Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Biol Chem ; 298(9): 102362, 2022 09.
Article in English | MEDLINE | ID: mdl-35963431

ABSTRACT

The activity of protein phosphatase 2A (PP2A) is determined by the expression and localization of the regulatory B-subunits. PP2A-B56α is the dominant isoform of the B'-family in the heart. Its role in regulating the cardiac response to ß-adrenergic stimulation is not yet fully understood. We therefore generated mice deficient in B56α to test the functional cardiac effects in response to catecholamine administration versus corresponding WT mice. We found the decrease in basal PP2A activity in hearts of KO mice was accompanied by a counter-regulatory increase in the expression of B' subunits (ß and γ) and higher phosphorylation of sarcoplasmic reticulum Ca2+ regulatory and myofilament proteins. The higher phosphorylation levels were associated with enhanced intraventricular pressure and relaxation in catheterized KO mice. In contrast, at the cellular level, we detected depressed Ca2+ transient and sarcomere shortening parameters in KO mice at basal conditions. Consistently, the peak amplitude of the L-type Ca2+ current was reduced and the inactivation kinetics of ICaL were prolonged in KO cardiomyocytes. However, we show ß-adrenergic stimulation resulted in a comparable peak amplitude of Ca2+ transients and myocellular contraction between KO and WT cardiomyocytes. Therefore, we propose higher isoprenaline-induced Ca2+ spark frequencies might facilitate the normalized Ca2+ signaling in KO cardiomyocytes. In addition, the application of isoprenaline was associated with unchanged L-type Ca2+ current parameters between both groups. Our data suggest an important influence of PP2A-B56α on the regulation of Ca2+ signaling and contractility in response to ß-adrenergic stimulation in the myocardium.


Subject(s)
Adrenergic Agents , Protein Phosphatase 2 , Adrenergic Agents/metabolism , Adrenergic Agents/pharmacology , Animals , Calcium/metabolism , Isoproterenol/pharmacology , Mice , Mice, Knockout , Myocardial Contraction , Myocytes, Cardiac/metabolism , Phosphorylation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Sarcoplasmic Reticulum/metabolism
2.
Adv Exp Med Biol ; 1413: 191-211, 2023.
Article in English | MEDLINE | ID: mdl-37195532

ABSTRACT

Since the publication of the first lung-on-a-chip in 2010, research has made tremendous progress in mimicking the cellular environment of healthy and diseased alveoli. As the first lung-on-a-chip products have recently reached the market, innovative solutions to even better mimic the alveolar barrier are paving the way for the next generation lung-on-chips. The original polymeric membranes made of PDMS are being replaced by hydrogel membranes made of proteins from the lung extracellular matrix, whose chemical and physical properties exceed those of the original membranes. Other aspects of the alveolar environment are replicated, such as the size of the alveoli, their three-dimensional structure, and their arrangement. By tuning the properties of this environment, the phenotype of alveolar cells can be tuned, and the functions of the air-blood barrier can be reproduced, allowing complex biological processes to be mimicked. Lung-on-a-chip technologies also provide the possibility of obtaining biological information that was not possible with conventional in vitro systems. Pulmonary edema leaking through a damaged alveolar barrier and barrier stiffening due to excessive accumulation of extracellular matrix proteins can now be reproduced. Provided that the challenges of this young technology are overcome, there is no doubt that many application areas will benefit greatly.


Subject(s)
Lung , Pulmonary Alveoli , Extracellular Matrix , Lab-On-A-Chip Devices
3.
FASEB J ; 34(8): 11272-11291, 2020 08.
Article in English | MEDLINE | ID: mdl-32602979

ABSTRACT

ICER (inducible cAMP early repressor) isoforms are transcriptional repressors encoded by the Crem (cAMP responsive element modulator) gene. They were linked to the regulation of a multitude of cellular processes and pathophysiological mechanisms. Here, we show for the first time that two independent induction patterns for CREM repressor isoforms exist in the heart, namely for ICER and smICER (small ICER), which are induced in response to ß-adrenergic stimulation in a transient- and saturation-like manner, respectively. This time-shifted induction pattern, driven by two internal promoters in the Crem gene, leads to the predominant transcription of smIcer after prolonged ß-adrenergic stimulation. Using an ICER knockout mouse model with preserved smICER induction, we show that the transient-like induction of Icer itself has minor effects on gene regulation, cardiac hypertrophy or contractile function in the heart. We conclude that the functions previously linked to ICER may be rather attributed to smICER, also beyond the cardiac background.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Cyclic AMP Response Element Modulator/genetics , Receptors, Adrenergic, beta/genetics , Animals , Cardiomegaly/drug therapy , Cell Line , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Heart/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
4.
J Mol Cell Cardiol ; 125: 195-204, 2018 12.
Article in English | MEDLINE | ID: mdl-30389400

ABSTRACT

RATIONALE: A higher expression/activity of type 1 serine/threonine protein phosphatase 1 (PP1) may contribute to dephosphorylation of cardiac regulatory proteins triggering the development of heart failure. OBJECTIVE: Here, we tested the putatively protective effects of PP1 inhibitor-2 (I2) overexpression using a heart failure model induced by chronic ß-adrenergic stimulation. METHODS AND RESULTS: Transgenic (TG) and wild-type (WT) mice were subjected to isoprenaline (ISO) or isotonic NaCl solution supplied via osmotic minipumps for 7 days. I2 overexpression was associated with a depressed PP1 activity. Basal contractility was unchanged in catheterized mice and isolated cardiomyocytes between TGNaCl and WTNaCl. TGISO mice exhibited more fibrosis and a higher expression of hypertrophy marker proteins as compared to WTISO. After acute administration of ISO, the contractile response was accompanied by a higher sensitivity in TGISO as compared to WTISO. In contrast to basal contractility, the peak amplitude of [Ca]i and SR Ca load were reduced in TGNaCl as compared to WTNaCl. These effects were normalized to WT levels after chronic ISO stimulation. Cardiomyocyte relaxation and [Ca]i decay kinetics were hastened in TGISO as compared to WTISO, which can be explained by a higher phospholamban phosphorylation at Ser16. Chronic catecholamine stimulation was followed by an enhanced expression of GSK3ß, whereas the phosphorylation at Ser9 was lower in TG as compared to the corresponding WT group. This resulted in a higher I2 phosphorylation that may reactivate PP1. CONCLUSION: Our findings suggest that the basal desensitization of ß-adrenergic signaling and the depressed Ca handling in TG by inhibition of PP1 is restored by a GSK3ß-dependent phosphorylation of I2.


Subject(s)
Calcium/metabolism , Myocytes, Cardiac/metabolism , Oncogene Proteins/metabolism , Protein Phosphatase 1/metabolism , Animals , Cells, Cultured , DNA-Binding Proteins , Heart Failure/metabolism , Histone Chaperones , Humans , Isoproterenol/pharmacology , Mice , Mice, Transgenic , Myocytes, Cardiac/drug effects , Sarcomeres/drug effects , Sarcomeres/genetics , Sodium Chloride/pharmacology
5.
Basic Res Cardiol ; 113(4): 27, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29881975

ABSTRACT

Understanding molecular mechanisms involved in atrial tissue remodeling and arrhythmogenesis in atrial fibrillation (AF) is essential for developing specific therapeutic approaches. Two-pore-domain potassium (K2P) channels modulate cellular excitability, and TASK-1 (K2P3.1) currents were recently shown to alter atrial action potential duration in AF and heart failure (HF). Finding animal models of AF that closely resemble pathophysiological alterations in human is a challenging task. This study aimed to analyze murine cardiac expression patterns of K2P channels and to assess modulation of K2P channel expression in murine models of AF and HF. Expression of cardiac K2P channels was quantified by real-time qPCR and immunoblot in mouse models of AF [cAMP-response element modulator (CREM)-IbΔC-X transgenic animals] or HF (cardiac dysfunction induced by transverse aortic constriction, TAC). Cloned murine, human, and porcine TASK-1 channels were heterologously expressed in Xenopus laevis oocytes. Two-electrode voltage clamp experiments were used for functional characterization. In murine models, among members of the K2P channel family, TASK-1 expression displayed highest levels in both atrial and ventricular tissue samples. Furthermore, K2P2.1, K2P5.1, and K2P6.1 showed significant expression levels. In CREM-transgenic mice, atrial expression of TASK-1 was significantly reduced in comparison with wild-type animals. In a murine model of TAC-induced pressure overload, ventricular TASK-1 expression remained unchanged, while atrial TASK-1 levels were significantly downregulated. When heterologously expressed in Xenopus oocytes, currents of murine, porcine, and human TASK-1 displayed similar characteristics. TASK-1 channels display robust cardiac expression in mice. Murine, porcine, and human TASK-1 channels share functional similarities. Dysregulation of atrial TASK-1 expression in murine AF and HF models suggests a mechanistic contribution to arrhythmogenesis.


Subject(s)
Atrial Fibrillation/metabolism , Atrial Remodeling , Heart Atria/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , Nerve Tissue Proteins/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Ventricular Remodeling , Action Potentials , Animals , Atrial Fibrillation/genetics , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Cloning, Molecular , Disease Models, Animal , Female , Heart Atria/pathology , Heart Atria/physiopathology , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Heart Rate , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Oocytes , Potassium Channels, Tandem Pore Domain/genetics , Signal Transduction , Sus scrofa , Ventricular Remodeling/drug effects , Xenopus laevis
6.
Opt Express ; 25(17): 20502-20510, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041730

ABSTRACT

We demonstrate nonlinear pulse compression by multi-pass cell spectral broadening (MPCSB) from 860 fs to 115 fs with compressed pulse energy of 7.5 µJ, average power of 300 W and close to diffraction-limited beam quality. The transmission of the compression unit is >90%. The results show that this recently introduced compression scheme for peak powers above the threshold for catastrophic self-focusing can be scaled to smaller pulse energies and can achieve a larger compression factor than previously reported. Good homogeneity of the spectral broadening across the beam profile is verified, which distinguishes MPCSB among other bulk compression schemes.

7.
Opt Lett ; 42(11): 2118-2121, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28569860

ABSTRACT

We generate narrowband terahertz (THz) radiation in periodically poled lithium niobate (PPLN) crystals using two chirped-and-delayed driver pulses from a high-energy Ti:sapphire laser. The generated frequency is determined by the phase-matching condition in the PPLN and influences the temporal delay of the two pulses for efficient terahertz generation. We achieve internal conversion efficiencies up to 0.13% as well as a record multicycle THz energy of 40 µJ at 0.544 THz in a cryogenically cooled PPLN.

8.
Opt Lett ; 41(19): 4511-4514, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27749868

ABSTRACT

We demonstrate a scheme for nonlinear pulse compression at high average powers based on self-phase modulation in a multi-pass cell using fused silica as the nonlinear medium. The scheme is suitable for compression of pulses with peak powers exceeding the threshold for critical self-focusing. At >400 W of input power, the pulses of a Yb:YAG-Innoslab laser system (10 MHz repetition rate, 850 fs pulse duration) are spectrally broadened from 1.6 to >13.5 nm bandwidth while maintaining almost diffraction-limited beam quality. The chirp is removed with a dispersive mirror compressor, and pulse durations of 170 fs at an output power of 375 W are achieved. The compression unit reaches an overall transmission of >90%.

9.
Stem Cells ; 33(5): 1456-69, 2015 May.
Article in English | MEDLINE | ID: mdl-25639979

ABSTRACT

Directed cardiac differentiation of human pluripotent stem cells (hPSCs) enables disease modeling, investigation of human cardiogenesis, as well as large-scale production of cardiomyocytes (CMs) for translational purposes. Multiple CM differentiation protocols have been developed to individually address specific requirements of these diverse applications, such as enhanced purity at a small scale or mass production at a larger scale. However, there is no universal high-efficiency procedure for generating CMs both in two-dimensional (2D) and three-dimensional (3D) culture formats, and undefined or complex media additives compromise functional analysis or cost-efficient upscaling. Using systematic combinatorial optimization, we have narrowed down the key requirements for efficient cardiac induction of hPSCs. This implied differentiation in simple serum and serum albumin-free basal media, mediated by a minimal set of signaling pathway manipulations at moderate factor concentrations. The method was applicable both to 2D and 3D culture formats as well as to independent hPSC lines. Global time-course gene expression analyses over extended time periods and in comparison with human heart tissue were used to monitor culture-induced maturation of the resulting CMs. This suggested that hPSC-CMs obtained with our procedure reach a rather stable transcriptomic state after approximately 4 weeks of culture. The underlying gene expression changes correlated well with a decline of immature characteristics as well as with a gain of structural and physiological maturation features within this time frame. These data link gene expression patterns of hPSC-CMs to functional readouts and thus define the cornerstones of culture-induced maturation.


Subject(s)
Cell Differentiation , Heart/physiology , Pluripotent Stem Cells/cytology , Humans , Mesoderm/cytology , Myocytes, Cardiac/cytology
10.
FASEB J ; 29(9): 3773-87, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26023182

ABSTRACT

Annexin A4 (AnxA4), a Ca(2+)- and phospholipid-binding protein, is up-regulated in the human failing heart. In this study, we examined the impact of AnxA4 on ß-adrenoceptor (ß-AR)/cAMP-dependent signal transduction. Expression of murine AnxA4 in human embryonic kidney (HEK)293 cells dose-dependently inhibited cAMP levels after direct stimulation of adenylyl cyclases (ACs) with forskolin (FSK), as determined with an exchange protein activated by cAMP-Förster resonance energy transfer (EPAC-FRET) sensor and an ELISA (control vs. +AnxA4: 1956 ± 162 vs. 1304 ± 185 fmol/µg protein; n = 8). Disruption of the anxA4 gene led to a consistent increase in intracellular cAMP levels in isolated adult mouse cardiomyocytes, with heart-directed expression of the EPAC-FRET sensor, stimulated with FSK, and as determined by ELISA, also in mouse cardiomyocytes stimulated with the ß-AR agonist isoproterenol (ISO) (anxA4a(+/+) vs. anxA4a(-/-): 5.1 ± 0.3 vs. 6.7 ± 0.6 fmol/µg protein) or FSK (anxA4a(+/+) vs. anxA4a(-/-): 1891 ± 238 vs. 2796 ± 343 fmol/µg protein; n = 9-10). Coimmunoprecipitation experiments in HEK293 cells revealed a direct interaction of murine AnxA4 with human membrane-bound AC type 5 (AC5). As a functional consequence of AnxA4-mediated AC inhibition, AnxA4 inhibited the FSK-induced transcriptional activation mediated by the cAMP response element (CRE) in reporter gene studies (10-fold vs. control; n = 4 transfections) and reduced the FSK-induced phosphorylation of the CRE-binding protein (CREB) measured on Western blots (control vs. +AnxA4: 150 ± 17% vs. 105 ± 10%; n = 6) and by the use of the indicator of CREB activation caused by phosphorylation (ICAP)-FRET sensor, indicating CREB phosphorylation. Inactivation of AnxA4 in anxA4a(-/-) mice was associated with an increased cardiac response to ß-AR stimulation. Together, these results suggest that AnxA4 is a novel direct negative regulator of AC5, adding a new facet to the functions of annexins.


Subject(s)
Adenylyl Cyclases/metabolism , Annexin A4/metabolism , Cell Membrane/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Adenylyl Cyclases/genetics , Animals , Annexin A4/genetics , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cell Membrane/genetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Phosphorylation/physiology
12.
J Biol Chem ; 289(49): 33862-73, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25320082

ABSTRACT

Dephosphorylation of important myocardial proteins is regulated by protein phosphatase 2A (PP2A), representing a heterotrimer that is comprised of catalytic, scaffolding, and regulatory (B) subunits. There is a multitude of B subunit family members directing the PP2A holoenzyme to different myocellular compartments. To gain a better understanding of how these B subunits contribute to the regulation of cardiac performance, we generated transgenic (TG) mice with cardiomyocyte-directed overexpression of B56α, a phosphoprotein of the PP2A-B56 family. The 2-fold overexpression of B56α was associated with an enhanced PP2A activity that was localized mainly in the cytoplasm and myofilament fraction. Contractility was enhanced both at the whole heart level and in isolated cardiomyocytes of TG compared with WT mice. However, peak amplitude of [Ca]i did not differ between TG and WT cardiomyocytes. The basal phosphorylation of cardiac troponin inhibitor (cTnI) and the myosin-binding protein C was reduced by 26 and 35%, respectively, in TG compared with WT hearts. The stimulation of ß-adrenergic receptors by isoproterenol (ISO) resulted in an impaired contractile response of TG hearts. At a depolarizing potential of -5 mV, the ICa,L current density was decreased by 28% after administration of ISO in TG cardiomyocytes. In addition, the ISO-stimulated phosphorylation of phospholamban at Ser(16) was reduced by 27% in TG hearts. Thus, the increased PP2A-B56α activity in TG hearts is localized to specific subcellular sites leading to the dephosphorylation of important contractile proteins. This may result in higher myofilament Ca(2+) sensitivity and increased basal contractility in TG hearts. These effects were reversed by ß-adrenergic stimulation.


Subject(s)
Heart/physiology , Myocardial Contraction/physiology , Myocytes, Cardiac/metabolism , Protein Phosphatase 2/metabolism , Troponin I/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cells, Cultured , Gene Expression Regulation , Heart/drug effects , Isoproterenol/pharmacology , Membrane Potentials/drug effects , Mice , Mice, Inbred DBA , Mice, Transgenic , Myocardial Contraction/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myofibrils/genetics , Myofibrils/metabolism , Phosphorylation , Protein Binding , Protein Multimerization , Protein Phosphatase 2/genetics , Signal Transduction , Troponin I/genetics
13.
Opt Lett ; 40(24): 5762-5, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26670506

ABSTRACT

We present an efficiency scaling study of optical rectification in cryogenically cooled periodically poled lithium niobate for the generation of narrowband terahertz radiation using ultrashort pulses. The results show an efficiency and brilliance increase compared to previous schemes of up to 2 orders of magnitude by exploring the optimal pump pulse format at around 800 nm, and reveal saturation mechanisms limiting the conversion efficiency. We achieve >10⁻³ energy conversion efficiencies, µJ-level energies, and bandwidths <20 GHz at ∼0.5 THz, thereby showing unprecedented spectral brightness in the 0.1-1 THz range relevant to terahertz science and technology.

14.
Arthritis Rheum ; 65(3): 792-804, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23440693

ABSTRACT

OBJECTIVE: There is increasing evidence that serotonin (5-hydroxytryptamine [5-HT]) and distinct 5-HT receptors are involved in the pathogenesis of systemic sclerosis. The aim of this study was to test the hypothesis that tropisetron, a routinely used antiemetic agent previously characterized as a 5-HT(3/4) receptor-modulating agent, can directly affect collagen synthesis in vitro and attenuate experimentally induced fibrosis in vivo. METHODS: Functional in vitro studies were performed using human dermal fibroblasts (HDFs). Signal transduction studies included immunofluorescence analysis, Western immunoblotting, promoter reporter assays, cAMP/Ca(2+) measurements, and use of pharmacologic activators and inhibitors. Gene silencing was performed using small interfering RNA. Putative receptors of tropisetron were detected by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. The murine model of bleomycin-induced scleroderma was used to assess the antifibrogenic and antifibrotic effects of tropisetron in vivo. Collagen expression in vitro, ex vivo, and in situ was determined by real-time RT-PCR analysis, Western immunoblotting, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunohistochemical analysis. RESULTS: Tropisetron suppressed collagen synthesis induced by transforming growth factor ß1 (TGFß1). This effect was independent of 5-HT(3/4) receptor but was mediated via α7 nicotinic acetylcholine receptor (α7nAChR). Suppression of TGFß1-induced collagen synthesis occurred via an unknown molecular mechanism not involving modulation of the Smad, cAMP, Akt, c-Jun, or MAPK pathway. In vivo, tropisetron not only prevented skin fibrosis but also reduced the collagen content in established dermal fibrosis induced by bleomycin. CONCLUSION: Tropisetron directly reduces collagen synthesis in HDFs via an α7nAChR-dependent mechanism. The antifibrogenic and antifibrotic effects of this agent observed in a mouse model of bleomycin- induced scleroderma indicate the future potential of tropisetron in the treatment of fibrotic diseases such as scleroderma.


Subject(s)
Collagen/biosynthesis , Indoles/pharmacology , Receptors, Nicotinic/metabolism , Scleroderma, Systemic/drug therapy , 3T3 Cells , Adult , Aged , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Dermis/drug effects , Dermis/metabolism , Dermis/pathology , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/drug therapy , Fibrosis/metabolism , Fibrosis/pathology , Humans , Mice , Middle Aged , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Serotonin Antagonists/pharmacology , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Tropisetron , alpha7 Nicotinic Acetylcholine Receptor
15.
Front Cardiovasc Med ; 11: 1419597, 2024.
Article in English | MEDLINE | ID: mdl-38863902

ABSTRACT

Background: Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme that controls Ca2+ homeostasis and contractility of the heart via dephosphorylation of regulatory proteins. In some genetically modified mouse models with increased arrhythmogenicity, a reduced expression of the regulatory subunit B56α of PP2A was found as a concomitant effect. Whether there is a general correlation between the abundance of B56α and the promotion of cardiac arrhythmogenesis remains unclear. Methods: The aim of this study was therefore to investigate the role of PP2A-B56α in the propensity for arrhythmic activity in the heart. The experimental analysis of this question has been addressed by using a mouse model with deletion of the PP2A-B56α gene, PPP2R5A (KO), in comparison to wild-type animals (WT). Evidence for arrhythmogenicity was investigated in whole animal, isolated heart and cardiomyocytes by ECG, recording of monophasic action potential (MAP) induced by programmed electrical stimulation (PES), measurement of Ca2+ transients under increased pacing frequencies and determination of total K+ channel currents (I K). Results: ECG measurements showed a prolongation of QT time in KO vs. WT. KO mice exhibited a higher rate of premature ventricular contractions in the ECG. MAP measurements in Langendorff-perfused KO hearts showed increased episodes of ventricular tachyarrhythmia induced by PES. However, the KO hearts showed values for MAP duration that were similar to those in WT hearts. In contrast, KO showed more myocardial cells with spontaneous arrhythmogenic Ca2+ transient events compared to WT. The whole-cell patch-clamp technique applied to ventricular cardiomyocytes revealed comparable peak potassium channel current densities between KO and WT. Conclusion: These findings support the assumption that a decrease or even the loss of PP2A-B56α leads to an increased propensity of triggered arrhythmias. This could be based on the increased spontaneous Ca2+ tansients observed.

16.
Int J Cardiol Heart Vasc ; 44: 101168, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36620202

ABSTRACT

Aims: Na+/Ca2+ exchanger (NCX) upregulation in cardiac diseases like heart failure promotes as an independent proarrhythmic factor early and delayed afterdepolarizations (EADs/DADs) on the single cell level. Consequently, NCX inhibition protects against EADs and DADs in isolated cardiomyocytes. We here investigate, whether these promising cellular in vitro findings likewise apply to an in vivo setup. Methods/Results: Programmed ventricular stimulation (PVS) and isoproterenol were applied to a murine heterozygous NCX-knockout model (KO) to investigate ventricular arrhythmia initiation and perpetuation compared to wild-type (WT). KO displayed a reduced susceptibility towards isoproterenol-induced premature ventricular complexes. During PVS, initiation of single or double ectopic beats was similar between KO and WT. But strikingly, perpetuation of ventricular tachycardia (VT) was significantly increased in KO (animals with VT - KO: 82 %; WT: 47 %; p = 0.0122 / median number of VTs - KO: 4.5 (1.0, 6.25); WT: 0.0 (0.0, 4.0); p = 0.0039). The median VT duration was prolonged in KO (in s; KO: 0.38 (0.19, 0.96); WT: 0.0 (0.0, 0.60); p = 0.0239). The ventricular refractory period (VRP) was shortened in KO (in ms; KO: 15.1 ± 0.7; WT: 18.7 ± 0.7; p = 0.0013). Conclusions: Not the initiation, but the perpetuation of provoked whole-heart in vivo ventricular arrhythmia was increased in KO. As a potential mechanism, we found a significantly reduced VRP, which may promote perpetuation of reentrant ventricular arrhythmia. On a translational perspective, the antiarrhythmic concept of therapeutic NCX inhibition seems to be ambivalent by protecting from initiating afterdepolarizations but favoring arrhythmia perpetuation in vivo at least in a murine model.

17.
Materials (Basel) ; 16(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895751

ABSTRACT

Laser shock peening (LSP) is a mechanical surface treatment process to modify near-surface material properties. Compared to conventional shot peening (SP) the process parameters can be finely adjusted with greater precision and a higher penetration depth of compressive residual stresses could be reached. However, high process times of LSP leads to high production costs. In this study, ultrafast LSP (U-LSP) with an ultrafast laser source (pulse time in the picosecond range) was applied on specimens made of X5CrNiCu15-5 and AlZnMgCu1.5. The surface characteristics (surface roughness) and surface-near properties (microstructure, residual stresses, and phase composition) were compared to the as-delivered condition, to conventional laser shock peening (C-LSP), and to SP, whereas metallographic analyses and X-ray and synchrotron radiation techniques were used. The process time was significantly lower via U-LSP compared to C-LSP. For X5CrNiCu15-5, no significant compressive residual stresses were induced via U-LSP. However, for AlZnMgCu1.5, similar compressive residual stresses were reached via C-LSP and U-LSP; however, with a lower penetration depth. A change in the phase portions in the surface layer of X5CrNiCu15-5 after C-LSP compared to SP were determined.

18.
Cells ; 12(4)2023 02 08.
Article in English | MEDLINE | ID: mdl-36831217

ABSTRACT

Viral myocarditis is pathologically associated with RNA viruses such as coxsackievirus B3 (CVB3), or more recently, with SARS-CoV-2, but despite intensive research, clinically proven treatment is limited. Here, by use of a transgenic mouse strain (TG) containing a CVB3ΔVP0 genome we unravel virus-mediated cardiac pathophysiological processes in vivo and in vitro. Cardiac function, pathologic ECG alterations, calcium homeostasis, intracellular organization and gene expression were significantly altered in transgenic mice. A marked alteration of mitochondrial structure and gene expression indicates mitochondrial impairment potentially contributing to cardiac contractile dysfunction. An extended picture on viral myocarditis emerges that may help to develop new treatment strategies and to counter cardiac failure.


Subject(s)
COVID-19 , Coxsackievirus Infections , Myocarditis , Virus Diseases , Mice , Animals , Mice, Transgenic , Enterovirus B, Human , SARS-CoV-2
19.
Basic Res Cardiol ; 107(2): 247, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22327339

ABSTRACT

The cardiac Na(+)/Ca(2+) exchanger (NCX) generates an inward electrical current during SR-Ca(2+) release, thus possibly promoting afterdepolarizations of the action potential (AP). We used transgenic mice 12.5 weeks or younger with cardiomyocyte-directed overexpression of NCX (NCX-Tg) to study the proarrhythmic potential and mechanisms of enhanced NCX activity. NCX-Tg exhibited normal echocardiographic left ventricular function and heart/body weight ratio, while the QT interval was prolonged in surface ECG recordings. Langendorff-perfused NCX-Tg, but not wild-type (WT) hearts, developed ventricular tachycardia. APs and ionic currents were measured in isolated cardiomyocytes. Cell capacitance was unaltered between groups. APs were prolonged in NCX-Tg versus WT myocytes along with voltage-activated K(+) currents (K(v)) not being reduced but even increased in amplitude. During abrupt changes in pacing cycle length, early afterdepolarizations (EADs) were frequently recorded in NCX-Tg but not in WT myocytes. Next to EADs, delayed afterdepolarizations (DAD) triggering spontaneous APs (sAPs) occurred in NCX-Tg but not in WT myocytes. To test whether sAPs were associated with spontaneous Ca(2+) release (sCR), Ca(2+) transients were recorded. Despite the absence of sAPs in WT, sCR was observed in myocytes of both genotypes suggesting a facilitated translation of sCR into DADs in NCX-Tg. Moreover, sCR was more frequent in NCX-Tg as compared to WT. Myocardial protein levels of Ca(2+)-handling proteins were not different between groups except the ryanodine receptor (RyR), which was increased in NCX-Tg versus WT. We conclude that NCX overexpression is proarrhythmic in a non-failing environment even in the absence of reduced K(V). The underlying mechanisms are: (1) occurrence of EADs due to delayed repolarization; (2) facilitated translation from sCR into DADs; (3) proneness to sCR possibly caused by altered Ca(2+) handling and/or increased RyR expression.


Subject(s)
Action Potentials/physiology , Arrhythmias, Cardiac/metabolism , Heart/physiology , Homeodomain Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Arrhythmias, Cardiac/genetics , Blotting, Western , Disease Models, Animal , Electrocardiography , Homeodomain Proteins/genetics , Mice , Organ Culture Techniques
20.
Opt Express ; 20(24): 26852-67, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23187539

ABSTRACT

We report on a novel class of higher-order Bessel-Gauss beams in which the well-known Bessel-Gauss beam is the fundamental mode and the azimuthally symmetric Laguerre-Gaussian beams are special cases. We find these higher-order Bessel-Gauss beams by superimposing decentered Hermite-Gaussian beams. We show analytically and experimentally that these higher-order Bessel-Gauss beams resemble higher-order eigenmodes of optical resonators consisting of aspheric mirrors. This work is relevant for the many applications of Bessel-Gauss beams in particular the more recently proposed high-intensity Bessel-Gauss enhancement cavities for strong-field physics applications.


Subject(s)
Acoustics , Computer Simulation , Optics and Photonics/instrumentation , Algorithms , Humans , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL