Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 37: 269-293, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30649988

ABSTRACT

Myeloid cells are a major cellular compartment of the immune system comprising monocytes, dendritic cells, tissue macrophages, and granulocytes. Models of cellular ontogeny, activation, differentiation, and tissue-specific functions of myeloid cells have been revisited during the last years with surprising results; for example, most tissue macrophages are yolk sac derived, monocytes and macrophages follow a multidimensional model of activation, and tissue signals have a significant impact on the functionality of all these cells. While these exciting results have brought these cells back to center stage, their enormous plasticity and heterogeneity, during both homeostasis and disease, are far from understood. At the same time, the ongoing revolution in single-cell genomics, with single-cell RNA sequencing (scRNA-seq) leading the way, promises to change this. Prevailing models of hematopoiesis with distinct intermediates are challenged by scRNA-seq data suggesting more continuous developmental trajectories in the myeloid cell compartment. Cell subset structures previously defined by protein marker expression need to be revised based on unbiased analyses of scRNA-seq data. Particularly in inflammatory conditions, myeloid cells exhibit substantially vaster heterogeneity than previously anticipated, and work performed within large international projects, such as the Human Cell Atlas, has already revealed novel tissue macrophage subsets. Based on these exciting developments, we propose the next steps to a full understanding of the myeloid cell compartment in health and diseases.


Subject(s)
Cell Differentiation , Cellular Microenvironment , Inflammation/immunology , Myeloid Cells/physiology , Animals , Biomarkers , Cell Plasticity , Homeostasis , Humans , Sequence Analysis, RNA
2.
Cell ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964327

ABSTRACT

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.

3.
Nat Immunol ; 25(1): 19-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168953

ABSTRACT

Sepsis remains a major cause of morbidity and mortality in both low- and high-income countries. Antibiotic therapy and supportive care have significantly improved survival following sepsis in the twentieth century, but further progress has been challenging. Immunotherapy trials for sepsis, mainly aimed at suppressing the immune response, from the 1990s and 2000s, have largely failed, in part owing to unresolved patient heterogeneity in the underlying immune disbalance. The past decade has brought the promise to break this blockade through technological developments based on omics-based technologies and systems medicine that can provide a much larger data space to describe in greater detail the immune endotypes in sepsis. Patient stratification opens new avenues towards precision medicine approaches that aim to apply immunotherapies to sepsis, on the basis of precise biomarkers and molecular mechanisms defining specific immune endotypes. This approach has the potential to lead to the establishment of immunotherapy as a successful pillar in the treatment of sepsis for future generations.


Subject(s)
Precision Medicine , Sepsis , Humans , Sepsis/therapy , Immunotherapy , Biomarkers
4.
Cell ; 184(7): 1671-1692, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33743212

ABSTRACT

The introduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the human population represents a tremendous medical and economic crisis. Innate immunity-as the first line of defense of our immune system-plays a central role in combating this novel virus. Here, we provide a conceptual framework for the interaction of the human innate immune system with SARS-CoV-2 to link the clinical observations with experimental findings that have been made during the first year of the pandemic. We review evidence that variability in innate immune system components among humans is a main contributor to the heterogeneous disease courses observed for coronavirus disease 2019 (COVID-19), the disease spectrum induced by SARS-CoV-2. A better understanding of the pathophysiological mechanisms observed for cells and soluble mediators involved in innate immunity is a prerequisite for the development of diagnostic markers and therapeutic strategies targeting COVID-19. However, this will also require additional studies addressing causality of events, which so far are lagging behind.


Subject(s)
COVID-19/immunology , Host Microbial Interactions , Immunity, Innate , SARS-CoV-2/physiology , Humans , Severity of Illness Index
5.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34914922

ABSTRACT

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Subject(s)
COVID-19/pathology , COVID-19/virology , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/virology , Macrophages/pathology , Macrophages/virology , SARS-CoV-2/physiology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/diagnostic imaging , Cell Communication , Cohort Studies , Fibroblasts/pathology , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/genetics , Mesenchymal Stem Cells/pathology , Phenotype , Proteome/metabolism , Receptors, Cell Surface/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Tomography, X-Ray Computed , Transcription, Genetic
6.
Nat Immunol ; 24(6): 979-990, 2023 06.
Article in English | MEDLINE | ID: mdl-37188942

ABSTRACT

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Calibration , Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , CD40 Antigens , Interferon-alpha , CD4-Positive T-Lymphocytes
7.
Cell ; 183(3): 771-785.e12, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33125892

ABSTRACT

Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with ß-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of ß-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from ß-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of ß-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.


Subject(s)
Granulocytes/immunology , Immunity, Innate , Neoplasms/immunology , Adaptive Immunity , Adoptive Transfer , Animals , Epigenesis, Genetic , Interferon Type I/metabolism , Mice, Inbred C57BL , Monocytes/metabolism , Neoplasms/pathology , Neutrophils/metabolism , Phenotype , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/metabolism , Transcription, Genetic , Transcriptome/genetics , beta-Glucans/metabolism
8.
Nat Immunol ; 23(10): 1412-1423, 2022 10.
Article in English | MEDLINE | ID: mdl-36138185

ABSTRACT

The immune system is highly complex and distributed throughout an organism, with hundreds to thousands of cell states existing in parallel with diverse molecular pathways interacting in a highly dynamic and coordinated fashion. Although the characterization of individual genes and molecules is of the utmost importance for understanding immune-system function, high-throughput, high-resolution omics technologies combined with sophisticated computational modeling and machine-learning approaches are creating opportunities to complement standard immunological methods with new insights into immune-system dynamics. Like systems immunology itself, immunology researchers must take advantage of these technologies and form their own diverse networks, connecting with researchers from other disciplines. This Review is an introduction and 'how-to guide' for immunologists with no particular experience in the field of omics but with the intention to learn about and apply these systems-level approaches, and for immunologists who want to make the most of interdisciplinary networks.


Subject(s)
Immune System , Machine Learning , Computer Simulation
9.
Nat Immunol ; 22(3): 287-300, 2021 03.
Article in English | MEDLINE | ID: mdl-33574617

ABSTRACT

Sub-Saharan Africa currently experiences an unprecedented wave of urbanization, which has important consequences for health and disease patterns. This study aimed to investigate and integrate the immune and metabolic consequences of rural or urban lifestyles and the role of nutritional changes associated with urban living. In a cohort of 323 healthy Tanzanians, urban as compared to rural living was associated with a pro-inflammatory immune phenotype, both at the transcript and protein levels. We identified different food-derived and endogenous circulating metabolites accounting for these differences. Serum from urban dwellers induced reprogramming of innate immune cells with higher tumor necrosis factor production upon microbial re-stimulation in an in vitro model of trained immunity. These data demonstrate important shifts toward an inflammatory phenotype associated with an urban lifestyle and provide new insights into the underlying dietary and metabolic factors, which may affect disease epidemiology in sub-Sahara African countries.


Subject(s)
Cytokines/blood , Diet, Healthy , Energy Metabolism , Immunity, Innate , Inflammation Mediators/blood , Rural Health , Urban Health , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cytokines/genetics , Energy Metabolism/genetics , Female , Humans , Immunity, Innate/genetics , Male , Metabolome , Middle Aged , Nutritional Status , Nutritive Value , Risk Reduction Behavior , Seasons , Tanzania , Transcriptome , Tumor Necrosis Factor-alpha/blood , Urbanization , Young Adult
10.
Nat Immunol ; 22(11): 1382-1390, 2021 11.
Article in English | MEDLINE | ID: mdl-34663978

ABSTRACT

Intergenerational inheritance of immune traits linked to epigenetic modifications has been demonstrated in plants and invertebrates. Here we provide evidence for transmission of trained immunity across generations to murine progeny that survived a sublethal systemic infection with Candida albicans or a zymosan challenge. The progeny of trained mice exhibited cellular, developmental, transcriptional and epigenetic changes associated with the bone marrow-resident myeloid effector and progenitor cell compartment. Moreover, the progeny of trained mice showed enhanced responsiveness to endotoxin challenge, alongside improved protection against systemic heterologous Escherichia coli and Listeria monocytogenes infections. Sperm DNA of parental male mice intravenously infected with the fungus C. albicans showed DNA methylation differences linked to immune gene loci. These results provide evidence for inheritance of trained immunity in mammals, enhancing protection against infections.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Heredity , Immunity, Innate/genetics , Listeria monocytogenes/immunology , Listeriosis/immunology , Myeloid Cells/immunology , Animals , Candida albicans/pathogenicity , Candidiasis/genetics , Candidiasis/metabolism , Candidiasis/microbiology , Cells, Cultured , DNA Methylation , Disease Models, Animal , Epigenesis, Genetic , Escherichia coli/pathogenicity , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Host-Pathogen Interactions , Listeria monocytogenes/pathogenicity , Listeriosis/genetics , Listeriosis/metabolism , Listeriosis/microbiology , Male , Mice, Transgenic , Myeloid Cells/metabolism , Myeloid Cells/microbiology , Spermatozoa/immunology , Spermatozoa/metabolism , Transcription, Genetic
11.
Cell ; 172(1-2): 147-161.e12, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328910

ABSTRACT

Trained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of ß-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1ß and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.


Subject(s)
Immunity, Innate , Immunologic Memory , Myeloid Progenitor Cells/immunology , Animals , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Myeloid Progenitor Cells/drug effects , Myelopoiesis/immunology , beta-Glucans/pharmacology
12.
Cell ; 172(1-2): 162-175.e14, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328911

ABSTRACT

Long-term epigenetic reprogramming of innate immune cells in response to microbes, also termed "trained immunity," causes prolonged altered cellular functionality to protect from secondary infections. Here, we investigated whether sterile triggers of inflammation induce trained immunity and thereby influence innate immune responses. Western diet (WD) feeding of Ldlr-/- mice induced systemic inflammation, which was undetectable in serum soon after mice were shifted back to a chow diet (CD). In contrast, myeloid cell responses toward innate stimuli remained broadly augmented. WD-induced transcriptomic and epigenomic reprogramming of myeloid progenitor cells led to increased proliferation and enhanced innate immune responses. Quantitative trait locus (QTL) analysis in human monocytes trained with oxidized low-density lipoprotein (oxLDL) and stimulated with lipopolysaccharide (LPS) suggested inflammasome-mediated trained immunity. Consistently, Nlrp3-/-/Ldlr-/- mice lacked WD-induced systemic inflammation, myeloid progenitor proliferation, and reprogramming. Hence, NLRP3 mediates trained immunity following WD and could thereby mediate the potentially deleterious effects of trained immunity in inflammatory diseases.


Subject(s)
Cellular Reprogramming , Diet, Western , Epigenesis, Genetic , Immunity, Innate , Immunologic Memory , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Adult , Aged , Animals , Cells, Cultured , Female , Humans , Lipoproteins, LDL/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myeloid Cells/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Quantitative Trait Loci , Receptors, LDL/genetics
13.
Cell ; 172(3): 500-516.e16, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29275859

ABSTRACT

Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease.


Subject(s)
Germ-Free Life , Microbiota , Microglia/cytology , Prenatal Exposure Delayed Effects/microbiology , Transcriptome , Animals , Brain/cytology , Brain/embryology , Brain/metabolism , Cell Differentiation , Cells, Cultured , Chromatin Assembly and Disassembly , Female , Humans , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Pregnancy , Sex Factors
14.
Nat Immunol ; 21(12): 1517-1527, 2020 12.
Article in English | MEDLINE | ID: mdl-33169013

ABSTRACT

CRELD1 is a pivotal factor for heart development, the function of which is unknown in adult life. We here provide evidence that CRELD1 is an important gatekeeper of immune system homeostasis. Exploiting expression variance in large human cohorts contrasting individuals with the lowest and highest CRELD1 expression levels revealed strong phenotypic, functional and transcriptional differences, including reduced CD4+ T cell numbers. These findings were validated in T cell-specific Creld1-deficient mice. Loss of Creld1 was associated with simultaneous overactivation and increased apoptosis, resulting in a net loss of T cells with age. Creld1 was transcriptionally and functionally linked to Wnt signaling. Collectively, gene expression variance in large human cohorts combined with murine genetic models, transcriptomics and functional testing defines CRELD1 as an important modulator of immune homeostasis.


Subject(s)
Cell Adhesion Molecules/metabolism , Extracellular Matrix Proteins/metabolism , Homeostasis , Immune System/immunology , Immune System/metabolism , Immunomodulation , Animals , Cell Adhesion Molecules/genetics , Cell Survival/genetics , Cell Survival/immunology , Extracellular Matrix Proteins/genetics , Gene Expression , Gene Knockout Techniques , Homeostasis/immunology , Humans , Immunosenescence , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocyte Count , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Wnt Signaling Pathway
17.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34592166

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
18.
Nat Immunol ; 18(6): 622-632, 2017 06.
Article in English | MEDLINE | ID: mdl-28459433

ABSTRACT

The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however, the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic, epigenetic and immunological approaches, we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide, but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates, shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective, transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.


Subject(s)
Calgranulin A/immunology , Calgranulin B/immunology , Immunity, Innate/immunology , Monocytes/immunology , Neonatal Sepsis/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Animals, Newborn , Calgranulin A/drug effects , Calgranulin B/drug effects , Epigenesis, Genetic , Fetal Blood , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunity, Innate/drug effects , Immunoblotting , Infant, Newborn , Inflammation , Lipopolysaccharides/pharmacology , Mice , Mice, Knockout , Monocytes/drug effects , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Neonatal Sepsis/genetics , Real-Time Polymerase Chain Reaction , Toll-Like Receptor 4/immunology
20.
Nat Immunol ; 17(1): 34-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26681460

ABSTRACT

Macrophages have protective roles in immunity to pathogens, tissue development, homeostasis and repair following damage. Maladaptive immunity and inflammation provoke changes in macrophage function that are causative of disease. Despite a historical wealth of knowledge about macrophages, recent advances have revealed unknown aspects of their development and function. Following development, macrophages are activated by diverse signals. Such tissue microenvironmental signals together with epigenetic changes influence macrophage development, activation and functional diversity, with consequences in disease and homeostasis. We discuss here how recent discoveries in these areas have led to a multidimensional concept of macrophage ontogeny, activation and function. In connection with this, we also discuss how technical advances facilitate a new roadmap for the isolation and analysis of macrophages at high resolution.


Subject(s)
Macrophage Activation/immunology , Macrophages , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL