Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Hum Mol Genet ; 31(22): 3855-3872, 2022 11 10.
Article in English | MEDLINE | ID: mdl-35717573

ABSTRACT

In vitro fertilization (IVF) is associated with DNA methylation abnormalities and a higher incidence of adverse pregnancy outcomes. However, which exposure(s), among the many IVF interventions, contributes to these outcomes remains unknown. Frozen embryo transfer (ET) is increasingly utilized as an alternative to fresh ET, but reports suggest a higher incidence of pre-eclampsia and large for gestational age infants. This study examines DNA methylation in human placentas using the 850K Infinium MethylationEPIC BeadChip array obtained after 65 programmed frozen ET cycles, 82 fresh ET cycles and 45 unassisted conceptions. Nine patients provided placentas following frozen and fresh ET from consecutive pregnancies for a paired subgroup analysis. In parallel, eight mouse placentas from fresh and frozen ET were analyzed using the Infinium Mouse Methylation BeadChip array. Human and mouse placentas were significantly hypermethylated after frozen ET compared with fresh. Paired analysis showed similar trends. Sex-specific analysis revealed that these changes were driven by male placentas in humans and mice. Frozen and fresh ET placentas were significantly different from controls, with frozen samples hypermethylated compared with controls driven by males and fresh samples being hypomethylated compared with controls, driven by females. Sexually dimorphic epigenetic changes could indicate differential susceptibility to IVF-associated perturbations, which highlights the importance of sex-specific evaluation of adverse outcomes. Similarities between changes in mice and humans underscore the suitability of the mouse model in evaluating how IVF impacts the epigenetic landscape, which is valuable given limited access to human tissue and the ability to isolate specific interventions in mice.


Subject(s)
DNA Methylation , Embryo Transfer , Pregnancy , Female , Humans , Male , Mice , Animals , DNA Methylation/genetics , Embryo Transfer/adverse effects , Cryopreservation , Fertilization in Vitro/adverse effects , Placenta , Retrospective Studies
2.
EMBO Rep ; 21(5): e48904, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32212315

ABSTRACT

While the zinc finger transcription factors EGR1, EGR2, and EGR3 are recognized as critical for T-cell function, the role of EGR4 remains unstudied. Here, we show that EGR4 is rapidly upregulated upon TCR engagement, serving as a critical "brake" on T-cell activation. Hence, TCR engagement of EGR4-/- T cells leads to enhanced Ca2+ responses, driving sustained NFAT activation and hyperproliferation. This causes profound increases in IFNγ production under resting and diverse polarizing conditions that could be reversed by pharmacological attenuation of Ca2+ entry. Finally, an in vivo melanoma lung colonization assay reveals enhanced anti-tumor immunity in EGR4-/- mice, attributable to Th1 bias, Treg loss, and increased CTL generation in the tumor microenvironment. Overall, these observations reveal for the first time that EGR4 is a key regulator of T-cell differentiation and function.


Subject(s)
Calcium Signaling , Early Growth Response Transcription Factors , Neoplasms , Animals , Cell Differentiation , Lymphocyte Activation , Mice , Tumor Microenvironment , Zinc Fingers
3.
Nucleic Acids Res ; 43(2): 745-59, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25539921

ABSTRACT

The imprinted Kcnq1 domain contains a differentially methylated region (KvDMR) in intron 11 of Kcnq1. The Kcnq1ot1 non-coding RNA emerges from the unmethylated paternal KvDMR in antisense direction, resulting in cis-repression of neighboring genes. The KvDMR encompasses the Kcnq1ot1 promoter, CTCF sites and other DNA elements, whose individual contribution to regulation of the endogenous domain is unknown. We find that paternal inheritance of a deletion of the minimal Kcnq1ot1 promoter derepresses the upstream Cdkn1c gene. Surprisingly, Kcnq1ot1 transcripts continue to emerge from alternative sites, evidence that silencing depends, not on the ncRNA, but on the promoter sequence. Detailed analyses of Kcnq1ot during cardiogenesis show substantial chromatin reorganization coinciding with discontinuous RNA production in both wild-type and mutant mice, with loss of imprinting. We show that CTCF binds to both methylated and unmethylated alleles of the KvDMR. Furthermore, we report a multitude of enhancers within the Kcnq1ot1 region, and present conformational dynamics of a novel heart enhancer engaged in Kcnq1 expression. Our results have important implications on tissue-specific imprinting patterns and how transcriptional mechanisms compete to maximize the expression of vital genes, in addition to shifting our perception on the role of the long ncRNA in regulating this imprinted domain.


Subject(s)
Enhancer Elements, Genetic , Genomic Imprinting , KCNQ1 Potassium Channel/genetics , RNA, Long Noncoding/metabolism , Alleles , Animals , CCCTC-Binding Factor , Cyclin-Dependent Kinase Inhibitor p57/genetics , DNA Methylation , Heart/growth & development , Introns , KCNQ1 Potassium Channel/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Myocardium/metabolism , Promoter Regions, Genetic , Repressor Proteins/metabolism
4.
Oral Oncol ; 152: 106750, 2024 May.
Article in English | MEDLINE | ID: mdl-38547779

ABSTRACT

PURPOSE: The prognostic and predictive significance of pathologist-read tumor infiltrating lymphocytes (TILs) in head and neck cancers have been demonstrated through multiple studies over the years. TILs have not been broadly adopted clinically, perhaps due to substantial inter-observer variability. In this study, we developed a machine-based algorithm for TIL evaluation in head and neck cancers and validated its prognostic value in independent cohorts. EXPERIMENTAL DESIGN: A network classifier called NN3-17 was trained to identify and calculate tumor cells, lymphocytes, fibroblasts and "other" cells on hematoxylin-eosin stained sections using the QuPath software. These measurements were used to construct three predefined TIL variables. A retrospective collection of 154 head and neck squamous cell cancer cases was used as the discovery set to identify optimal association of TIL variables and survival. Two independent cohorts of 234 cases were used for validation. RESULTS: We found that electronic TIL variables were associated with favorable prognosis in both the HPV-positive and -negative cases. After adjusting for clinicopathologic factors, Cox regression analysis demonstrated that electronic total TILs% (p = 0.025) in the HPV-positive and electronic stromal TILs% (p < 0.001) in the HPV-negative population were independent markers of disease specific outcomes (disease free survival). CONCLUSIONS: Neural network TIL variables demonstrated independent prognostic value in validation cohorts of HPV-positive and HPV-negative head and neck cancers. These objective variables can be calculated by an open-source software and could be considered for testing in a prospective setting to assess potential clinical implications.


Subject(s)
Algorithms , Head and Neck Neoplasms , Lymphocytes, Tumor-Infiltrating , Humans , Lymphocytes, Tumor-Infiltrating/pathology , Head and Neck Neoplasms/pathology , Male , Female , Middle Aged , Retrospective Studies , Prognosis , Aged
5.
Cancers (Basel) ; 15(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37296911

ABSTRACT

PURPOSE: The purpose of this study was to assess the effect of folic acid (FA) supplementation on colitis-associated colorectal cancer (CRC) using the azoxymethane/dextran sulfate sodium (AOM/DSS) model. METHODS: Mice were fed a chow containing 2 mg/kg FA at baseline and randomized after the first DSS treatment to receive 0, 2, or 8 mg/kg FA chow for 16 weeks. Colon tissue was collected for histopathological evaluation, genome-wide methylation analyses (Digital Restriction Enzyme Assay of Methylation), and gene expression profiling (RNA-Seq). RESULTS: A dose-dependent increase in the multiplicity of colonic dysplasias was observed, with the multiplicity of total and polypoid dysplasias higher (64% and 225%, respectively) in the 8 mg FA vs. the 0 mg FA group (p < 0.001). Polypoid dysplasias were hypomethylated, as compared to the non-neoplastic colonic mucosa (p < 0.05), irrespective of FA treatment. The colonic mucosa of the 8 mg FA group was markedly hypomethylated as compared to the 0 mg FA group. Differential methylation of genes involved in Wnt/ß-catenin and MAPK signaling resulted in corresponding alterations in gene expression within the colonic mucosa. CONCLUSIONS: High-dose FA created an altered epigenetic field effect within the non-neoplastic colonic mucosa. The observed decrease in site-specific DNA methylation altered oncogenic pathways and promoted colitis-associated CRC.

6.
Clin Epigenetics ; 14(1): 129, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36243864

ABSTRACT

BACKGROUND: Alterations in the epigenome are a risk factor in multiple disease states. We have demonstrated in the past that disruption of the epigenome during early pregnancy or periconception, as demonstrated by altered methylation, may be associated with both assisted reproductive technology and undesirable clinical outcomes at birth, such as low birth weight. We have previously defined this altered methylation, calculated based on statistical upper and lower limits of outlier CpGs compared to the population, as an 'outlier methylation phenotype' (OMP). Our aim in this study was to determine whether children thus identified as possessing an OMP at birth by DNA methylation in cord blood persist as outliers in early childhood based on salivary DNA methylation. RESULTS: A total of 31 children were included in the analysis. Among 24 children for whom both cord blood DNA and salivary DNA were available, DNA methylation patterns, analyzed using the Illumina Infinium MethylationEPIC BeadChip (850 K), between cord blood at birth and saliva in childhood at age 6-12 years remain stable (R2 range 0.89-0.97). At birth, three out of 28 children demonstrated an OMP in multiple cord blood datasets and hierarchical clustering. Overall DNA methylation among all three OMP children identified as outliers at birth was remarkably stable (individual R2 0.908, 0.92, 0.915), even when only outlier CpG sites were considered (R2 0.694, 0.738, 0.828). CONCLUSIONS: DNA methylation signatures in cord blood remain stable over time as demonstrated by a strong correlation with epigenetic salivary signatures in childhood. Future work is planned to identify whether a clinical phenotype is associated with OMP and, if so, could undesirable clinical outcomes in childhood and adulthood be predicted at birth.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Child, Preschool , Cohort Studies , CpG Islands , DNA/metabolism , Female , Fetal Blood/metabolism , Humans , Pregnancy , Prospective Studies
7.
Cancer Prev Res (Phila) ; 15(11): 755-766, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36219239

ABSTRACT

Nongenetic predisposition to colorectal cancer continues to be difficult to measure precisely, hampering efforts in targeted prevention and screening. Epigenetic changes in the normal mucosa of patients with colorectal cancer can serve as a tool in predicting colorectal cancer outcomes. We identified epigenetic changes affecting the normal mucosa of patients with colorectal cancer. DNA methylation profiling on normal colon mucosa from 77 patients with colorectal cancer and 68 controls identified a distinct subgroup of normally-appearing mucosa with markedly disrupted DNA methylation at a large number of CpGs, termed as "Outlier Methylation Phenotype" (OMP) and are present in 15 of 77 patients with cancer versus 0 of 68 controls (P < 0.001). Similar findings were also seen in publicly available datasets. Comparison of normal colon mucosa transcription profiles of patients with OMP cancer with those of patients with non-OMP cancer indicates genes whose promoters are hypermethylated in the OMP patients are also transcriptionally downregulated, and that many of the genes most affected are involved in interactions between epithelial cells, the mucus layer, and the microbiome. Analysis of 16S rRNA profiles suggests that normal colon mucosa of OMPs are enriched in bacterial genera associated with colorectal cancer risk, advanced tumor stage, chronic intestinal inflammation, malignant transformation, nosocomial infections, and KRAS mutations. In conclusion, our study identifies an epigenetically distinct OMP group in the normal mucosa of patients with colorectal cancer that is characterized by a disrupted methylome, altered gene expression, and microbial dysbiosis. Prospective studies are needed to determine whether OMP could serve as a biomarker for an elevated epigenetic risk for colorectal cancer development. PREVENTION RELEVANCE: Our study identifies an epigenetically distinct OMP group in the normal mucosa of patients with colorectal cancer that is characterized by a disrupted methylome, altered gene expression, and microbial dysbiosis. Identification of OMPs in healthy controls and patients with colorectal cancer will lead to prevention and better prognosis, respectively.


Subject(s)
Colorectal Neoplasms , Epigenome , Humans , Dysbiosis/complications , Dysbiosis/genetics , Dysbiosis/metabolism , RNA, Ribosomal, 16S/genetics , DNA Methylation , Epigenesis, Genetic , Intestinal Mucosa/pathology , Colorectal Neoplasms/pathology
8.
Adv Cancer Res ; 148: 233-317, 2020.
Article in English | MEDLINE | ID: mdl-32723565

ABSTRACT

Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.


Subject(s)
Antineoplastic Agents/therapeutic use , Calcium Channels/metabolism , Calcium/metabolism , Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Membrane/metabolism , Humans , Molecular Targeted Therapy , Neoplasms/metabolism , Neoplasms/pathology
9.
Adv Cancer Res ; 142: 1-22, 2019.
Article in English | MEDLINE | ID: mdl-30885359

ABSTRACT

The "CpG Island Methylator Phenotype" (CIMP) has been found to be a useful concept in stratifying several types of human cancer into molecularly and clinically distinguishable subgroups. We have identified an additional epigenetic stratification category, the "Outlier Methylation Phenotype" (OMP). Whereas CIMP is defined on the basis of hyper-methylation in tumor genomes, OMP is defined on the basis of highly variant (either or both hyper- and hypo-methylation) methylation at many sites in normal tissues. OMP was identified and defined, originally, as being more common among low birth weight individuals conceived in vitro but we have also identified OMP individuals among colon cancer patients profiled by us, as well as multiple types of cancer patients in the TCGA database. The cause(s) of OMP are unknown, as is whether these individuals identify a clinically useful subgroup of patients, but both the causes of, and potential consequences to, this epigenetically distinct group are of great interest.


Subject(s)
DNA Methylation , Neoplasms/classification , Neoplasms/genetics , Biomarkers, Tumor/genetics , CpG Islands , Epigenomics/methods , Humans , Phenotype
10.
Sci Signal ; 12(602)2019 10 08.
Article in English | MEDLINE | ID: mdl-31594854

ABSTRACT

Ca2+ signals, which facilitate pluripotent changes in cell fate, reflect the balance between cation entry and export. We found that overexpression of either isoform of the Ca2+-extruding plasma membrane calcium ATPase 4 (PMCA4) pump in Jurkat T cells unexpectedly increased activation of the Ca2+-dependent transcription factor nuclear factor of activated T cells (NFAT). Coexpression of the endoplasmic reticulum-resident Ca2+ sensor stromal interaction molecule 1 (STIM1) with the PMCA4b splice variant further enhanced NFAT activity; however, coexpression with PMCA4a depressed NFAT. No PMCA4 splice variant dependence in STIM1 association was observed, whereas partner of STIM1 (POST) preferentially associated with PMCA4b over PMCA4a, which enhanced, rather than inhibited, PMCA4 function. A comparison of global and near-membrane cytosolic Ca2+ abundances during store-operated Ca2+ entry revealed that PMCA4 markedly depressed near-membrane Ca2+ concentrations, particularly when PMCA4b was coexpressed with STIM1. PMCA4b closely associated with both POST and the store-operated Ca2+ channel Orai1. Furthermore, POST knockdown increased the near-membrane Ca2+ concentration, inhibiting the global cytosolic Ca2+ increase. These observations reveal an unexpected role for POST in coupling PMCA4 to Orai1 to promote Ca2+ entry during T cell activation through Ca2+ disinhibition.


Subject(s)
Calcium Signaling , Calcium/metabolism , Cell Membrane/metabolism , NFATC Transcription Factors/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Jurkat Cells , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Plasma Membrane Calcium-Transporting ATPases/genetics , RNA Interference , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
11.
Biol Sex Differ ; 8(1): 28, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28818098

ABSTRACT

BACKGROUND: Pre-implantation embryos exhibit sexual dimorphisms in both primates and rodents. To determine whether these differences reflected sex-biased expression patterns, we generated transcriptome profiles for six 40,XX, six 40,XY, and two 39,X mouse embryonic stem (ES) cells by RNA sequencing. RESULTS: We found hundreds of coding and non-coding RNAs that were differentially expressed between male and female cells. Surprisingly, the majority of these were autosomal and included RNA encoding transcription and epigenetic and chromatin remodeling factors. We showed differential Prdm14-responsive enhancer activity in male and female cells, correlating with the sex-specific levels of Prdm14 expression. This is the first time sex-specific enhancer activity in ES cells has been reported. Evaluation of X-linked gene expression patterns between our XX and XY lines revealed four distinct categories: (1) genes showing 2-fold greater expression in the female cells; (2) a set of genes with expression levels well above 2-fold in female cells; (3) genes with equivalent RNA levels in male and female cells; and strikingly, (4) a small number of genes with higher expression in the XY lines. Further evaluation of autosomal gene expression revealed differential expression of imprinted loci, despite appropriate parent-of-origin patterns. The 39,X lines aligned closely with the XY cells and provided insights into potential regulation of genes associated with Turner syndrome in humans. Moreover, inclusion of the 39,X lines permitted three-way comparisons, delineating X and Y chromosome-dependent patterns. CONCLUSIONS: Overall, our results support the role of the sex chromosomes in establishing sex-specific networks early in embryonic development and provide insights into effects of sex chromosome aneuploidies originating at those stages.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental/physiology , Gene Expression/physiology , Sex Characteristics , Sex Chromosomes , Animals , Cell Line , DNA-Binding Proteins , Female , Genetic Loci , Male , Mice, Inbred C57BL , Promoter Regions, Genetic , RNA/metabolism , RNA-Binding Proteins , Transcription Factors/metabolism
12.
Genome Biol Evol ; 3: 1096-106, 2011.
Article in English | MEDLINE | ID: mdl-21803766

ABSTRACT

The endangered Przewalski's horse is the closest relative of the domestic horse and is the only true wild horse species surviving today. The question of whether Przewalski's horse is the direct progenitor of domestic horse has been hotly debated. Studies of DNA diversity within Przewalski's horses have been sparse but are urgently needed to ensure their successful reintroduction to the wild. In an attempt to resolve the controversy surrounding the phylogenetic position and genetic diversity of Przewalski's horses, we used massively parallel sequencing technology to decipher the complete mitochondrial and partial nuclear genomes for all four surviving maternal lineages of Przewalski's horses. Unlike single-nucleotide polymorphism (SNP) typing usually affected by ascertainment bias, the present method is expected to be largely unbiased. Three mitochondrial haplotypes were discovered-two similar ones, haplotypes I/II, and one substantially divergent from the other two, haplotype III. Haplotypes I/II versus III did not cluster together on a phylogenetic tree, rejecting the monophyly of Przewalski's horse maternal lineages, and were estimated to split 0.117-0.186 Ma, significantly preceding horse domestication. In the phylogeny based on autosomal sequences, Przewalski's horses formed a monophyletic clade, separate from the Thoroughbred domestic horse lineage. Our results suggest that Przewalski's horses have ancient origins and are not the direct progenitors of domestic horses. The analysis of the vast amount of sequence data presented here suggests that Przewalski's and domestic horse lineages diverged at least 0.117 Ma but since then have retained ancestral genetic polymorphism and/or experienced gene flow.


Subject(s)
Endangered Species , Evolution, Molecular , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Horses/genetics , Animals , Animals, Wild/classification , Animals, Wild/genetics , Female , Genome , Genome, Mitochondrial , Horses/classification , Inbreeding , Male , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL