Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Biomaterials ; 306: 122477, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309054

ABSTRACT

Camptothesome is a sphingomyelin-conjugated camptothecin (SM-CSS-CPT) nanovesicle that fortified the therapeutic delivery of CPT in diverse cancer types. To mitigate the Camptothesome-induced IDO1 negative feedback mechanism, we had co-encapsulated, indoximod (IND, IDO1 inhibitor) into Camptothesome using doxorubicin-derived IND (DOX-IND). To maximize the therapeutic potential of DOX-IND/Camptothesome, herein, we first dissected the synergistic drug ratio (DOX-IND/SM-CSS-CPT) via systematical in vitro screening. DOX-IND/Camptothesome with optimal drug ratio synchronized in vivo drug delivery with significantly higher tumor uptake compared to free drugs. This optimum DOX-IND/Camptothesome outperformed the combination of Camptothesome, Doxil and IND or other IDO1 inhibitors (BMS-986205 or epacadostat) in treating mice bearing late-stage MC38 tumors, and combination with immune checkpoint blockade (ICB) enabled it to eradicate 60 % of large tumors. Further, this optimized co-delivery Camptothesome beat Folfox and Folfiri, two first-line combination chemotherapies for colorectal cancer in antitumor efficacy and exhibited no side effects as compared to the severe systemic toxicities associated with Folfox and Folfiri. Finally, we demonstrated that the synergistic DOX-IND/Camptothesome was superior to the combined use of Onivyde + Doxil + IND in curbing the advanced orthotopic CT26-Luc tumors and eliminated 40 % tumors with complete metastasis remission when cooperated with ICB, eliciting stronger anti-CRC immune responses and greater reversal of immunosuppression. These results corroborated that with precise optimal synergistic drug ratio, the therapeutic potential of DOX-IND/Camptothesome can be fully unleased, which warrants further clinical investigation to benefit the cancer patients.


Subject(s)
Colorectal Neoplasms , Doxorubicin/analogs & derivatives , Drug Delivery Systems , Humans , Mice , Animals , Drug Delivery Systems/methods , Polyethylene Glycols , Colorectal Neoplasms/drug therapy , Cell Line, Tumor
2.
Eur J Cancer ; 201: 113914, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359495

ABSTRACT

BACKGROUND: CDC37 is a key determinant of client kinase recruitment to the HSP90 chaperoning system. We hypothesized that kinase-specific dependency on CDC37 alters the efficacy of targeted therapies for metastatic colorectal cancer (mCRC). MATERIAL AND METHODS: Two independent mCRC cohorts were analyzed to compare the survival outcomes between CDC37-high and CDC37-low patients (stratified by the median cutoff values): the CALGB/SWOG 80405 trial (226 and 207 patients receiving first-line bevacizumab- and cetuximab-containing chemotherapies, respectively) and Japanese retrospective (50 refractory patients receiving regorafenib) cohorts. A dataset of specimens submitted to a commercial CLIA-certified laboratory was utilized to characterize molecular profiles of CDC37-high (top quartile, N = 5055) and CDC37-low (bottom quartile, N = 5055) CRCs. RESULTS: In the bevacizumab-treated group, CDC37-high patients showed significantly better progression-free survival (PFS) (median 13.3 vs 9.6 months, hazard ratio [HR] 0.59, 95% confidence interval [CI] 0.44-0.79, p < 0.01) than CDC37-low patients. In the cetuximab-treated group, CDC37-high and CDC37-low patients had similar outcomes. In the regorafenib-treated group, CDC37-high patients showed significantly better overall survival (median 11.3 vs 6.0 months, HR 0.24, 95% CI 0.11-0.54, p < 0.01) and PFS (median 3.5 vs 1.9 months, HR 0.51, 95% CI 0.28-0.94, p = 0.03). Comprehensive molecular profiling revealed that CDC37-high CRCs were associated with higher VEGFA, FLT1, and KDR expressions and activated hypoxia signature. CONCLUSIONS: CDC37-high mCRC patients derived more benefit from anti-VEGF therapies, including bevacizumab and regorafenib, but not from cetuximab. Molecular profiles suggested that such tumors were dependent on angiogenesis-relating pathways.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Phenylurea Compounds , Pyridines , Rectal Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols , Bevacizumab/therapeutic use , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cetuximab/therapeutic use , Chaperonins/genetics , Chaperonins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression , Molecular Chaperones , Retrospective Studies
3.
J Control Release ; 349: 929-939, 2022 09.
Article in English | MEDLINE | ID: mdl-35926754

ABSTRACT

Camptothesome is an innovative nanovesicle therapeutic comprising the sphingomyelin-derived camptothecin (CPT) lipid bilayer. In this work, we deciphered that Camptothesome was taken up by colorectal cancer (CRC) cells through primarily the clathrin-mediated endocytotic pathway and displayed the potential of eliciting robust immunogenic cancer cell death (ICD) via upregulating calreticulin, high mobility group box 1 protein (HMGB-1), and adenosine triphosphate (ATP), three hallmarks involved in the induction of ICD. In addition, use of dying MC38 tumor cells treated with Camptothesome as vaccine prevented tumor growth in 60% mice that received subsequent injection of live MC38 cells on the contralateral flank, validating Camptothesome was a legitimate ICD inducer in vivo. Camptothesome markedly reduced the acute bone marrow toxicity and gastrointestinal mucositis associated with free CPT and beat free CPT and Onivyde on anti-CRC efficacy and immune responses in a partially interferon gamma (IFN-γ)-dependent manner. Furthermore, Camptothesome enhanced the efficacy of immune checkpoint inhibitors to shrink late-stage orthotopic MC38 CRC tumors with diminished tumor metastasis and markedly prolonged mice survival.


Subject(s)
Colorectal Neoplasms , Immunogenic Cell Death , Adenosine Triphosphate , Animals , Calreticulin/metabolism , Calreticulin/therapeutic use , Cell Line, Tumor , Clathrin/metabolism , Colorectal Neoplasms/pathology , HMGB Proteins/metabolism , Immune Checkpoint Inhibitors , Interferon-gamma/metabolism , Irinotecan , Lipid Bilayers , Mice , Sphingomyelins
4.
Nat Nanotechnol ; 16(10): 1130-1140, 2021 10.
Article in English | MEDLINE | ID: mdl-34385682

ABSTRACT

Despite the enormous therapeutic potential of immune checkpoint blockade (ICB), it benefits only a small subset of patients. Some chemotherapeutics can switch 'immune-cold' tumours to 'immune-hot' to synergize with ICB. However, safe and universal therapeutic platforms implementing such immune effects remain scarce. We demonstrate that sphingomyelin-derived camptothecin nanovesicles (camptothesomes) elicit potent granzyme-B- and perforin-mediated cytotoxic T lymphocyte (CTL) responses, potentiating PD-L1/PD-1 co-blockade to eradicate subcutaneous MC38 adenocarcinoma with developed memory immunity. In addition, camptothesomes improve the pharmacokinetics and lactone stability of camptothecin, avoid systemic toxicities, penetrate deeply into the tumour and outperform the antitumour efficacy of Onivyde. Camptothesome co-load the indoleamine 2,3-dioxygenase inhibitor indoximod into its interior using the lipid-bilayer-crossing capability of the immunogenic cell death inducer doxorubicin, eliminating clinically relevant advanced orthotopic CT26-Luc tumours and late-stage B16-F10-Luc2 melanoma, and achieving complete metastasis remission when combined with ICB and folate targeting. The sphingomyelin-derived nanotherapeutic platform and doxorubicin-enabled transmembrane transporting technology are generalizable to various therapeutics, paving the way for transformation of the cancer immunochemotherapy paradigm.


Subject(s)
Camptothecin/pharmacology , Drug Therapy , Immunotherapy , Nanoparticles/chemistry , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , Camptothecin/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Disease Models, Animal , Granzymes/chemistry , Granzymes/pharmacology , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/pharmacology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Perforin/chemistry , Perforin/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Sphingomyelins/chemistry , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL