Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
PLoS Genet ; 12(1): e1005762, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26796638

ABSTRACT

Trypanosoma brucei is a protozoan parasite that lacks many transcription factors found in other eukaryotes, such as those whose binding demarcates enhancers. T. brucei retains histone variants and modifications, however, and it is hypothesized that it relies on epigenetic marks to define transcription-related boundaries. The histone H3 variant (H3.V) and an alternate nucleotide, base J (ß-D-glucosyl-hydroxymethyluracil), are two chromatin marks found at both transcription termination sites (TTSs) and telomeres. Here, we report that the absence of both base J and H3.V result in transcription readthrough and the appearance of antisense transcripts near TTSs. Additionally, we find that maintaining the transcriptional silencing of pol I-transcribed telomeric Variant Surface Glycoprotein (VSG) genes appears to be dependent on deposition of H3.V alone. Our study reveals that gene expression depends on different epigenetic cues depending on chromosomal location and on the transcribing polymerase. This work provides insight into how these signals may have evolved into the more nuanced and fine-tuned gene regulatory mechanisms observed in other model systems.


Subject(s)
Histones/genetics , Transcription, Genetic , Trypanosoma brucei brucei/genetics , Variant Surface Glycoproteins, Trypanosoma/genetics , Chromatin/genetics , Gene Expression Regulation , Glucosides/genetics , Promoter Regions, Genetic , RNA Polymerase I/genetics , Telomere/genetics , Uracil/analogs & derivatives
2.
PLoS Biol ; 13(12): e1002316, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26646171

ABSTRACT

Trypanosoma brucei, the causative agent of African sleeping sickness, is transmitted to its mammalian host by the tsetse. In the fly, the parasite's surface is covered with invariant procyclin, while in the mammal it resides extracellularly in its bloodstream form (BF) and is densely covered with highly immunogenic Variant Surface Glycoprotein (VSG). In the BF, the parasite varies this highly immunogenic surface VSG using a repertoire of ~2500 distinct VSG genes. Recent reports in mammalian systems point to a role for histone acetyl-lysine recognizing bromodomain proteins in the maintenance of stem cell fate, leading us to hypothesize that bromodomain proteins may maintain the BF cell fate in trypanosomes. Using small-molecule inhibitors and genetic mutants for individual bromodomain proteins, we performed RNA-seq experiments that revealed changes in the transcriptome similar to those seen in cells differentiating from the BF to the insect stage. This was recapitulated at the protein level by the appearance of insect-stage proteins on the cell surface. Furthermore, bromodomain inhibition disrupts two major BF-specific immune evasion mechanisms that trypanosomes harness to evade mammalian host antibody responses. First, monoallelic expression of the antigenically varied VSG is disrupted. Second, rapid internalization of antibodies bound to VSG on the surface of the trypanosome is blocked. Thus, our studies reveal a role for trypanosome bromodomain proteins in maintaining bloodstream stage identity and immune evasion. Importantly, bromodomain inhibition leads to a decrease in virulence in a mouse model of infection, establishing these proteins as potential therapeutic drug targets for trypanosomiasis. Our 1.25Å resolution crystal structure of a trypanosome bromodomain in complex with I-BET151 reveals a novel binding mode of the inhibitor, which serves as a promising starting point for rational drug design.


Subject(s)
Models, Molecular , Protozoan Proteins/metabolism , Transcription Factors/metabolism , Trypanosoma brucei brucei/physiology , Amino Acid Substitution , Animals , Binding Sites , Cell Line , Gene Knockdown Techniques , Gene Knockout Techniques , Immune Evasion , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Conformation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Survival Analysis , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Transcription Factors/genetics , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/immunology , Trypanosoma brucei brucei/pathogenicity , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/physiopathology , Virulence
3.
Mol Cell ; 34(6): 639-40, 2009 Jun 26.
Article in English | MEDLINE | ID: mdl-19560416

ABSTRACT

In a recent issue of Molecular Cell, Shimazaki et al. (2009) show that an interaction between RAG2 and a methylated histone might play a critical regulatory role in V(D)J recombination by enhancing DNA binding and enzymatic activity of the V(D)J recombinase.


Subject(s)
DNA-Binding Proteins/metabolism , Histones/metabolism , Models, Genetic , Recombination, Genetic , Animals , Binding Sites , DNA Breaks, Single-Stranded , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Inverted Repeat Sequences , Methylation , Mice , Substrate Specificity , VDJ Recombinases/metabolism
5.
PLoS Genet ; 7(2): e1001298, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21347277

ABSTRACT

Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability--expansions, contractions, and fragility--with effect over a wide range of allele lengths from 20-155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair.


Subject(s)
Genomic Instability/genetics , Replication Protein C/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/genetics , Trinucleotide Repeat Expansion/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Chromatids/metabolism , Chromosome Segregation , DNA Damage , DNA Repair , Intracellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Replication Protein C/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
Proc Natl Acad Sci U S A ; 108(23): 9566-71, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21606361

ABSTRACT

Compaction and looping of the ~2.5-Mb Igh locus during V(D)J rearrangement is essential to allow all V(H) genes to be brought in proximity with D(H)-J(H) segments to create a diverse antibody repertoire, but the proteins directly responsible for this are unknown. Because CCCTC-binding factor (CTCF) has been demonstrated to be involved in long-range chromosomal interactions, we hypothesized that CTCF may promote the contraction of the Igh locus. ChIP sequencing was performed on pro-B cells, revealing colocalization of CTCF and Rad21 binding at ~60 sites throughout the V(H) region and 2 other sites within the Igh locus. These numerous CTCF/cohesin sites potentially form the bases of the multiloop rosette structures at the Igh locus that compact during Ig heavy chain rearrangement. To test whether CTCF was involved in locus compaction, we used 3D-FISH to measure compaction in pro-B cells transduced with CTCF shRNA retroviruses. Reduction of CTCF binding resulted in a decrease in Igh locus compaction. Long-range interactions within the Igh locus were measured with the chromosomal conformation capture assay, revealing direct interactions between CTCF sites 5' of DFL16 and the 3' regulatory region, and also the intronic enhancer (Eµ), creating a D(H)-J(H)-Eµ-C(H) domain. Knockdown of CTCF also resulted in the increase of antisense transcription throughout the D(H) region and parts of the V(H) locus, suggesting a widespread regulatory role for CTCF. Together, our findings demonstrate that CTCF plays an important role in the 3D structure of the Igh locus and in the regulation of antisense germline transcription and that it contributes to the compaction of the Igh locus.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Immunoglobulin Heavy Chains/metabolism , Precursor Cells, B-Lymphoid/metabolism , Repressor Proteins/metabolism , Animals , Binding Sites/genetics , Blotting, Western , CCCTC-Binding Factor , Cell Cycle Proteins/genetics , Cell Line , Cells, Cultured , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/genetics , DNA, Antisense/genetics , DNA-Binding Proteins , Enhancer Elements, Genetic/genetics , Immunoglobulin Heavy Chains/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , RNA Interference , RNA, Antisense/genetics , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Cohesins
7.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260630

ABSTRACT

Diverse eukaryotic cells assemble microtubule networks that vary in structure and composition. While we understand how cells build microtubule networks with specialized functions, we do not know how microtubule networks diversify across deep evolutionary timescales. This problem has remained unresolved because most organisms use shared pools of tubulins for multiple networks, making it impossible to trace the evolution of any single network. In contrast, the amoeboflagellate Naegleria uses distinct tubulin genes to build distinct microtubule networks: while Naegleria builds flagella from conserved tubulins during differentiation, it uses divergent tubulins to build its mitotic spindle. This genetic separation makes for an internally controlled system to study independent microtubule networks in a single organismal and genomic context. To explore the evolution of these microtubule networks, we identified conserved microtubule binding proteins and used transcriptional profiling of mitosis and differentiation to determine which are upregulated during the assembly of each network. Surprisingly, most microtubule binding proteins are upregulated during only one process, suggesting that Naegleria uses distinct component pools to specialize its microtubule networks. Furthermore, the divergent residues of mitotic tubulins tend to fall within the binding sites of differentiation-specific microtubule regulators, suggesting that interactions between microtubules and their binding proteins constrain tubulin sequence diversification. We therefore propose a model for cytoskeletal evolution in which pools of microtubule network components constrain and guide the diversification of the entire network, so that the evolution of tubulin is inextricably linked to that of its binding partners.

8.
J Exp Med ; 204(10): 2293-303, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17785508

ABSTRACT

The V(D)J recombinase catalyzes DNA transposition and translocation both in vitro and in vivo. Because lymphoid malignancies contain chromosomal translocations involving antigen receptor and protooncogene loci, it is critical to understand the types of "mistakes" made by the recombinase. Using a newly devised assay, we characterized 48 unique TCRbeta recombination signal sequence (RSS) end insertions in murine thymocyte and splenocyte genomic DNA samples. Nearly half of these events targeted "cryptic" RSS-like elements. In no instance did we detect target-site duplications, which is a hallmark of recombinase-mediated transposition in vitro. Rather, these insertions were most likely caused by either V(D)J recombination between a bona fide RSS and a cryptic RSS or the insertion of signal circles into chromosomal loci via a V(D)J recombination-like mechanism. Although wild-type, p53, p53 x scid, H2Ax, and ATM mutant thymocytes all showed similar levels of RSS end insertions, core-RAG2 mutant thymocytes showed a sevenfold greater frequency of such events. Thus, the noncore domain of RAG2 serves to limit the extent to which the integrity of the genome is threatened by mistargeting of V(D)J recombination.


Subject(s)
Cell Differentiation/immunology , Chromosomes, Mammalian/genetics , Recombination, Genetic/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Base Sequence , Cell Line , DNA/genetics , Mice , Mice, Knockout , Mutation/genetics , Thymus Gland/metabolism
9.
PLoS One ; 18(11): e0292784, 2023.
Article in English | MEDLINE | ID: mdl-37988382

ABSTRACT

This Cleavage Under Targets and Release Using Nuclease (CUT&RUN) protocol produces genomic occupancy data for a protein of interest in the protozoan parasite Trypanosoma brucei. The data produced is analyzed in a similar way as that produced by ChIP-seq. While we describe the protocol for parasites carrying an epitope tag for the protein of interest, antibodies against the native protein could be used for the same purpose.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Trypanosoma/genetics , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/parasitology
10.
Microbiol Spectr ; 11(3): e0014723, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37097159

ABSTRACT

The eukaryotic protozoan parasite Trypanosoma brucei is transmitted by the tsetse fly to both humans and animals, where it causes a fatal disease called African trypanosomiasis. While the parasite lacks canonical DNA sequence-specific transcription factors, it does possess histones, histone modifications, and proteins that write, erase, and read histone marks. Chemical inhibition of chromatin-interacting bromodomain proteins has previously been shown to perturb bloodstream specific trypanosome processes, including silencing of the variant surface glycoprotein (VSG) genes and immune evasion. Transcriptomic changes that occur in bromodomain-inhibited bloodstream parasites mirror many of the changes that occur as parasites developmentally progress from the bloodstream to the insect stage. We performed transcriptome sequencing (RNA-seq) time courses to determine the effects of chemical bromodomain inhibition in insect-stage parasites using the compound I-BET151. We found that treatment with I-BET151 causes large changes in the transcriptome of insect-stage parasites and also perturbs silencing of VSG genes. The transcriptomes of bromodomain-inhibited parasites share some features with early metacyclic-stage parasites in the fly salivary gland, implicating bromodomain proteins as important for regulating transcript levels for developmentally relevant genes. However, the downregulation of surface procyclin protein that typically accompanies developmental progression is absent in bromodomain-inhibited insect-stage parasites. We conclude that chemical modulation of bromodomain proteins causes widespread transcriptomic changes in multiple trypanosome life cycle stages. Understanding the gene-regulatory processes that facilitate transcriptome remodeling in this highly diverged eukaryote may shed light on how these mechanisms evolved. IMPORTANCE The disease African trypanosomiasis imposes a severe human and economic burden for communities in sub-Saharan Africa. The parasite that causes the disease is transmitted to the bloodstream of a human or ungulate via the tsetse fly. Because the environments of the fly and the bloodstream differ, the parasite modulates the expression of its genes to accommodate two different lifestyles in these disparate niches. Perturbation of bromodomain proteins that interact with histone proteins around which DNA is wrapped (chromatin) causes profound changes in gene expression in bloodstream-stage parasites. This paper reports that gene expression is also affected by chemical bromodomain inhibition in insect-stage parasites but that the genes affected differ depending on life cycle stage. Because trypanosomes diverged early from model eukaryotes, an understanding of how trypanosomes regulate gene expression may lend insight into how gene-regulatory mechanisms evolved. This could also be leveraged to generate new therapeutic strategies.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Tsetse Flies , Humans , Animals , Trypanosomiasis, African/parasitology , Transcriptome , Membrane Glycoproteins , Nuclear Proteins/genetics , Transcription Factors/genetics , Trypanosoma/genetics , Trypanosoma brucei brucei/genetics , Tsetse Flies/genetics , Tsetse Flies/parasitology , Membrane Proteins/genetics , Mammals , Chromatin , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/pharmacology , Protozoan Proteins/genetics
11.
mBio ; : e0201423, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882786

ABSTRACT

The Plasmodium falciparum alternative histones Pf H2A.Z and Pf H2B.Z are enriched in the same nucleosomes in intergenic euchromatin but depleted from heterochromatin. They occupy most promoters but are only dynamically associated with expression at var genes. In other organisms, acetylation of H2A.Z is important for its functions in gene expression and chromatin structure. Here, we show that acetylated Pf H2A.Z and Pf H2B.Z are dynamically associated with gene expression at promoters. In addition, acetylated Pf H2A.Z and Pf H2B.Z are antagonized by the sirtuin class III histone deacetylases (HDAC) PfSir2A and B at heterochromatin boundaries and encroach upon heterochromatin in parasites lacking PfSir2A or B. However, the majority of acetylated Pf H2A.Z and Pf H2B.Z are deacetylated by class I or II HDACs. Acetylated Pf H2A.Z and Pf H2B.Z are also dynamically associated with promoter activity of both canonical upstream var gene promoters and var gene introns. These findings suggest that both acetylated Pf H2A.Z and Pf H2B.Z play critical roles in gene expression and contribute to maintenance of chromatin structure at the boundaries of subtelomeric, facultative heterochromatin, critical for the variegated expression of genes that enable rapid adaptation to altered host environments.IMPORTANCEThe malaria parasite Plasmodium falciparum relies on variant expression of members of multi-gene families as a strategy for environmental adaptation to promote parasite survival and pathogenesis. These genes are located in transcriptionally silenced DNA regions. A limited number of these genes escape gene silencing, and switching between them confers variant fitness on parasite progeny. Here, we show that PfSir2 histone deacetylases antagonize DNA-interacting acetylated alternative histones at the boundaries between active and silent DNA. This finding implicates acetylated alternative histones in the mechanism regulating P. falciparum variant gene silencing and thus malaria pathogenesis. This work also revealed that acetylation of alternative histones at promoters is dynamically associated with promoter activity across the genome, implicating acetylation of alternative histones in gene regulation genome wide. Understanding mechanisms of gene regulation in P. falciparum may aid in the development of new therapeutic strategies for malaria, which killed 619,000 people in 2021.

12.
Article in English | MEDLINE | ID: mdl-38152610

ABSTRACT

Trypanosoma brucei, the causative agent of Human African Trypanosomiasis (HAT) and animal trypanosomiases, cycles between a bloodstream form in mammals and a procyclic form in the gut of its insect vector. We previously discovered that the human bromodomain inhibitor I-BET151 causes transcriptome changes that resemble the transition from the bloodstream to the procyclic form. In particular, I-BET151 induces replacement of variant surface glycoprotein (VSG) with procyclin protein. While modest binding of I-BET151 to TbBdf2 and TbBdf3 has been demonstrated, it is unknown whether I-BET151 binds to other identified T. brucei bromodomain proteins and/or other targets. To identify target(s) in T. brucei, we have synthesized I-BET151 derivatives maintaining the key pharmacophoric elements with functionality useful for chemoproteomic approaches. We identified compounds that are potent in inducing expression of procyclin, delineating a strategy towards the design of drugs against HAT and other trypanosomiases. Furthermore, these derivatives represent useful chemical probes to elucidate the molecular mechanism underlying I-BET151-induced differentiation.

13.
mSphere ; 7(3): e0002322, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35642518

ABSTRACT

Trypanosoma brucei, the causative agent of human and animal African trypanosomiasis, cycles between a mammalian host and a tsetse fly vector. The parasite undergoes huge changes in morphology and metabolism during adaptation to each host environment. These changes are reflected in the different transcriptomes of parasites living in each host. However, it remains unclear whether chromatin-interacting proteins help mediate these changes. Bromodomain proteins localize to transcription start sites in bloodstream parasites, but whether the localization of bromodomain proteins changes as parasites differentiate from bloodstream to insect stages remains unknown. To address this question, we performed cleavage under target and release using nuclease (CUT&RUN) against bromodomain protein 3 (Bdf3) in parasites differentiating from bloodstream to insect forms. We found that Bdf3 occupancy at most loci increased at 3 h following onset of differentiation and decreased thereafter. A number of sites with increased bromodomain protein occupancy lie proximal to genes with altered transcript levels during differentiation, such as procyclins, procyclin-associated genes, and invariant surface glycoproteins. Most Bdf3-occupied sites are observed throughout differentiation. However, one site appears de novo during differentiation and lies proximal to the procyclin gene locus housing genes essential for remodeling surface proteins following transition to the insect stage. These studies indicate that occupancy of chromatin-interacting proteins is dynamic during life cycle stage transitions and provide the groundwork for future studies on the effects of changes in bromodomain protein occupancy. Additionally, the adaptation of CUT&RUN for Trypanosoma brucei provides other researchers with an alternative to chromatin immunoprecipitation (ChIP). IMPORTANCE The parasite Trypanosoma brucei is the causative agent of human and animal African trypanosomiasis (sleeping sickness). Trypanosomiasis, which affects humans and cattle, is fatal if untreated. Existing drugs have significant side effects. Thus, these parasites impose a significant human and economic burden in sub-Saharan Africa, where trypanosomiasis is endemic. T. brucei cycles between the mammalian host and a tsetse fly vector, and parasites undergo huge changes in morphology and metabolism to adapt to different hosts. Here, we show that DNA-interacting bromodomain protein 3 (Bdf3) shows changes in occupancy at its binding sites as parasites transition from the bloodstream to the insect stage. Additionally, a new binding site appears near the locus responsible for remodeling of parasite surface proteins during transition to the insect stage. Understanding the mechanisms behind host adaptation is important for understanding the life cycle of the parasite.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Tsetse Flies , Animals , Cattle , Chromatin/metabolism , Genomics , Humans , Life Cycle Stages , Mammals , Membrane Glycoproteins/genetics , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/parasitology
14.
mSphere ; 5(5)2020 10 07.
Article in English | MEDLINE | ID: mdl-33028684

ABSTRACT

Trypanosoma brucei is an early branching protozoan parasite that causes human and animal African trypanosomiasis. Forward genetics approaches are powerful tools for uncovering novel aspects of trypanosomatid biology, pathogenesis, and therapeutic approaches against trypanosomiasis. Here, we have generated a T. brucei cloned ORFeome consisting of >90% of the targeted 7,245 genes and used it to make an inducible gain-of-function parasite library broadly applicable to large-scale forward genetic screens. We conducted a proof-of-principle genetic screen to identify genes whose expression promotes survival in melarsoprol, a critical drug of last resort. The 57 genes identified as overrepresented in melarsoprol survivor populations included the gene encoding the rate-limiting enzyme for the biosynthesis of an established drug target (trypanothione), validating the tool. In addition, novel genes associated with gene expression, flagellum localization, and mitochondrion localization were identified, and a subset of those genes increased melarsoprol resistance upon overexpression in culture. These findings offer new insights into trypanosomatid basic biology, implications for drug targets, and direct or indirect drug resistance mechanisms. This study generated a T. brucei ORFeome and gain-of-function parasite library, demonstrated the library's usefulness in forward genetic screening, and identified novel aspects of melarsoprol resistance that will be the subject of future investigations. These powerful genetic tools can be used to broadly advance trypanosomatid research.IMPORTANCE Trypanosomatid parasites threaten the health of more than 1 billion people worldwide. Because their genomes are highly diverged from those of well-established eukaryotes, conservation is not always useful in assigning gene functions. However, it is precisely among the trypanosomatid-specific genes that ideal therapeutic targets might be found. Forward genetics approaches are an effective way to identify novel gene functions. We used an ORFeome approach to clone a large percentage of Trypanosoma brucei genes and generate a gain-of-function parasite library. This library was used in a genetic screen to identify genes that promote resistance to the clinically significant yet highly toxic drug melarsoprol. Hits arising from the screen demonstrated the library's usefulness in identifying known pathways and uncovered novel aspects of resistance mediated by proteins localized to the flagellum and mitochondrion. The powerful new genetic tools generated herein are expected to promote advances in trypanosomatid biology and therapeutic development in the years to come.


Subject(s)
Gain of Function Mutation , Melarsoprol/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/genetics , Cell Line , Drug Resistance/genetics , Gene Library , Genes, Protozoan , Humans , Open Reading Frames , Proof of Concept Study
15.
PLoS Negl Trop Dis ; 14(3): e0007790, 2020 03.
Article in English | MEDLINE | ID: mdl-32168320

ABSTRACT

Trypanosoma brucei are unicellular parasites endemic to Sub-Saharan Africa that cause fatal disease in humans and animals. Infection with these parasites is caused by the bite of the tsetse fly vector, and parasites living extracellularly in the blood of infected animals evade the host immune system through antigenic variation. Existing drugs for Human and Animal African Trypanosomiasis are difficult to administer and can have serious side effects. Resistance to some drugs is also increasing, creating an urgent need for alternative trypanosomiasis therapeutics. We screened a library of 1,585 U.S. or foreign-approved drugs and identified 154 compounds that inhibit trypanosome growth. As all of these compounds have already undergone testing for human toxicity, they represent good candidates for repurposing as trypanosome therapeutics. In addition to identifying drugs that inhibit trypanosome growth, we wished to identify small molecules that can induce bloodstream form parasites to differentiate into forms adapted for the insect vector. These insect stage parasites lack the immune evasion mechanisms prevalent in bloodstream forms, making them vulnerable to the host immune system. To identify drugs that increase transcript levels of an invariant, insect-stage specific surface protein called procyclin, we engineered bloodstream reporter parasites that express Green Fluorescent Protein (GFP) following induction or stabilization of the procyclin transcript. Using these bloodstream reporter strains in combination with automated flow cytometry, we identified eflornithine, spironolactone, and phenothiazine as small molecules that increase abundance of procyclin transcript. Both eflornithine and spironolactone also affect transcript levels for a subset of differentiation associated genes. While we failed to identify compounds that increase levels of procyclin protein on the cell surface, this study is proof of principle that these fluorescent reporter parasites represent a useful tool for future small molecule or genetic screens aimed at identifying molecules or processes that initiate remodeling of the parasite surface during life cycle stage transitions.


Subject(s)
Cell Differentiation/drug effects , Drug Repositioning/methods , Gene Expression Regulation, Developmental/drug effects , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/growth & development , Drug Evaluation, Preclinical/methods , Eflornithine/pharmacology , Phenothiazines/pharmacology , Spironolactone/pharmacology
16.
Trends Parasitol ; 32(6): 435-436, 2016 06.
Article in English | MEDLINE | ID: mdl-27006155

ABSTRACT

Parasites have long been known to influence host responses to infection through the secretion of virulence factors. Extracellular vesicles are emerging as important mediators of these manipulations, and a new study by Szempruch et al. suggests they could play a crucial role in host responses to African trypanosome infections.


Subject(s)
Host-Parasite Interactions/immunology , Secretory Vesicles/immunology , Trypanosomiasis, African/immunology , Trypanosomiasis, African/parasitology , Virulence Factors/immunology , Animals , Host-Parasite Interactions/genetics , Humans , Trypanosoma brucei brucei/immunology , Virulence Factors/genetics
17.
J Vis Exp ; (116)2016 10 19.
Article in English | MEDLINE | ID: mdl-27805593

ABSTRACT

Trypanosoma brucei, a protozoan parasite that causes both Human and Animal African Trypanosomiasis (known as sleeping sickness and nagana, respectively) cycles between a tsetse vector and a mammalian host. It evades the mammalian host immune system by periodically switching the dense, variant surface glycoprotein (VSG) that covers its surface. The detection of antigenic variation in Trypanosoma brucei can be both cumbersome and labor intensive. Here, we present a method for quantifying the number of parasites that have 'switched' to express a new VSG in a given population. The parasites are first stained with an antibody against the starting VSG, and then stained with a secondary antibody attached to a magnetic bead. Parasites expressing the starting VSG are then separated from the rest of the population by running the parasites over a column attached to a magnet. Parasites expressing the dominant, starting VSG are retained on the column, while the flow-through contains parasites that express a new VSG as well as some contaminants expressing the starting VSG. This flow-through population is stained again with a fluorescently labeled antibody against the starting VSG to label contaminants, and propidium iodide (PI), which labels dead cells. A known number of absolute counting beads that are visible by flow cytometry are added to the flow-through population. The ratio of beads to number of cells collected can then be used to extrapolate the number of cells in the entire sample. Flow cytometry is used to quantify the population of switchers by counting the number of PI negative cells that do not stain positively for the starting, dominant VSG. The proportion of switchers in the population can then be calculated using the flow cytometry data.


Subject(s)
Flow Cytometry , Immunomagnetic Separation , Trypanosoma brucei brucei , Variant Surface Glycoproteins, Trypanosoma , Animals , Antigenic Variation , Humans , Membrane Glycoproteins , Trypanosomiasis, African
18.
Results Probl Cell Differ ; 57: 23-46, 2015.
Article in English | MEDLINE | ID: mdl-26537376

ABSTRACT

Antigenic variation is a common microbial survival strategy, powered by diversity in expressed surface antigens across the pathogen population over the course of infection. Even so, among pathogens, African trypanosomes have the most comprehensive system of antigenic variation described. African trypanosomes (Trypanosoma brucei spp.) are unicellular parasites native to sub-Saharan Africa, and the causative agents of sleeping sickness in humans and of n'agana in livestock. They cycle between two habitats: a specific species of fly (Glossina spp. or, colloquially, the tsetse) and the bloodstream of their mammalian hosts, by assuming a succession of proliferative and quiescent developmental forms, which vary widely in cell architecture and function. Key to each of the developmental forms that arise during these transitions is the composition of the surface coat that covers the plasma membrane. The trypanosome surface coat is extremely dense, covered by millions of repeats of developmentally specified proteins: procyclin gene products cover the organism while it resides in the tsetse and metacyclic gene products cover it while in the fly salivary glands, ready to make the transition to the mammalian bloodstream. But by far the most interesting coat is the Variant Surface Glycoprotein (VSG) coat that covers the organism in its infectious form (during which it must survive free living in the mammalian bloodstream). This coat is highly antigenic and elicits robust VSG-specific antibodies that mediate efficient opsonization and complement mediated lysis of the parasites carrying the coat against which the response was made. Meanwhile, a small proportion of the parasite population switches coats, which stimulates a new antibody response to the prevalent (new) VSG species and this process repeats until immune system failure. The disease is fatal unless treated, and treatment at the later stages is extremely toxic. Because the organism is free living in the blood, the VSG:antibody surface represents the interface between pathogen and host, and defines the interaction of the parasite with the immune response. This interaction (cycles of VSG switching, antibody generation, and parasite deletion) results in stereotypical peaks and troughs of parasitemia that were first recognized more than 100 years ago. Essentially, the mechanism of antigenic variation in T. brucei results from a need, at the population level, to maintain an extensive repertoire, to evade the antibody response. In this chapter, we will examine what is currently known about the VSG repertoire, its depth, and the mechanisms that diversify it both at the molecular (DNA) and at the phenotypic (surface displayed) level, as well as how it could interact with antibodies raised specifically against it in the host.


Subject(s)
Insect Vectors/immunology , Trypanosoma brucei brucei/immunology , Trypanosomiasis, African/immunology , Variant Surface Glycoproteins, Trypanosoma/immunology , Animals , Genetic Variation/genetics , Genetic Variation/immunology , Host-Parasite Interactions/immunology , Humans , Insect Vectors/parasitology , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/physiology , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics
19.
PLoS One ; 8(9): e75891, 2013.
Article in English | MEDLINE | ID: mdl-24086657

ABSTRACT

Growth factor independence genes (Gfi1 and Gfi1b) repress recombination activating genes (Rag) transcription in developing B lymphocytes. Because all blood lineages originate from hematopoietic stem cells (HSCs) and different lineage progenitors have been shown to share transcription factor networks prior to cell fate commitment, we hypothesized that GFI family proteins may also play a role in repressing Rag transcription or a global lymphoid transcriptional program in other blood lineages. We tested the level of Rag transcription in various blood cells when Gfi1 and Gfi1b were deleted, and observed an upregulation of Rag expression in plasmacytoid dendritic cells (pDCs). Using microarray analysis, we observed that Gfi1 and Gfi1b do not regulate a lymphoid or pDC-specific transcriptional program. This study establishes a role for Gfi1 and Gfi1b in Rag regulation in a non-B lineage cell type.


Subject(s)
DNA-Binding Proteins/metabolism , Dendritic Cells/metabolism , Gene Expression Regulation/genetics , Homeodomain Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Animals , Computational Biology , DNA-Binding Proteins/genetics , Flow Cytometry , Humans , Mice , Microarray Analysis , Proto-Oncogene Proteins/genetics , Real-Time Polymerase Chain Reaction , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics
20.
J Exp Med ; 209(1): 187-99, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22201127

ABSTRACT

Precise regulation of Rag (recombination-activating gene) expression is crucial to prevent genomic instability caused by the generation of Rag-mediated DNA breaks. Although mechanisms of Rag activation have been well characterized, the mechanism by which Rag expression is down-regulated in early B cell development has not been fully elucidated. Using a complementary DNA library screen, we identified the transcriptional repressor Gfi1b as negative regulator of the Rag locus. Expression of Gfi1b causes repression of Rag1 and Rag2 in cell lines and primary mouse cells. Conversely, Gfi1b-deficient cell lines exhibit increased Rag expression, double-strand breaks and recombination, and cell cycle defects. In primary cells, transcription of Gfi1b inversely correlates with Rag transcription, and simultaneous inactivation of Gfi1 and Gfi1b leads to an increase in Rag transcription early in B cell development. In addition, deletion of Gfi1 and Gfi1b in vivo results in a severe block in B cell development. Gfi1b orchestrates Rag repression via a dual mechanism. Direct binding of Gfi1b to a site 5' of the B cell-specific Erag enhancer results in epigenetic changes in the Rag locus, whereas indirect inhibition is achieved through repression of the trans-activator Foxo1. Together, our experiments show that Gfi family members are essential for normal B cell development and play an important role in modulating expression of the V(D)J recombinase.


Subject(s)
Forkhead Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , Chromatin Assembly and Disassembly , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Forkhead Box Protein O1 , Gene Deletion , Gene Expression Regulation , Gene Library , Gene Targeting , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Mice , Mice, Inbred BALB C , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Recombination, Genetic , Repressor Proteins/deficiency , Repressor Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL