , Adaptor Proteins, Signal Transducing , Blotting, Western , Cell Membrane/metabolism , Cells, Cultured , Fluorescent Antibody Technique , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Humans , Kidney/cytology , Kidney/metabolism , LDL-Receptor Related Proteins/genetics , Low Density Lipoprotein Receptor-Related Protein-6 , Membrane Proteins/genetics , Phosphorylation , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Tumor Suppressor Proteins , Wnt Proteins/genetics , beta Catenin/genetics , beta Catenin/metabolism
19.
FASEB J ; 28(5): 2293-305, 2014 May.
Article in English | MEDLINE | ID: mdl-24500924

ABSTRACT

Frizzleds (FZDs) are classified as G-protein-coupling receptors, but how signals are initiated and specified through heterotrimeric G proteins is unknown. FZD6 regulates convergent extension movements, and its C-terminal Arg511Cys mutation causes nail dysplasia in humans. We investigated the functional relationship between FZD6, Disheveled (DVL), and heterotrimeric G proteins. Live cell imaging combined with fluorescence recovery after photobleaching (FRAP) revealed that inactive human FZD6 precouples to Gαi1 and Gαq but not to GαoA,Gαs, and Gα12 proteins. G-protein coupling is measured as a 10-20% reduction in the mobile fraction of fluorescently tagged G proteins on chemical receptor surface cross-linking. The FZD6 Arg511Cys mutation is incapable of G-protein precoupling, even though it still binds DVL. Using both FRAP and Förster resonance energy transfer (FRET) technology, we showed that the FZD6-Gαi1 and FZD-Gαq complexes dissociate on WNT-5A stimulation. Most important, G-protein precoupling of FZD6 and WNT-5A-induced signaling to extracellular signal-regulated kinase1/2 were impaired by DVL knockdown or overexpression, arguing for a strict dependence of FZD6-G-protein coupling on DVL levels and identifying DVL as a master regulator of FZD/G-protein signaling. In summary, we propose a mechanistic connection between DVL and G proteins integrating WNT, FZD, G-protein, and DVL function.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Frizzled Receptors/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Phosphoproteins/metabolism , Cell Membrane/metabolism , Dishevelled Proteins , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorescence Recovery After Photobleaching , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mutation , Protein Binding , Proto-Oncogene Proteins/metabolism , Wnt Proteins/metabolism , Wnt-5a Protein
20.
Cell Commun Signal ; 13: 2, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25627785

ABSTRACT

BACKGROUND: The WNT/planar-cell-polarity (PCP) pathway is a key regulator of cell polarity and directional cell movements. Core PCP proteins such as Van Gogh-like2 (VANGL2) are evolutionarily highly conserved; however, the mammalian PCP machinery is still poorly understood mainly due to lack of suitable models and quantitative methodology. WNT/PCP has been implicated in many human diseases with the most distinguished positive role in the metastatic process, which accounts for more than 90% of cancer related deaths, and presents therefore an attractive target for pharmacological interventions. However, cellular assays for the assessment of PCP signaling, which would allow a more detailed mechanistic analysis of PCP function and possibly also high throughput screening for chemical compounds targeting mammalian PCP signaling, are still missing. RESULTS: Here we describe a mammalian cell culture model, which correlates B lymphocyte migration of patient-derived MEC1 cells and asymmetric localization of fluorescently-tagged VANGL2. We show by live cell imaging that PCP proteins are polarized in MEC1 cells and that VANGL2 polarization is controlled by the same mechanism as in tissues i.e. it is dependent on casein kinase 1 activity. In addition, destruction of the actin cytoskeleton leads to migratory arrest and cell rounding while VANGL2-EGFP remains polarized suggesting that active PCP signaling visualized by polarized distribution of VANGL2 is a cause for and not a consequence of the asymmetric shape of a migrating cell. CONCLUSIONS: The presented imaging-based methodology allows overcoming limitations of earlier approaches to study the mammalian WNT/PCP pathway, which required in vivo models and analysis of complex tissues. Our system investigating PCP-like signaling on a single-cell level thus opens new possibilities for screening of compounds, which control asymmetric distribution of proteins in the PCP pathway.


Subject(s)
B-Lymphocytes/metabolism , Cell Movement/immunology , Cell Polarity/immunology , Intracellular Signaling Peptides and Proteins/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Membrane Proteins/immunology , Wnt Signaling Pathway/immunology , B-Lymphocytes/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Polarity/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Membrane Proteins/genetics , Wnt Signaling Pathway/genetics
SELECTION OF CITATIONS
SEARCH DETAIL