Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34242577

ABSTRACT

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Subject(s)
Antibodies, Neutralizing/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/immunology , Bronchoalveolar Lavage Fluid/chemistry , COVID-19/pathology , COVID-19/virology , Cytokines/metabolism , Female , Haplorhini , Humans , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred BALB C , Protein Domains , RNA, Guide, Kinetoplastida/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Viral Load , Virus Replication
2.
Cell ; 183(4): 1070-1085.e12, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33031744

ABSTRACT

The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.


Subject(s)
Acute Lung Injury/pathology , Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Animals , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Cell Line , Chemokines/blood , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokines/blood , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/physiology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Respiratory Distress Syndrome/pathology , SARS-CoV-2 , Severity of Illness Index , Survival Rate
3.
Nature ; 594(7864): 553-559, 2021 06.
Article in English | MEDLINE | ID: mdl-33971664

ABSTRACT

Betacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , COVID-19/immunology , COVID-19/prevention & control , Common Cold/prevention & control , Cross Reactions/immunology , Pandemics , Viral Vaccines/immunology , Adjuvants, Immunologic , Administration, Intranasal , Animals , COVID-19/epidemiology , COVID-19 Vaccines/immunology , Common Cold/immunology , Common Cold/virology , Disease Models, Animal , Female , Humans , Macaca/immunology , Male , Models, Molecular , Nanoparticles/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Trachea , Vaccination
4.
Proc Natl Acad Sci U S A ; 117(43): 26915-26925, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33046644

ABSTRACT

Zoonotic coronaviruses represent an ongoing threat, yet the myriads of circulating animal viruses complicate the identification of higher-risk isolates that threaten human health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered, highly pathogenic virus that likely evolved from closely related HKU2 bat coronaviruses, circulating in Rhinolophus spp. bats in China and elsewhere. As coronaviruses cause severe economic losses in the pork industry and swine are key intermediate hosts of human disease outbreaks, we synthetically resurrected a recombinant virus (rSADS-CoV) as well as a derivative encoding tomato red fluorescent protein (tRFP) in place of ORF3. rSADS-CoV replicated efficiently in a variety of continuous animal and primate cell lines, including human liver and rectal carcinoma cell lines. Of concern, rSADS-CoV also replicated efficiently in several different primary human lung cell types, as well as primary human intestinal cells. rSADS-CoV did not use human coronavirus ACE-2, DPP4, or CD13 receptors for docking and entry. Contemporary human donor sera neutralized the group I human coronavirus NL63, but not rSADS-CoV, suggesting limited human group I coronavirus cross protective herd immunity. Importantly, remdesivir, a broad-spectrum nucleoside analog that is effective against other group 1 and 2 coronaviruses, efficiently blocked rSADS-CoV replication in vitro. rSADS-CoV demonstrated little, if any, replicative capacity in either immune-competent or immunodeficient mice, indicating a critical need for improved animal models. Efficient growth in primary human lung and intestinal cells implicate SADS-CoV as a potential higher-risk emerging coronavirus pathogen that could negatively impact the global economy and human health.


Subject(s)
Alphacoronavirus/physiology , Coronavirus Infections/virology , Disease Susceptibility/virology , Virus Replication , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alphacoronavirus/genetics , Alphacoronavirus/growth & development , Animals , Cells, Cultured , Chlorocebus aethiops , Coronavirus Infections/transmission , Gene Expression , Host Specificity , Humans , Luminescent Proteins/genetics , Mice , Vero Cells , Virus Replication/drug effects
5.
J Virol ; 94(5)2020 02 14.
Article in English | MEDLINE | ID: mdl-31801868

ABSTRACT

Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor binding in a new host. Our previous work with severe acute respiratory syndrome (SARS)-like viruses argued that bats already harbor CoVs with the ability to infect humans without adaptation. These results suggested that additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming host restriction of two Middle East respiratory syndrome (MERS)-like bat CoVs using exogenous protease treatment. We found that the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show that the bat virus spike can mediate the infection of human gut cells but is unable to infect human lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera. Finally, we found that the addition of exogenous trypsin also rescues HKU5-CoV, a second bat group 2c CoV. Together, these results indicate that proteolytic cleavage of the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs. Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate the emergence potential of bat CoVs and offers a means to recover previously unrecoverable zoonotic CoV strains.IMPORTANCE Overall, our studies demonstrate that proteolytic cleavage is the primary barrier to infection for a subset of zoonotic coronaviruses. Moving forward, the results argue that both receptor binding and proteolytic cleavage of the spike are critical factors that must be considered for evaluating the emergence potential and risk posed by zoonotic coronaviruses. In addition, the findings also offer a novel means to recover previously uncultivable zoonotic coronavirus strains and argue that other tissues, including the digestive tract, could be a site for future coronavirus emergence events in humans.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/metabolism , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Caco-2 Cells , Chiroptera , Chlorocebus aethiops , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Trypsin , Vero Cells , Zoonoses/metabolism , Zoonoses/virology
6.
J Virol ; 92(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29540599

ABSTRACT

Zoonotic viruses circulate as swarms in animal reservoirs and can emerge into human populations, causing epidemics that adversely affect public health. Portable, safe, and effective vaccine platforms are needed in the context of these outbreak and emergence situations. In this work, we report the generation and characterization of an alphavirus replicon vaccine platform based on a non-select agent, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain 3526 (VRP 3526). Using both noroviruses and coronaviruses as model systems, we demonstrate the utility of the VRP 3526 platform in the generation of recombinant proteins, production of virus-like particles, and in vivo efficacy as a vaccine against emergent viruses. Importantly, packaging under biosafety level 2 (BSL2) conditions distinguishes VRP 3526 from previously reported alphavirus platforms and makes this approach accessible to the majority of laboratories around the world. In addition, improved outcomes in the vulnerable aged models as well as against heterologous challenge suggest improved efficacy compared to that of previously attenuated VRP approaches. Taking these results together, the VRP 3526 platform represents a safe and highly portable system that can be rapidly deployed under BSL2 conditions for generation of candidate vaccines against emerging microbial pathogens.IMPORTANCE While VEE virus replicon particles provide a robust, established platform for antigen expression and vaccination, its utility has been limited by the requirement for high-containment-level facilities for production and packaging. In this work, we utilize an attenuated vaccine strain capable of use at lower biocontainment level but retaining the capacity of the wild-type replicon particle. Importantly, the new replicon platform provides equal protection for aged mice and following heterologous challenge, which distinguishes it from other attenuated replicon platforms. Together, the new system represents a highly portable, safe system for use in the context of disease emergence.


Subject(s)
Antibodies, Viral/immunology , Encephalitis Virus, Venezuelan Equine/immunology , Encephalomyelitis, Venezuelan Equine/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Aging/immunology , Animals , Antibodies, Viral/blood , Cell Line , Chlorocebus aethiops , Encephalitis Virus, Venezuelan Equine/genetics , Encephalomyelitis, Venezuelan Equine/prevention & control , Encephalomyelitis, Venezuelan Equine/virology , Female , Humans , Mice , Mice, Inbred BALB C , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/virology , Vero Cells , Zoonoses/prevention & control , Zoonoses/virology
7.
Proc Natl Acad Sci U S A ; 113(11): 3048-53, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26976607

ABSTRACT

Outbreaks from zoonotic sources represent a threat to both human disease as well as the global economy. Despite a wealth of metagenomics studies, methods to leverage these datasets to identify future threats are underdeveloped. In this study, we describe an approach that combines existing metagenomics data with reverse genetics to engineer reagents to evaluate emergence and pathogenic potential of circulating zoonotic viruses. Focusing on the severe acute respiratory syndrome (SARS)-like viruses, the results indicate that the WIV1-coronavirus (CoV) cluster has the ability to directly infect and may undergo limited transmission in human populations. However, in vivo attenuation suggests additional adaptation is required for epidemic disease. Importantly, available SARS monoclonal antibodies offered success in limiting viral infection absent from available vaccine approaches. Together, the data highlight the utility of a platform to identify and prioritize prepandemic strains harbored in animal reservoirs and document the threat posed by WIV1-CoV for emergence in human populations.


Subject(s)
Chiroptera/virology , Communicable Diseases, Emerging/virology , Coronaviridae Infections/virology , Coronaviridae/pathogenicity , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cells, Cultured , Chlorocebus aethiops , Coronaviridae/genetics , Coronaviridae/immunology , Coronaviridae/isolation & purification , Coronaviridae/physiology , Coronaviridae Infections/prevention & control , Coronaviridae Infections/transmission , Coronaviridae Infections/veterinary , Cross Reactions , Encephalitis, Viral/virology , Epithelial Cells/virology , Host Specificity , Humans , Lung/cytology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Models, Molecular , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/physiology , Point Mutation , Protein Conformation , Receptors, Virus/genetics , Receptors, Virus/physiology , Recombinant Fusion Proteins/metabolism , Severe acute respiratory syndrome-related coronavirus/immunology , Species Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology , Vero Cells , Virus Replication , Zoonoses
8.
J Virol ; 91(19)2017 10 01.
Article in English | MEDLINE | ID: mdl-28747502

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. While bat, camel, and human DPP4 support MERS-CoV infection, several DPP4 orthologs, including mouse, ferret, hamster, and guinea pig DPP4, do not. Previous work revealed that glycosylation of mouse DPP4 plays a role in blocking MERS-CoV infection. Here, we tested whether glycosylation also acts as a determinant of permissivity for ferret, hamster, and guinea pig DPP4. We found that, while glycosylation plays an important role in these orthologs, additional sequence and structural determinants impact their ability to act as functional receptors for MERS-CoV. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and better inform our understanding of virus-receptor interactions associated with disease emergence and host susceptibility.IMPORTANCE MERS-CoV is a recently emerged zoonotic virus that is still circulating in the human population with an ∼35% mortality rate. With no available vaccines or therapeutics, the study of MERS-CoV pathogenesis is crucial for its control and prevention. However, in vivo studies are limited because MERS-CoV cannot infect wild-type mice due to incompatibilities between the virus spike and the mouse host cell receptor, mouse DPP4 (mDPP4). Specifically, mDPP4 has a nonconserved glycosylation site that acts as a barrier to MERS-CoV infection. Thus, one mouse model strategy has been to modify the mouse genome to remove this glycosylation site. Here, we investigated whether glycosylation acts as a barrier to infection for other nonpermissive small-animal species, namely, ferret, guinea pig, and hamster. Understanding the virus-receptor interactions for these DPP4 orthologs will help in the development of additional animal models while also revealing species-specific differences impacting MERS-CoV host range.


Subject(s)
Coronavirus Infections/pathology , Dipeptidyl Peptidase 4/metabolism , Host Specificity/physiology , Middle East Respiratory Syndrome Coronavirus/metabolism , Receptors, Virus/metabolism , Virus Attachment , Amino Acid Sequence/genetics , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/virology , Cricetinae , Dipeptidyl Peptidase 4/genetics , Ferrets , Glycosylation , Guinea Pigs , HEK293 Cells , Humans , Receptors, Virus/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Vero Cells
9.
J Virol ; 89(8): 4696-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25653445

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. Mouse DPP4 (mDPP4) does not support MERS-CoV entry; however, changes at positions 288 and 330 can confer permissivity. Position 330 changes the charge and glycosylation state of mDPP4. We show that glycosylation is a major factor impacting DPP4 receptor function. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and may inform MERS-CoV mouse model development.


Subject(s)
Coronavirus Infections/prevention & control , Dipeptidyl Peptidase 4/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Models, Molecular , Virus Internalization , Amino Acid Sequence , Animals , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/genetics , Fluorescent Antibody Technique , Glycosylation , Mice , Molecular Sequence Data , Species Specificity
10.
Proc Natl Acad Sci U S A ; 110(40): 16157-62, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24043791

ABSTRACT

Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.


Subject(s)
Communicable Diseases, Emerging/virology , Coronavirus/genetics , DNA, Complementary/genetics , Severe Acute Respiratory Syndrome/virology , Blotting, Northern , Blotting, Western , Cells, Cultured , DNA Primers/genetics , Dipeptidyl Peptidase 4/metabolism , Gene Expression Regulation, Viral/genetics , Gene Expression Regulation, Viral/physiology , Humans , Luminescent Proteins , Middle East , Polymorphism, Restriction Fragment Length , Real-Time Polymerase Chain Reaction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology , Virus Attachment , Virus Replication/physiology , Red Fluorescent Protein
11.
J Virol ; 88(9): 5195-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24574399

ABSTRACT

Human dipeptidyl peptidase 4 (hDPP4) was recently identified as the receptor for Middle East respiratory syndrome coronavirus (MERS-CoV) infection, suggesting that other mammalian DPP4 orthologs may also support infection. We demonstrate that mouse DPP4 cannot support MERS-CoV infection. However, employing mouse DPP4 as a scaffold, we identified two critical amino acids (A288L and T330R) that regulate species specificity in the mouse. This knowledge can support the rational design of a mouse-adapted MERS-CoV for rapid assessment of therapeutics.


Subject(s)
Coronavirus/physiology , Dipeptidyl Peptidase 4/metabolism , Receptors, Virus/metabolism , Virus Attachment , Amino Acid Sequence , Animals , Coronavirus Infections/virology , DNA Mutational Analysis , Host Specificity , Humans , Mice , Models, Molecular , Molecular Sequence Data , Protein Conformation , Species Specificity
12.
J Virol ; 88(8): 4251-64, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24478444

ABSTRACT

UNLABELLED: The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and, more recently, Middle Eastern respiratory syndrome CoV (MERS-CoV) underscores the importance of understanding critical aspects of CoV infection and pathogenesis. Despite significant insights into CoV cross-species transmission, replication, and virus-host interactions, successful therapeutic options for CoVs do not yet exist. Recent identification of SARS-CoV NSP16 as a viral 2'-O-methyltransferase (2'-O-MTase) led to the possibility of utilizing this pathway to both attenuate SARS-CoV infection and develop novel therapeutic treatment options. Mutations were introduced into SARS-CoV NSP16 within the conserved KDKE motif and effectively attenuated the resulting SARS-CoV mutant viruses both in vitro and in vivo. While viruses lacking 2'-O-MTase activity had enhanced sensitivity to type I interferon (IFN), they were not completely restored in their absence in vivo. However, the absence of either MDA5 or IFIT1, IFN-responsive genes that recognize unmethylated 2'-O RNA, resulted in restored replication and virulence of the dNSP16 mutant virus. Finally, using the mutant as a live-attenuated vaccine showed significant promise for possible therapeutic development against SARS-CoV. Together, the data underscore the necessity of 2'-O-MTase activity for SARS-CoV pathogenesis and identify host immune pathways that mediate this attenuation. In addition, we describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2'-O-MTase activity to subvert the immune system. IMPORTANCE: Preventing recognition by the host immune response represents a critical aspect necessary for successful viral infection. Several viruses, including SARS-CoV, utilize virally encoded 2'-O-MTases to camouflage and obscure their viral RNA from host cell sensing machinery, thus preventing recognition and activation of cell intrinsic defense pathways. For SARS-CoV, the absence of this 2'-O-MTase activity results in significant attenuation characterized by decreased viral replication, reduced weight loss, and limited breathing dysfunction in mice. The results indicate that both MDA5, a recognition molecule, and the IFIT family play an important role in mediating this attenuation with restored virulence observed in their absence. Understanding this virus-host interaction provided an opportunity to design a successful live-attenuated vaccine for SARS-CoV and opens avenues for treatment and prevention of emerging CoVs and other RNA virus infections.


Subject(s)
Methyltransferases/metabolism , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Nonstructural Proteins/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Motifs , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Female , Humans , Interferon-Induced Helicase, IFIH1 , Male , Methyltransferases/chemistry , Methyltransferases/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutation , RNA-Binding Proteins , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/physiology , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virulence , Virus Replication
13.
J Infect Dis ; 209(7): 995-1006, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24253287

ABSTRACT

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing severe acute respiratory disease and pneumonia, with 44% mortality among 136 cases to date. Design of vaccines to limit the virus spread or diagnostic tests to track newly emerging strains requires knowledge of antigenic and serologic relationships between MERS-CoV and other CoVs. METHODS: Using synthetic genomics and Venezuelan equine encephalitis virus replicons (VRPs) expressing spike and nucleocapsid proteins from MERS-CoV and other human and bat CoVs, we characterize the antigenic responses (using Western blot and enzyme-linked immunosorbent assay) and serologic responses (using neutralization assays) against 2 MERS-CoV isolates in comparison with those of other human and bat CoVs. RESULTS: Serologic and neutralization responses against the spike glycoprotein were primarily strain specific, with a very low level of cross-reactivity within or across subgroups. CoV N proteins within but not across subgroups share cross-reactive epitopes with MERS-CoV isolates. Our findings were validated using a convalescent-phase serum specimen from a patient infected with MERS-CoV (NA 01) and human antiserum against SARS-CoV, human CoV NL63, and human CoV OC43. CONCLUSIONS: Vaccine design for emerging CoVs should involve chimeric spike protein containing neutralizing epitopes from multiple virus strains across subgroups to reduce immune pathology, and a diagnostic platform should include a panel of nucleocapsid and spike proteins from phylogenetically distinct CoVs.


Subject(s)
Antigens, Viral/immunology , Coronaviridae/immunology , Nucleocapsid Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , Blotting, Western , Chiroptera , Coronaviridae/isolation & purification , Coronavirus Nucleocapsid Proteins , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Mice, Inbred BALB C , Middle Aged , Neutralization Tests
14.
Nat Commun ; 15(1): 6503, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090095

ABSTRACT

The COVID-19 pandemic has led to the deaths of millions of people and severe global economic impacts. Small molecule therapeutics have played an important role in the fight against SARS-CoV-2, the virus responsible for COVID-19, but their efficacy has been limited in scope and availability, with many people unable to access their benefits, and better options are needed. EDP-235 is specifically designed to inhibit the SARS-CoV-2 3CLpro, with potent nanomolar activity against all SARS-CoV-2 variants to date, as well as clinically relevant human and zoonotic coronaviruses. EDP-235 maintains potency against variants bearing mutations associated with nirmatrelvir resistance. Additionally, EDP-235 demonstrates a ≥ 500-fold selectivity index against multiple host proteases. In a male Syrian hamster model of COVID-19, EDP-235 suppresses SARS-CoV-2 replication and viral-induced hamster lung pathology. In a female ferret model, EDP-235 inhibits production of SARS-CoV-2 infectious virus and RNA at multiple anatomical sites. Furthermore, SARS-CoV-2 contact transmission does not occur when naïve ferrets are co-housed with infected, EDP-235-treated ferrets. Collectively, these results demonstrate that EDP-235 is a broad-spectrum coronavirus inhibitor with efficacy in animal models of primary infection and transmission.


Subject(s)
Antiviral Agents , COVID-19 , Coronavirus 3C Proteases , SARS-CoV-2 , Virus Replication , Animals , Cricetinae , Female , Humans , Male , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , COVID-19/virology , COVID-19/transmission , COVID-19 Drug Treatment , Disease Models, Animal , Ferrets , Lactams , Leucine , Lung/virology , Lung/drug effects , Lung/pathology , Mesocricetus , Nitriles , Organic Chemicals , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/prevention & control , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
15.
Cell Rep Med ; 5(8): 101668, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39094579

ABSTRACT

We describe the molecular-level composition of polyclonal immunoglobulin G (IgG) anti-spike antibodies from ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or their combination ("hybrid immunity") at monoclonal resolution. Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, whereas vaccination mainly induces anti-receptor-binding domain (RBD) antibodies. This imprint persists after secondary exposures wherein >60% of ensuing hybrid immunity derives from the original IgG pool. Monoclonal constituents of the original IgG pool can increase breadth, affinity, and prevalence upon secondary exposures, as exemplified by the plasma antibody SC27. Following a breakthrough infection, vaccine-induced SC27 gained neutralization breadth and potency against SARS-CoV-2 variants and zoonotic viruses (half-maximal inhibitory concentration [IC50] ∼0.1-1.75 nM) and increased its binding affinity to the protective RBD class 1/4 epitope (dissociation constant [KD] < 5 pM). According to polyclonal escape analysis, SC27-like binding patterns are common in SARS-CoV-2 hybrid immunity. Our findings provide a detailed molecular definition of immunological imprinting and show that vaccination can produce class 1/4 (SC27-like) IgG antibodies circulating in the blood.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Immunoglobulin G/immunology , Immunoglobulin G/blood , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , Epitopes/immunology , Female , Antibodies, Monoclonal/immunology , Male
16.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38545622

ABSTRACT

We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS: ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.

17.
Sci Transl Med ; 15(715): eadg5567, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37756379

ABSTRACT

The repeated emergence of zoonotic human betacoronaviruses (ß-CoVs) dictates the need for broad therapeutics and conserved epitope targets for countermeasure design. Middle East respiratory syndrome (MERS)-related coronaviruses (CoVs) remain a pressing concern for global health preparedness. Using metagenomic sequence data and CoV reverse genetics, we recovered a full-length wild-type MERS-like BtCoV/li/GD/2014-422 (BtCoV-422) recombinant virus, as well as two reporter viruses, and evaluated their human emergence potential and susceptibility to currently available countermeasures. Similar to MERS-CoV, BtCoV-422 efficiently used human and other mammalian dipeptidyl peptidase protein 4 (DPP4) proteins as entry receptors and an alternative DPP4-independent infection route in the presence of exogenous proteases. BtCoV-422 also replicated efficiently in primary human airway, lung endothelial, and fibroblast cells, although less efficiently than MERS-CoV. However, BtCoV-422 shows minor signs of infection in 288/330 human DPP4 transgenic mice. Several broad CoV antivirals, including nucleoside analogs and 3C-like/Mpro protease inhibitors, demonstrated potent inhibition against BtCoV-422 in vitro. Serum from mice that received a MERS-CoV mRNA vaccine showed reduced neutralizing activity against BtCoV-422. Although most MERS-CoV-neutralizing monoclonal antibodies (mAbs) had limited activity, one anti-MERS receptor binding domain mAb, JC57-11, neutralized BtCoV-422 potently. A cryo-electron microscopy structure of JC57-11 in complex with BtCoV-422 spike protein revealed the mechanism of cross-neutralization involving occlusion of the DPP4 binding site, highlighting its potential as a broadly neutralizing mAb for group 2c CoVs that use DPP4 as a receptor. These studies provide critical insights into MERS-like CoVs and provide candidates for countermeasure development.


Subject(s)
Chiroptera , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Humans , Animals , Mice , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Cryoelectron Microscopy , Antibodies, Monoclonal/metabolism
18.
Nat Commun ; 14(1): 1371, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914616

ABSTRACT

The four dengue virus serotypes co-circulate globally and cause significant human disease. Dengue vaccine development is challenging because some virus-specific antibodies are protective, while others are implicated in enhanced viral replication and more severe disease. Current dengue tetravalent vaccines contain four live attenuated serotypes formulated to theoretically induce balanced protective immunity. Among the number of vaccine candidates in clinical trials, only Dengvaxia is licensed for use in DENV seropositive individuals. To simplify live-virus vaccine design, we identify co-evolutionary constraints inherent in flavivirus virion assembly and design chimeric viruses to replace domain II (EDII) of the DENV2 envelope (E) glycoprotein with EDII from DENV4. The chimeric DENV2/4EDII virus replicates efficiently in vitro and in vivo. In male macaques, a single inoculation of DENV2/4EDII induces type-specific neutralizing antibodies to both DENV2 and DENV4, thereby providing a strategy to simplify DENV vaccine design by utilizing a single bivalent E glycoprotein immunogen for two DENV serotypes.


Subject(s)
Dengue Virus , Dengue , Male , Humans , Dengue Virus/genetics , Antibodies, Viral , Serogroup , Viral Envelope Proteins/genetics , Antibodies, Neutralizing
19.
Cell Rep ; 42(10): 113248, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858337

ABSTRACT

The emergence of three highly pathogenic human coronaviruses-severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle Eastern respiratory syndrome (MERS)-CoV in 2012, and SARS-CoV-2 in 2019-underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines protect against severe COVID-19, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor-binding domains (RBDs), which elicited live-virus neutralizing antibody responses. The trivalent RBD scNP elicited serum neutralizing antibodies against bat zoonotic Wuhan Institute of Virology-1 (WIV-1)-CoV, SARS-CoV, SARS-CoV-2 BA.1, SARS-CoV-2 XBB.1.5, and MERS-CoV live viruses. The monovalent SARS-CoV-2 RBD scNP vaccine only protected against Sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both Merbecovirus and Sarbecovirus challenge in highly pathogenic and lethal mouse models. This study demonstrates proof of concept for a single pan-sarbecovirus/pan-merbecovirus vaccine that protects against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Mice , COVID-19 Vaccines , Antibodies, Viral , Antibodies, Neutralizing , SARS-CoV-2
20.
Viruses ; 15(2)2023 02 14.
Article in English | MEDLINE | ID: mdl-36851745

ABSTRACT

New variants of SARS-CoV-2 continue to emerge and evade immunity. We isolated SARS-CoV-2 temporally across the pandemic starting with the first emergence of the virus in the western hemisphere and evaluated the immune escape among variants. A clinic-to-lab viral isolation and characterization pipeline was established to rapidly isolate, sequence, and characterize SARS-CoV-2 variants. A virus neutralization assay was applied to quantitate humoral immunity from infection and/or vaccination. A panel of novel monoclonal antibodies was evaluated for antiviral efficacy. We directly compared all variants, showing that convalescence greater than 5 months post-symptom onset from ancestral virus provides little protection against SARS-CoV-2 variants. Vaccination enhances immunity against viral variants, except for Omicron BA.1, while a three-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a two-dose. A novel Mab neutralizes Omicron BA.1 and BA.2 variants better than the clinically approved Mabs, although neither can neutralize Omicron BA.4 or BA.5. Thus, the need remains for continued vaccination-booster efforts, with innovation for vaccine and Mab improvement for broadly neutralizing activity. The usefulness of specific Mab applications links with the window of clinical opportunity when a cognate viral variant is present in the infected population.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Monoclonal , Antiviral Agents
SELECTION OF CITATIONS
SEARCH DETAIL