ABSTRACT
Test compounds used on in vitro model systems are conventionally delivered to cell culture wells as fixed concentration bolus doses; however, this poorly replicates the pharmacokinetic (PK) concentration changes seen in vivo and reduces the predictive value of the data. Herein, proof-of-concept experiments were performed using a novel microfluidic device, the Microformulator, which allows in vivo like PK profiles to be applied to cells cultured in microtiter plates and facilitates the investigation of the impact of PK on biological responses. We demonstrate the utility of the device in its ability to reproduce in vivo PK profiles of different oncology compounds over multiweek experiments, both as monotherapy and drug combinations, comparing the effects on tumour cell efficacy in vitro with efficacy seen in in vivo xenograft models. In the first example, an ERK1/2 inhibitor was tested using fixed bolus dosing and Microformulator-replicated PK profiles, in 2 cell lines with different in vivo sensitivities. The Microformulator-replicated PK profiles were able to discriminate between cell line sensitivities, unlike the conventional fixed bolus dosing. In a second study, murine in vivo PK profiles of multiple Poly(ADP-Ribose) Polymerase 1/2 (PARP) and DNA-dependent protein kinase (DNA-PK) inhibitor combinations were replicated in a FaDu cell line resulting in a reduction in cell growth in vitro with similar rank ordering to the in vivo xenograft model. Additional PK/efficacy insight into theoretical changes to drug exposure profiles was gained by using the Microformulator to expose FaDu cells to the DNA-PK inhibitor for different target coverage levels and periods of time. We demonstrate that the Microformulator enables incorporating PK exposures into cellular assays to improve in vitro-in vivo translation understanding for early therapeutic insight.
Subject(s)
Cell Culture Techniques , Microfluidics , Animals , DNA , Humans , Mice , Models, BiologicalABSTRACT
Fragment-based drug design (FBDD) relies on direct elaboration of fragment hits and typically requires high resolution structural information to guide optimization. In fragment-assisted drug discovery (FADD), fragments provide information to guide selection and design but do not serve as starting points for elaboration. We describe FADD and high-throughput screening (HTS) campaign strategies conducted in parallel against PDE10A where fragment hit co-crystallography was not available. The fragment screen led to prioritized fragment hits (IC50's â¼500µM), which were used to generate a hypothetical core scaffold. Application of this scaffold as a filter to HTS output afforded a 4µM hit, which, after preparation of a small number of analogs, was elaborated into a 16nM lead. This approach highlights the strength of FADD, as fragment methods were applied despite the absence of co-crystallographical information to efficiently identify a lead compound for further optimization.
Subject(s)
Drug Evaluation, Preclinical , High-Throughput Screening Assays , Phosphodiesterase Inhibitors/analysis , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Structure-Activity RelationshipABSTRACT
Fatty acid amide hydrolase (FAAH) has emerged as a potential target for developing analgesic, anxiolytic, antidepressant, sleep-enhancing, and anti-inflammatory drugs, and tremendous efforts have been made to discover potent and selective inhibitors of FAAH. Most known potent FAAH inhibitors described to date employ covalent mechanisms, inhibiting the enzyme either reversibly or irreversibly. Recently, a benzothiazole-based analogue (1) has been described possessing a high potency against FAAH yet lacking a structural feature previously known to interact with FAAH covalently. However, covalent inhibition of FAAH by 1 has not been fully ruled out, and the issue of reversibility has not been addressed. Confirming previous reports, 1 inhibited recombinant human FAAH (rhFAAH) with high potency with IC(50) ~2 nM. It displayed an apparently noncompetitive and irreversible inhibition, titrating rhFAAH stoichiometrically within normal assay times. The inhibition appeared to be time dependent, but the time dependence only improved potency by a small degree (from ~8 to ~2 nM). However, mass spectrometric analyses of the reaction mixture failed to reveal any cleavage product or covalent adduct and showed full recovery of the parent compound, ruling out covalent, irreversible inhibition. Dialysis revealed recovery of enzyme activity from enzyme-inhibitor complex over a prolonged time (>10 h), demonstrating that 1 is indeed a reversible, albeit slowly dissociating inhibitor of FAAH. Molecular docking indicated that the sulfonamide group of 1 could form hydrogen bonds with several residues involved in catalysis, thereby mimicking the transition state. The long residence time displayed by 1 does not appear to derive exclusively from great thermodynamic potency and is consistent with an increased kinetic energy barrier that prevents dissociation from happening quickly.
Subject(s)
Amidohydrolases/antagonists & inhibitors , Benzothiazoles/pharmacology , Enzyme Inhibitors/pharmacology , Sulfonamides/chemistry , Animals , Benzothiazoles/chemistry , CHO Cells , Cricetinae , Cricetulus , Enzyme Inhibitors/chemistry , Humans , Kinetics , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Spectrometry, Mass, Electrospray Ionization , ThermodynamicsABSTRACT
Herein we describe the discovery of compounds that are competitive antagonists of the CP101-606 binding site within the NR2B subtype of the NMDA receptor. The compounds identified do not possess phenolic functional groups such as those in ifenprodil and related analogs. Initial identification of hits in this series focused on a basic, secondary amine side chain which led to good potency, but also presented a hERG liability. Further modifications led to examples of non-basic replacements which demonstrated much less liability in this regard. Finally, one compound in the series, 6a, was tested in the mouse forced swim depression assay and found to show activity (s.c. 60 mg/kg).
Subject(s)
Antidepressive Agents/chemical synthesis , Pyrazines/chemical synthesis , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Binding Sites , Binding, Competitive , Dose-Response Relationship, Drug , Inhibitory Concentration 50 , Mice , Molecular Structure , Motor Activity/drug effects , Protein Binding/drug effects , Pyrazines/chemistry , Pyrazines/pharmacologyABSTRACT
Proteolysis-targeting chimeras are a new drug modality that exploits the endogenous ubiquitin proteasome system to degrade a protein of interest for therapeutic benefit. As the first-generation of proteolysis-targeting chimeras have now entered clinical trials for oncology indications, it is timely to consider the theoretical safety risks inherent with this modality which include off-target degradation, intracellular accumulation of natural substrates for the E3 ligases used in the ubiquitin proteasome system, proteasome saturation by ubiquitinated proteins, and liabilities associated with the "hook effect" of proteolysis-targeting chimeras This review describes in vitro and non-clinical in vivo data that provide mechanistic insight of these safety risks and approaches being used to mitigate these risks in the next generation of proteolysis-targeting chimera molecules to extend therapeutic applications beyond life-threatening diseases.
Subject(s)
Chimera , Pharmaceutical Preparations , Chimera/metabolism , Proteasome Endopeptidase Complex , Proteolysis , Ubiquitin-Protein Ligases/metabolismABSTRACT
Drug-induced gastrointestinal toxicity (GIT) is a common treatment-emergent adverse event that can negatively impact dosing, thereby limiting efficacy and treatment options for patients. An in vitro assay of GIT is needed to address patient variability, mimic the microphysiology of the gut, and accurately predict drug-induced GIT. Primary human ileal organoids (termed 'enteroids') have proven useful for stimulating intestinal stem cell proliferation and differentiation to multiple cell types present in the gut epithelium. Enteroids have enabled characterization of gut biology and the signaling involved in the pathogenesis of disease. Here, enteroids were differentiated from four healthy human donors and assessed for culture duration-dependent differentiation status by immunostaining for gut epithelial markers lysozyme, chromogranin A, mucin, and sucrase isomaltase. Differentiated enteroids were evaluated with a reference set of 31 drugs exhibiting varying degrees of clinical incidence of diarrhea, a common manifestation of GIT that can be caused by drug-induced thinning of the gut epithelium. An assay examining enteroid viability in response to drug treatment demonstrated 90% accuracy for recapitulating the incidence of drug-induced diarrhea. The human enteroid viability assay developed here presents a promising in vitro model for evaluating drug-induced diarrhea.
Subject(s)
Diarrhea/chemically induced , Ileum , Models, Biological , Organoids , Drug-Related Side Effects and Adverse Reactions , Humans , Pharmaceutical PreparationsABSTRACT
Drug-induced gastrointestinal toxicities (DI-GITs) are among the most common adverse events in clinical trials. High prevalence of DI-GIT has persisted among new drugs due in part to the lack of robust experimental tools to allow early detection or to guide optimization of safer molecules. Developing in vitro assays for the leading GI toxicities (nausea, vomiting, diarrhoea, constipation, and abdominal pain) will likely involve recapitulating complex physiological properties that require contributions from diverse cell/tissue types including epithelial, immune, microbiome, nerve, and muscle. While this stipulation may be beyond traditional 2D monocultures of intestinal cell lines, emerging 3D GI microtissues capture interactions between diverse cell and tissue types. These interactions give rise to microphysiologies fundamental to gut biology. For GI microtissues, organoid technology was the breakthrough that introduced intestinal stem cells with the capability of differentiating into each of the epithelial cell types and that self-organize into a multi-cellular tissue proxy with villus- and crypt-like domains. Recently, GI microtissues generated using miniaturized devices with microfluidic flow and cyclic peristaltic strain were shown to induce Caco2 cells to spontaneously differentiate into each of the principle intestinal epithelial cell types. Second generation models comprised of epithelial organoids or microtissues co-cultured with non-epithelial cell types can successfully reproduce cross-'tissue' functional interactions broadening the potential of these models to accurately study drug-induced toxicities. A new paradigm in which in vitro assays become an early part of GI safety assessment could be realized if microphysiological systems (MPS) are developed in alignment with drug-discovery needs. Herein, approaches for assessing GI toxicity of pharmaceuticals are reviewed and gaps are compared with capabilities of emerging GI microtissues (e.g., organoids, organ-on-a-chip, transwell systems) in order to provide perspective on the assay features needed for MPS models to be adopted for DI-GIT assessment.
Subject(s)
Microfluidics , Organoids , Caco-2 Cells , Humans , Intestinal Mucosa , IntestinesABSTRACT
G-protein-coupled receptors can couple to different signal transduction pathways in different cell types (termed cell-specific signaling) and can activate different signaling pathways depending on the receptor conformation(s) stabilized by the activating ligand (functional selectivity). These concepts offer potential for developing pathway-specific drugs that increase efficacy and reduce side effects. Despite significant interest, functional selectivity has been difficult to exploit in drug discovery, in part due to the burden of multiple assays. Cellular impedance assays use an emerging technology that can qualitatively distinguish Gs, Gi/o, and Gq signaling in a single assay and is thereby suited for studying these pharmacological concepts. Cellular impedance confirmed cell-specific Gs and Gq coupling for the melanocortin-4 receptor and dual Gi and Gs signaling with the cannabinoid-1 (CB1) receptor. The balance of Gi versus Gs signaling depended on the cell line. In CB1-HEKs, Giand Gs-like responses combined to yield a novel impedance profile demonstrating the dynamic nature of these traces. Cellspecific signaling was observed with endogenous D1 receptor in U-2 cells and SK-N-MC cells, yet the pharmacological profile of partial and full agonists was similar in both cell lines. We conclude that the dynamic impedance profile encodes valuable relative signaling information and is sufficiently robust to help evaluate cell-specific signaling and functional selectivity.
Subject(s)
Biological Assay/methods , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , CHO Cells , Cell Culture Techniques , Cell Line, Tumor , Cells, Cultured , Cricetinae , Cricetulus , Cytochalasin D/pharmacology , Dopamine Agonists/pharmacology , Dose-Response Relationship, Drug , Electric Impedance , GTP-Binding Protein alpha Subunits, Gi-Go/drug effects , GTP-Binding Protein alpha Subunits, Gq-G11/drug effects , GTP-Binding Protein alpha Subunits, Gs/drug effects , Humans , Inhibitory Concentration 50 , Kidney/cytology , Neuroectodermal Tumors, Primitive, Peripheral/metabolism , Neuroectodermal Tumors, Primitive, Peripheral/pathology , Osteosarcoma/metabolism , Osteosarcoma/pathology , Pertussis Toxin/pharmacology , Receptor, Muscarinic M1/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D5/metabolism , Sensitivity and Specificity , Signal Transduction/drug effects , Signal Transduction/physiology , alpha-MSH/agonists , alpha-MSH/analogs & derivativesABSTRACT
Drug-induced gastrointestinal toxicities (GITs) rank among the most common clinical side effects. Preclinical efforts to reduce incidence are limited by inadequate predictivity of in vitro assays. Recent breakthroughs in in vitro culture methods support intestinal stem cell maintenance and continual differentiation into the epithelial cell types resident in the intestine. These diverse cells self-assemble into microtissues with in vivo-like architecture. Here, we evaluate human GI microtissues grown in transwell plates that allow apical and/or basolateral drug treatment and 96-well throughput. Evaluation of assay utility focused on predictivity for diarrhea because this adverse effect correlates with intestinal barrier dysfunction which can be measured in GI microtissues using transepithelial electrical resistance (TEER). A validation set of widely prescribed drugs was assembled and tested for effects on TEER. When the resulting TEER inhibition potencies were adjusted for clinical exposure, a threshold was identified that distinguished drugs that induced clinical diarrhea from those that lack this liability. Microtissue TEER assay predictivity was further challenged with a smaller set of drugs whose clinical development was limited by diarrhea that was unexpected based on 1-month animal studies. Microtissue TEER accurately predicted diarrhea for each of these drugs. The label-free nature of TEER enabled repeated quantitation with sufficient precision to develop a mathematical model describing the temporal dynamics of barrier damage and recovery. This human 3D GI microtissue is the first in vitro assay with validated predictivity for diarrhea-inducing drugs. It should provide a platform for lead optimization and offers potential for dose schedule exploration.
Subject(s)
Diarrhea/chemically induced , Drug Evaluation/methods , Drug-Related Side Effects and Adverse Reactions , Epithelial Cells/physiology , Epithelial Cells/ultrastructure , Caco-2 Cells , Cell Differentiation , Electric Impedance , Humans , Pharmaceutical Preparations , Primary Cell CultureABSTRACT
BACE1 is responsible for the first step in APP proteolysis, leading to toxic Aß production, and has been indicated to play a key role in the pathogenesis of Alzheimer's disease. The related isoform BACE2 is thought to be involved in processing of the pigment cell-specific melanocyte protein. To avoid potential effects on pigmentation, we investigated the feasibility for developing isoform-selective BACE1 inhibitors. Cocrystal structures of 47 compounds were analyzed and clustered according to their selectivity profiles. Selective BACE1 inhibitors were found to exhibit two distinct conformational features proximal to the flap and the S3 subpocket. Several new molecules were designed and tested to make use of this observation. The combination of a pyrimidinyl C-ring and a methylcyclohexyl element resulted in lead molecule 28, which exhibited â¼50-fold selectivity. Compared to a nonselective BACE1/2 inhibitor, 28 showed significantly less inhibition of PMEL processing in human melanocytes, indicating good functional selectivity of this inhibitor class.
Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/chemistry , Brain/metabolism , Catalytic Domain , Dogs , Female , Humans , Madin Darby Canine Kidney Cells , Male , Mice, Inbred C57BL , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Peptide Fragments/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Rats , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship , gp100 Melanoma Antigen/metabolismABSTRACT
Cellular dielectric spectroscopy (CDS) is an emerging technology capable of detecting a range of whole-cell responses in a label-free manner. A new CDS-based instrument, CellKey, has been developed that is optimized for G-protein coupled receptor (GPCR) detection and has automated liquid handling in microplate format, thereby making CDS accessible to lead generation/optimization drug discovery. In addition to having sufficient throughput, new assay technologies must pass rigorous standards for assay development, signal window, dynamic range, and reproducibility to effectively support drug discovery SAR studies. Here, the authors evaluated CellKey with 3 different G(i)-coupled GPCRs for suitability in supporting SAR studies. Optimized assay conditions compatible with the precision, reproducibility, and throughput required for routine screening were quickly achieved for each target. Across a 1000-fold range in compound potencies, CellKey results correlated with agonist and antagonist data obtained using classical methods ([(35)S]GTPgammaS binding and cAMP production). For partial agonists, relative efficacy measurements also correlated with GTPgammaS data. CellKey detection of positive allosteric modulators appeared superior to GTPgammaS methodology. Agonist and antagonist activity could be accurately quantified under conditions of low receptor expression. CellKey is a new technology platform that uses label-free detection in a homogeneous assay that is unaffected by color quenching and is easily integrated into existing microtiter-based compound testing and data analysis procedures for drug discovery.
Subject(s)
Drug Evaluation, Preclinical/methods , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Receptors, G-Protein-Coupled/metabolism , Spectrum Analysis/methods , Allosteric Regulation , Animals , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Receptor, Muscarinic M4/metabolism , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Reproducibility of Results , Structure-Activity RelationshipABSTRACT
Many drugs designed to inhibit kinases have their clinical utility limited by cardiotoxicity-related label warnings or prescribing restrictions. While this liability is widely recognized, designing safer kinase inhibitors (KI) requires knowledge of the causative kinase(s). Efforts to unravel the kinases have encountered pharmacology with nearly prohibitive complexity. At therapeutically relevant concentrations, KIs show promiscuity distributed across the kinome. Here, to overcome this complexity, 65 KIs with known kinome-scale polypharmacology profiles were assessed for effects on cardiomyocyte (CM) beating. Changes in human iPSC-CM beat rate and amplitude were measured using label-free cellular impedance. Correlations between beat effects and kinase inhibition profiles were mined by computation analysis (Matthews Correlation Coefficient) to identify associated kinases. Thirty kinases met criteria of having (1) pharmacological inhibition correlated with CM beat changes, (2) expression in both human-induced pluripotent stem cell-derived cardiomyocytes and adult heart tissue, and (3) effects on CM beating following single gene knockdown. A subset of these 30 kinases were selected for mechanistic follow up. Examples of kinases regulating processes spanning the excitation-contraction cascade were identified, including calcium flux (RPS6KA3, IKBKE) and action potential duration (MAP4K2). Finally, a simple model was created to predict functional cardiotoxicity whereby inactivity at three sentinel kinases (RPS6KB1, FAK, STK35) showed exceptional accuracy in vitro and translated to clinical KI safety data. For drug discovery, identifying causative kinases and introducing a predictive model should transform the ability to design safer KI medicines. For cardiovascular biology, discovering kinases previously unrecognized as influencing cardiovascular biology should stimulate investigation of underappreciated signaling pathways.
Subject(s)
Heart/drug effects , Protein Kinase Inhibitors/toxicity , Calcium/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/enzymology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Protein Kinases/metabolism , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
Estrogen receptor (ER)-mediated gene transcription occurs via the formation of a multimeric complex including ligand-activated receptors and nuclear coactivators. We have developed a homogeneous in vitro functional assay to help study the ligand-dependent interaction of ERs with various nuclear coactivators. The assay consists of FLAG-tagged ERalpha or ERbeta ligand binding domain (LBD), a biotinylated coactivator peptide, europium-labeled anti-FLAG antibody, and streptavidin-conjugated allophycocyanin. Upon agonist binding, the biotinylated coactivator peptide is recruited to FLAG-tagged ER LBD to form a complex and thus allow fluorescence resonance energy transfer (FRET) to occur between europium and allophycocyanin. Compounds with estrogen antagonism block the agonist-mediated recruitment of a coactivator and prevent FRET. The assay was used to evaluate the preference of ERs for various coactivators and ligands. Both ERalpha and ERbeta exhibited strong preferences for coactivator peptides corresponding to steroid receptor coactivator-1 and PPARgamma coactivor-1 vs. peroxisome proliferator-activated receptor-interacting protein and cAMP response element binding protein-binding protein. 17beta-Estradiol acted as a nonselective agonist for ERalpha and ERbeta. Genistein showed full agonism for ERalpha and only partial agonism for ERbeta, but with higher potency for ERbeta than ERalpha. Both raloxifene and tamoxifen behaved as full antagonists in this functional assay. The results obtained using compounds with a wide range of potency correlated well with those from a cell-based reporter gene assay. Therefore, this simple in vitro functional assay is predictive of ligand-dependent transactivation function of the receptor and, as such, is useful in nuclear receptor applications including mechanistic studies.
Subject(s)
Receptors, Estrogen/metabolism , Amino Acid Sequence , Cyclic AMP Response Element-Binding Protein/metabolism , Estradiol/metabolism , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha , Estrogen Receptor beta , Europium/metabolism , Fluorescence Resonance Energy Transfer/methods , Histone Acetyltransferases , Humans , Ligands , Molecular Sequence Data , Nuclear Receptor Coactivator 1 , Oligopeptides , Peptides/metabolism , Protein Binding , Raloxifene Hydrochloride/pharmacology , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Estrogen/agonists , Tamoxifen/pharmacology , Transcription Factors/metabolism , Transcriptional Activation/physiologyABSTRACT
Cardiovascular (CV) toxicity is a leading cause of drug attrition and withdrawal. Introducing in vitro assays with higher throughput should permit earlier CV hazard identification and enable medicinal chemists to design-out liabilities. Heretofore, development of in vitro CV assays has been limited by the challenge of replicating integrated cardiovascular physiology while achieving the throughput and consistency required for screening. These challenges appear to be met with a combination of human stem cell-derived cardiomyocytes (CM) which beat spontaneously and monitoring the response with technology that can assess drug-induced changes in voltage dependent contraction such as cellular impedance which has been validated with excellent predictivity for drug-induced arrhythmia and contractility. Here, we review advances in cardiomyocyte impedance with emphasis on stem cell-derived cardiomyocyte models for toxicity screening. Key perspectives include: the electrical principles of impedance technology, impedance detection of cardiomyocyte beating, beat parameter selection/analysis, validation in toxicity and drug discovery, and future directions. As a conclusion, an in vitro screening cascade is proffered using the downstream, inclusive detection of CM impedance assays as a primary screen followed by complementary CM assays chosen to enable mechanism-appropriate follow-up. The combined approach will enhance testing for CV liabilities prior to traditional in vivo models.
Subject(s)
Cardiotoxins/toxicity , Myocytes, Cardiac/drug effects , Stem Cells/drug effects , Animals , Cardiotoxicity/diagnosis , Cardiotoxicity/pathology , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Electric Impedance , Humans , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , Stem Cells/pathology , Stem Cells/physiologyABSTRACT
Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class.
ABSTRACT
Withdrawal of NGF (NGF-W) in PC12 cells leads to caspase and GSK3beta activation which results in cell death. Our recent findings suggest that inhibition of GSK3beta promotes PC12 cell survival after NGF-W. To determine whether these pathways interact from a signalling perspective, we compared the effects of BAF (a general caspase inhibitor), Li+ (a GSK3beta inhibitor) and insulin on NGF-W induced PC12 cell death. Maximal increase in DNA fragmentation was observed 3 h after NGF-W and was inhibited by BAF (7.5 microM), Li+ (IC(50) = 2 mM) and insulin (IC(50) = 100 nM). BAF inhibited caspase-3 activity and delayed cell death up to 6 h after NGF-W indicating that caspase inhibition is sufficient to prevent apoptosis. BAF had no major effect on GSK3betaactive site phosphorylation or activity suggesting the caspase pathway does not regulate GSK3beta activity. Conversely, Li+ inhibited caspase activity by only 20% but promoted cell survival for 24 h after NGF-W. Overexpression of dominant negative mutants of GSK3beta also inhibited apoptosis, but had only a minor effect on caspase activity after NGF-W. Taken together, these results suggest that GSK3beta is upstream of caspase signalling, and exerts a small effect on the caspase pathway.
Subject(s)
Caspases/physiology , Cell Death/physiology , Glycogen Synthase Kinase 3/physiology , Nerve Growth Factor/physiology , Signal Transduction/physiology , Tumor Cells, Cultured/physiology , Animals , Apoptosis/physiology , Glycogen Synthase Kinase 3 beta , PC12 Cells , RatsABSTRACT
Cardiovascular toxicity, a prominent reason for late-stage failures in drug development, has resulted in a demand for in vitro assays that can predict this liability in early drug discovery. Current in vitro cardiovascular safety testing primarily focuses on ion channel modulation and low throughput cardiomyocyte (CM) contractility measurements. We evaluated both human induced pluripotent stem cell-derived CMs (hiPSC-CMs) and rat neonatal CMs (rat CMs) on the xCELLigence Cardio system which uses impedance technology to quantify CM beating properties in a 96-well format. Forty-nine compounds were tested in concentration-response mode to determine potency for modulation of CM beating, a surrogate biomarker for contractility. These compounds had previously been tested in vivo and in a low throughput in vitro optical-based contractility assay that measures sarcomere shortening in electrically paced dog CMs. In comparison with in vivo contractility effects, hiPSC-CM impedance had assay sensitivity, specificity, and accuracy values of 90%, 74%, and 82%, respectively. These values compared favorably to values reported for the dog CM optical assay (83%, 84%, and 82%) and were slightly better than impedance using rat CMs (77%, 74%, and 74%). The potency values from the hiPSC-CM and rat CM assays spanned four orders of magnitude and correlated with values from the dog CM optical assay (r(2 )= 0.76 and 0.70, respectively). The Cardio system assay has >5× higher throughput than the optical assay. Thus, hiPSC-CM impedance testing can help detect the human cardiotoxic potential of novel therapeutics early in drug discovery, and if a hazard is identified, has sufficient throughput to support the design-make-test-analyze cycle to mitigate this liability.
Subject(s)
Drug-Related Side Effects and Adverse Reactions , Induced Pluripotent Stem Cells/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Pharmaceutical Preparations/analysis , Animals , Animals, Newborn , Cardiotoxicity , Dogs , Dose-Response Relationship, Drug , Drug Discovery , Drug-Related Side Effects and Adverse Reactions/pathology , Drug-Related Side Effects and Adverse Reactions/physiopathology , Electric Impedance , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , Predictive Value of Tests , Rats , Sarcomeres/drug effects , Sarcomeres/pathologyABSTRACT
A new series of potent and selective histamine-3 receptor (H3R) antagonists was identified on the basis of an azaspiro[2.5]octane carboxamide scaffold. Many scaffold modifications were largely tolerated, resulting in nanomolar-potent compounds in the H3R functional assay. Exemplar compound 6s demonstrated a selective profile against a panel of 144 secondary pharmacological receptors, with activity at only σ2 (62% at 10 µM). Compound 6s demonstrated free-plasma exposures above the IC50 (â¼50×) with a brain-to-plasma ratio of â¼3 following intravenous dosing in mice. At three doses tested in the mouse novel object recognition model (1, 3, and 10 mg/kg s.c.), 6s demonstrated a statistically significant response compared with the control group. This series represents a new scaffold of H3 receptor antagonists that demonstrates in vivo exposure and efficacy in an animal model of cognition.
Subject(s)
Cognition/drug effects , Cyclopropanes/chemical synthesis , Histamine H3 Antagonists/chemical synthesis , Piperazines/chemical synthesis , Receptors, Histamine H3/metabolism , Spiro Compounds/chemical synthesis , Animals , Azetidines/chemical synthesis , Azetidines/pharmacokinetics , Azetidines/pharmacology , CHO Cells , Cell Membrane Permeability , Cricetinae , Cricetulus , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Dogs , Histamine H3 Antagonists/pharmacokinetics , Histamine H3 Antagonists/pharmacology , Humans , Learning/drug effects , Madin Darby Canine Kidney Cells , Male , Mice , Microsomes, Liver/metabolism , Models, Molecular , Piperazines/pharmacokinetics , Piperazines/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Piperidines/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Histamine H3/genetics , Recognition, Psychology/drug effects , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity RelationshipABSTRACT
Predicting human safety risks of novel xenobiotics remains a major challenge, partly due to the limited availability of human cells to evaluate tissue-specific toxicity. Recent progress in the production of human induced pluripotent stem cells (hiPSCs) may fill this gap. hiPSCs can be continuously expanded in culture in an undifferentiated state and then differentiated to form most cell types. Thus, it is becoming technically feasible to generate large quantities of human cell types and, in combination with relatively new detection methods, to develop higher-throughput in vitro assays that quantify tissue-specific biological properties. Indeed, the first wave of large scale hiSC-differentiated cell types including patient-derived hiPSCS are now commercially available. However, significant improvements in hiPSC production and differentiation processes are required before cell-based toxicity assays that accurately reflect mature tissue phenotypes can be delivered and implemented in a cost-effective manner. In this review, we discuss the promising alignment of hiPSCs and recently emerging technologies to quantify tissue-specific functions. We emphasize liver, cardiovascular, and CNS safety risks and highlight limitations that must be overcome before routine screening for toxicity pathways in hiSC-derived cells can be established.
Subject(s)
Drug Discovery/methods , Induced Pluripotent Stem Cells , Toxicity Tests/methods , Cell Culture Techniques , Central Nervous System/cytology , Central Nervous System/drug effects , Drug Evaluation, Preclinical , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Liver/cytology , Liver/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Regenerative Medicine/trendsABSTRACT
Cardiovascular (CV) toxicity is a leading contributor to drug attrition. Implementing earlier testing has successfully reduced human Ether-à-go-go-Related Gene-related arrhythmias. How- ever, analogous assays targeting functional CV effects remain elusive. Demand to address this gap is particularly acute for kinase inhibitors (KIs) that suffer frequent CV toxicity. The drug class also presents some particularly challenging requirements for assessing functional CV toxicity. Specifically, an assay must sense a downstream response that integrates diverse kinase signaling pathways. In addition, sufficient throughput is essential for handling inherent KI nonselectivity. A new opportunity has emerged with cellular impedance technology, which detects spontaneous beating cardiomyocytes. Impedance assays sense morphology changes downstream of cardiomyocyte contraction. To evaluate cardiomyocyte impedance assays for KI screening, we investigated two distinct KI classes where CV toxicity was discovered late and target risks remain unresolved. Microtubule-associated protein/microtubule affinity regulating kinase (MARK) inhibitors decrease blood pressure in dogs, whereas checkpoint kinase (Chk) inhibitors (AZD7762, SCH900776) exhibit dose-limiting CV toxicities in clinical trials. These in vivo effects manifested in vitro as cardiomyocyte beat cessation. MARK effects were deemed mechanism associated because beat inhibition potencies correlated with kinase inhibition, and gene knockdown and microtubule-targeting agents suppressed beating. MARK inhibitor impedance and kinase potencies aligned with rat blood pressure effects. Chk inhibitor effects were judged off-target because Chk and beat inhibition potencies did not correlate and knockdowns did not alter beating. Taken together, the data demonstrate that cardiomyocyte impedance assays can address three unmet needs-detecting KI functional cardiotoxicity in vitro, determining mechanism of action, and supporting safety structure-activity relationships.