Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Med Inform Decis Mak ; 20(1): 28, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32041606

ABSTRACT

BACKGROUND: Individualization and patient-specific optimization of treatment is a major goal of modern health care. One way to achieve this goal is the application of high-resolution diagnostics together with the application of targeted therapies. However, the rising number of different treatment modalities also induces new challenges: Whereas randomized clinical trials focus on proving average treatment effects in specific groups of patients, direct conclusions at the individual patient level are problematic. Thus, the identification of the best patient-specific treatment options remains an open question. Systems medicine, specifically mechanistic mathematical models, can substantially support individual treatment optimization. In addition to providing a better general understanding of disease mechanisms and treatment effects, these models allow for an identification of patient-specific parameterizations and, therefore, provide individualized predictions for the effect of different treatment modalities. RESULTS: In the following we describe a software framework that facilitates the integration of mathematical models and computer simulations into routine clinical processes to support decision-making. This is achieved by combining standard data management and data exploration tools, with the generation and visualization of mathematical model predictions for treatment options at an individual patient level. CONCLUSIONS: By integrating model results in an audit trail compatible manner into established clinical workflows, our framework has the potential to foster the use of systems-medical approaches in clinical practice. We illustrate the framework application by two use cases from the field of haematological oncology.


Subject(s)
Clinical Decision-Making/methods , Computer Simulation , Decision Support Systems, Clinical , Hematologic Diseases , Models, Theoretical , Software , Workflow , Humans , Proof of Concept Study
2.
PLOS Digit Health ; 2(5): e0000140, 2023 May.
Article in English | MEDLINE | ID: mdl-37186586

ABSTRACT

The transfer of new insights from basic or clinical research into clinical routine is usually a lengthy and time-consuming process. Conversely, there are still many barriers to directly provide and use routine data in the context of basic and clinical research. In particular, no coherent software solution is available that allows a convenient and immediate bidirectional transfer of data between concrete treatment contexts and research settings. Here, we present a generic framework that integrates health data (e.g., clinical, molecular) and computational analytics (e.g., model predictions, statistical evaluations, visualizations) into a clinical software solution which simultaneously supports both patient-specific healthcare decisions and research efforts, while also adhering to the requirements for data protection and data quality. Specifically, our work is based on a recently established generic data management concept, for which we designed and implemented a web-based software framework that integrates data analysis, visualization as well as computer simulation and model prediction with audit trail functionality and a regulation-compliant pseudonymization service. Within the front-end application, we established two tailored views: a clinical (i.e., treatment context) perspective focusing on patient-specific data visualization, analysis and outcome prediction and a research perspective focusing on the exploration of pseudonymized data. We illustrate the application of our generic framework by two use-cases from the field of haematology/oncology. Our implementation demonstrates the feasibility of an integrated generation and backward propagation of data analysis results and model predictions at an individual patient level into clinical decision-making processes while enabling seamless integration into a clinical information system or an electronic health record.

SELECTION OF CITATIONS
SEARCH DETAIL