Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31051106

ABSTRACT

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


Subject(s)
GTP Phosphohydrolases/metabolism , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylserines/metabolism , Animals , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammation/metabolism , Liver/pathology , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Primary Cell Culture , Protein Transport/physiology , Signal Transduction , Triglycerides/metabolism
2.
Cell ; 155(1): 172-87, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24074867

ABSTRACT

Mitofusin 2 (MFN2) plays critical roles in both mitochondrial fusion and the establishment of mitochondria-endoplasmic reticulum (ER) interactions. Hypothalamic ER stress has emerged as a causative factor for the development of leptin resistance, but the underlying mechanisms are largely unknown. Here, we show that mitochondria-ER contacts in anorexigenic pro-opiomelanocortin (POMC) neurons in the hypothalamus are decreased in diet-induced obesity. POMC-specific ablation of Mfn2 resulted in loss of mitochondria-ER contacts, defective POMC processing, ER stress-induced leptin resistance, hyperphagia, reduced energy expenditure, and obesity. Pharmacological relieve of hypothalamic ER stress reversed these metabolic alterations. Our data establish MFN2 in POMC neurons as an essential regulator of systemic energy balance by fine-tuning the mitochondrial-ER axis homeostasis and function. This previously unrecognized role for MFN2 argues for a crucial involvement in mediating ER stress-induced leptin resistance.


Subject(s)
Endoplasmic Reticulum Stress , GTP Phosphohydrolases/metabolism , Neurons/metabolism , Obesity/metabolism , Animals , Hypothalamus/metabolism , Leptin/metabolism , Mice , Mice, Inbred C57BL , Neurons/cytology , Pro-Opiomelanocortin/metabolism
3.
Hepatology ; 77(4): 1303-1318, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35788956

ABSTRACT

BACKGROUND AND AIM: Injury to hepatocyte mitochondria is common in metabolic dysfunction-associated fatty liver disease. Here, we investigated whether changes in the content of essential fatty acid-derived lipid autacoids affect hepatocyte mitochondrial bioenergetics and metabolic efficiency. APPROACH AND RESULTS: The study was performed in transgenic mice for the fat-1 gene, which allows the endogenous replacement of the membrane omega-6-polyunsaturated fatty acid (PUFA) composition by omega-3-PUFA. Transmission electron microscopy revealed that hepatocyte mitochondria of fat-1 mice had more abundant intact cristae and higher mitochondrial aspect ratio. Fat-1 mice had increased expression of oxidative phosphorylation complexes I and II and translocases of both inner (translocase of inner mitochondrial membrane 44) and outer (translocase of the outer membrane 20) mitochondrial membranes. Fat-1 mice also showed increased mitofusin-2 and reduced dynamin-like protein 1 phosphorylation, which mediate mitochondrial fusion and fission, respectively. Mitochondria of fat-1 mice exhibited enhanced oxygen consumption rate, fatty acid ß-oxidation, and energy substrate utilization as determined by high-resolution respirometry, [1- 14 C]-oleate oxidation and nicotinamide adenine dinucleotide hydride/dihydroflavine-adenine dinucleotide production, respectively. Untargeted lipidomics identified a rich hepatic omega-3-PUFA composition and a specific docosahexaenoic acid (DHA)-enriched lipid fingerprint in fat-1 mice. Targeted lipidomics uncovered a higher content of DHA-derived lipid autacoids, namely resolvin D1 and maresin 1, which rescued hepatocytes from TNFα-induced mitochondrial dysfunction, and unblocked the tricarboxylic acid cycle flux and metabolic utilization of long-chain acyl-carnitines, amino acids, and carbohydrates. Importantly, fat-1 mice were protected against mitochondrial injury induced by obesogenic and fibrogenic insults. CONCLUSION: Our data uncover the importance of a lipid membrane composition rich in DHA and its lipid autacoid derivatives to have optimal hepatic mitochondrial and metabolic efficiency.


Subject(s)
Fatty Acids, Omega-3 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Conservation of Energy Resources , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Mitochondria/metabolism , Fatty Acids, Omega-6/chemistry , Fatty Acids, Omega-6/metabolism , Fatty Acids, Omega-6/pharmacology , Mice, Transgenic , Fatty Acids/metabolism
4.
EMBO J ; 37(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29632021

ABSTRACT

Opa1 participates in inner mitochondrial membrane fusion and cristae morphogenesis. Here, we show that muscle-specific Opa1 ablation causes reduced muscle fiber size, dysfunctional mitochondria, enhanced Fgf21, and muscle inflammation characterized by NF-κB activation, and enhanced expression of pro-inflammatory genes. Chronic sodium salicylate treatment ameliorated muscle alterations and reduced the muscle expression of Fgf21. Muscle inflammation was an early event during the progression of the disease and occurred before macrophage infiltration, indicating that it is a primary response to Opa1 deficiency. Moreover, Opa1 repression in muscle cells also resulted in NF-κB activation and inflammation in the absence of necrosis and/or apoptosis, thereby revealing that the activation is a cell-autonomous process and independent of cell death. The effects of Opa1 deficiency on the expression NF-κB target genes and inflammation were absent upon mitochondrial DNA depletion. Under Opa1 deficiency, blockage or repression of TLR9 prevented NF-κB activation and inflammation. Taken together, our results reveal that Opa1 deficiency in muscle causes initial mitochondrial alterations that lead to TLR9 activation, and inflammation, which contributes to enhanced Fgf21 expression and to growth impairment.


Subject(s)
DNA, Mitochondrial/genetics , GTP Phosphohydrolases/physiology , Inflammation/etiology , Muscle, Skeletal/pathology , Muscular Diseases/etiology , Toll-Like Receptor 9/metabolism , Animals , Apoptosis , Cells, Cultured , Cytokines/metabolism , Female , Inflammation/metabolism , Inflammation/pathology , Male , Mice, Knockout , Muscle, Skeletal/immunology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Necrosis , Regeneration , Toll-Like Receptor 9/genetics
5.
FASEB J ; 34(9): 11816-11837, 2020 09.
Article in English | MEDLINE | ID: mdl-32666604

ABSTRACT

The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased drastically due to the global obesity pandemic but at present there are no approved therapies. Here, we aimed to revert high-fat diet (HFD)-induced obesity and NAFLD in mice by enhancing liver fatty acid oxidation (FAO). Moreover, we searched for potential new lipid biomarkers for monitoring liver steatosis in humans. We used adeno-associated virus (AAV) to deliver a permanently active mutant form of human carnitine palmitoyltransferase 1A (hCPT1AM), the key enzyme in FAO, in the liver of a mouse model of HFD-induced obesity and NAFLD. Expression of hCPT1AM enhanced hepatic FAO and autophagy, reduced liver steatosis, and improved glucose homeostasis. Lipidomic analysis in mice and humans before and after therapeutic interventions, such as hepatic AAV9-hCPT1AM administration and RYGB surgery, respectively, led to the identification of specific triacylglyceride (TAG) specie (C50:1) as a potential biomarker to monitor NAFFLD disease. To sum up, here we show for the first time that liver hCPT1AM gene therapy in a mouse model of established obesity, diabetes, and NAFLD can reduce HFD-induced derangements. Moreover, our study highlights TAG (C50:1) as a potential noninvasive biomarker that might be useful to monitor NAFLD in mice and humans.


Subject(s)
Biomarkers/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Fatty Acids/metabolism , Genetic Therapy/methods , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Animals , Carnitine O-Palmitoyltransferase/genetics , Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Liver/pathology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Obesity/etiology , Obesity/metabolism , Oxidation-Reduction , Triglycerides/metabolism
6.
Mol Cell Proteomics ; 18(2): 231-244, 2019 02.
Article in English | MEDLINE | ID: mdl-30373788

ABSTRACT

Cancer cells are known to reprogram their metabolism to adapt to adverse conditions dictated by tumor growth and microenvironment. A subtype of cancer cells with stem-like properties, known as cancer stem cells (CSC), is thought to be responsible for tumor recurrence. In this study, we demonstrated that CSC and chemoresistant cells derived from triple negative breast cancer cells display an enrichment of up- and downregulated proteins from metabolic pathways that suggests their dependence on mitochondria for survival. Here, we selected antibiotics, in particular - linezolid, inhibiting translation of mitoribosomes and inducing mitochondrial dysfunction. We provided the first in vivo evidence demonstrating that linezolid suppressed tumor growth rate, accompanied by increased autophagy. In addition, our results revealed that bactericidal antibiotics used in combination with autophagy blocker decrease tumor growth. This study puts mitochondria in a spotlight for cancer therapy and places antibiotics as effective agents for eliminating CSC and resistant cells.


Subject(s)
Drug Resistance, Neoplasm , Linezolid/administration & dosage , Metabolic Networks and Pathways , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Linezolid/pharmacology , Metabolic Networks and Pathways/drug effects , Mice , Mitochondria/drug effects , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment/drug effects
7.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884763

ABSTRACT

The adipokine Neuregulin 4 (Nrg4) protects against obesity-induced insulin resistance. Here, we analyze how the downregulation of Nrg4 influences insulin action and the underlying mechanisms in adipocytes. Validated shRNA lentiviral vectors were used to generate scramble (Scr) and Nrg4 knockdown (KD) 3T3-L1 adipocytes. Adipogenesis was unaffected in Nrg4 KD adipocytes, but there was a complete impairment of the insulin-induced 2-deoxyglucose uptake, which was likely the result of reduced insulin receptor and Glut4 protein. Downregulation of Nrg4 enhanced the expression of proinflammatory cytokines. Anti-inflammatory agents recovered the insulin receptor, but not Glut4, content. Proteins enriched in Glut4 storage vesicles such as the insulin-responsive aminopeptidase (IRAP) and Syntaxin-6 as well as TBC1D4, a protein involved in the intracellular retention of Glut4 vesicles, also decreased by Nrg4 KD. Insulin failed to reduce autophagy in Nrg4 KD adipocytes, observed by a minor effect on mTOR phosphorylation, at the time that proteins involved in autophagy such as LC3-II, Rab11, and Clathrin were markedly upregulated. The lysosomal activity inhibitor bafilomycin A1 restored Glut4, IRAP, Syntaxin-6, and TBC1D4 content to those found in control adipocytes. Our study reveals that Nrg4 preserves the insulin responsiveness by preventing inflammation and, in turn, benefits the insulin regulation of autophagy.


Subject(s)
Autophagy/physiology , Glucose Transporter Type 4/metabolism , Insulin Resistance/physiology , Neuregulins/metabolism , Receptor, Insulin/biosynthesis , 3T3 Cells , Adipocytes/metabolism , Animals , Cell Line , Cystinyl Aminopeptidase/biosynthesis , Cytokines/biosynthesis , Deoxyglucose/metabolism , Down-Regulation , GTPase-Activating Proteins/biosynthesis , Inflammation/pathology , Insulin/metabolism , Mice , Neuregulins/biosynthesis , Neuregulins/genetics , Qa-SNARE Proteins/biosynthesis , RNA Interference , RNA, Small Interfering/genetics
8.
EMBO J ; 35(15): 1677-93, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27334614

ABSTRACT

Mitochondrial dysfunction and accumulation of damaged mitochondria are considered major contributors to aging. However, the molecular mechanisms responsible for these mitochondrial alterations remain unknown. Here, we demonstrate that mitofusin 2 (Mfn2) plays a key role in the control of muscle mitochondrial damage. We show that aging is characterized by a progressive reduction in Mfn2 in mouse skeletal muscle and that skeletal muscle Mfn2 ablation in mice generates a gene signature linked to aging. Furthermore, analysis of muscle Mfn2-deficient mice revealed that aging-induced Mfn2 decrease underlies the age-related alterations in metabolic homeostasis and sarcopenia. Mfn2 deficiency reduced autophagy and impaired mitochondrial quality, which contributed to an exacerbated age-related mitochondrial dysfunction. Interestingly, aging-induced Mfn2 deficiency triggers a ROS-dependent adaptive signaling pathway through induction of HIF1α transcription factor and BNIP3. This pathway compensates for the loss of mitochondrial autophagy and minimizes mitochondrial damage. Our findings reveal that Mfn2 repression in muscle during aging is a determinant for the inhibition of mitophagy and accumulation of damaged mitochondria and triggers the induction of a mitochondrial quality control pathway.


Subject(s)
Aging , Autophagy , GTP Phosphohydrolases/metabolism , Mitophagy , Muscle, Skeletal/pathology , Sarcopenia/pathology , Animals , Mice , Mice, Knockout
9.
Int J Mol Sci ; 21(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867213

ABSTRACT

Platelet activation plays a key role in cardiovascular diseases. The generation of mitochondrial reactive oxygen species (ROS) has been described as a critical step required for platelet activation. For this reason, it is necessary to find new molecules with antiplatelet activity and identify their mechanisms of action. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant that reduces mitochondrial overproduction of ROS. In this work, the antiplatelet effect of MitoQ through platelet adhesion and spreading, secretion, and aggregation was evaluated. Thus MitoQ, in a non-toxic effect, decreased platelet adhesion and spreading on collagen surface, and expression of P-selectin and CD63, and inhibited platelet aggregation induced by collagen, convulxin, thrombin receptor activator peptide-6 (TRAP-6), and phorbol 12-myristate 13-acetate (PMA). As an antiplatelet mechanism, we showed that MitoQ produced mitochondrial depolarization and decreased ATP secretion. Additionally, in platelets stimulated with antimycin A and collagen MitoQ significantly decreased ROS production. Our findings showed, for the first time, an antiplatelet effect of MitoQ that is probably associated with its mitochondrial antioxidant effect.


Subject(s)
Antioxidants/pharmacology , Blood Platelets/metabolism , Organophosphorus Compounds/pharmacology , Reactive Oxygen Species/metabolism , Ubiquinone/analogs & derivatives , Adenosine Triphosphate/metabolism , Animals , Blood Platelets/drug effects , Cells, Cultured , Collagen/metabolism , Humans , Mice , Mitochondria/metabolism , Oligopeptides/pharmacology , P-Selectin/metabolism , Phorbol Esters/pharmacology , Platelet Activation/drug effects , Tetraspanin 30/metabolism , Ubiquinone/pharmacology
10.
Int J Mol Sci ; 20(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395819

ABSTRACT

Metabolic adaptation may happen in response to the pressure exerted by the microenvironment and is a key step in survival of metastatic cells. Brain metastasis occurs as a consequence of the systemic dissemination of tumor cells, a fact that correlates with poor prognosis and high morbidity due to the difficulty in identifying biomarkers that allow a more targeted therapy. Previously, we performed transcriptomic analysis of human breast cancer patient samples and evaluated the differential expression of genes in brain metastasis (BrM) compared to lung, bone and liver metastasis. Our network approach identified upregulation of glucose-regulated protein 94 (GRP94) as well as proteins related to synthesis of fatty acids (FA) in BrM. Here we report that BrM cells show an increase in FA content and decreased saturation with regard to parental cells measured by Raman spectroscopy that differentiate BrM from other metastases. Moreover, BrM cells exerted a high ability to oxidize FA and compensate hypoglycemic stress due to an overexpression of proteins involved in FA synthesis and degradation (SREBP-1, LXRα, ACOT7). GRP94 ablation restored glucose dependence, down-regulated ACOT7 and SREBP-1 and decreased tumorigenicity in vivo. In conclusion, GRP94 is required for the metabolic stress survival of BrM cells, and it might act as a modulator of lipid metabolism to favor BrM progression.


Subject(s)
Brain Neoplasms/secondary , Breast Neoplasms/pathology , Fatty Acids/metabolism , HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Fatty Acids/analysis , Female , HSP70 Heat-Shock Proteins/analysis , Humans , Membrane Proteins/analysis , Mice, Nude
11.
EMBO J ; 32(17): 2348-61, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23921556

ABSTRACT

Mitofusin 2 (Mfn2) is a key protein in mitochondrial fusion and it participates in the bridging of mitochondria to the endoplasmic reticulum (ER). Recent data indicate that Mfn2 ablation leads to ER stress. Here we report on the mechanisms by which Mfn2 modulates cellular responses to ER stress. Induction of ER stress in Mfn2-deficient cells caused massive ER expansion and excessive activation of all three Unfolded Protein Response (UPR) branches (PERK, XBP-1, and ATF6). In spite of an enhanced UPR, these cells showed reduced activation of apoptosis and autophagy during ER stress. Silencing of PERK increased the apoptosis of Mfn2-ablated cells in response to ER stress. XBP-1 loss-of-function ameliorated autophagic activity of these cells upon ER stress. Mfn2 physically interacts with PERK, and Mfn2-ablated cells showed sustained activation of this protein kinase under basal conditions. Unexpectedly, PERK silencing in these cells reduced ROS production, normalized mitochondrial calcium, and improved mitochondrial morphology. In summary, our data indicate that Mfn2 is an upstream modulator of PERK. Furthermore, Mfn2 loss-of-function reveals that PERK is a key regulator of mitochondrial morphology and function.


Subject(s)
GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Unfolded Protein Response/physiology , eIF-2 Kinase/metabolism , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Animals , Apoptosis/genetics , Autophagy/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Stress , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , GTP Phosphohydrolases/genetics , Gene Knockout Techniques , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondria/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Regulatory Factor X Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , X-Box Binding Protein 1 , eIF-2 Kinase/genetics
12.
Diabetologia ; 59(9): 1985-94, 2016 09.
Article in English | MEDLINE | ID: mdl-27344312

ABSTRACT

AIMS/HYPOTHESIS: In mammals, the evolutionary conserved family of Mg(2+)-dependent phosphatidate phosphatases (PAP1), involved in phospholipid and triacylglycerol synthesis, consists of lipin-1, lipin-2 and lipin-3. While mutations in the murine Lpin1 gene cause lipodystrophy and its knockdown in mouse 3T3-L1 cells impairs adipogenesis, deleterious mutations of human LPIN1 do not affect adipose tissue distribution. However, reduced LPIN1 and PAP1 activity has been described in participants with type 2 diabetes. We aimed to characterise the roles of all lipin family members in human adipose tissue and adipogenesis. METHODS: The expression of the lipin family was analysed in adipose tissue in a cross-sectional study. Moreover, the effects of lipin small interfering RNA (siRNA)-mediated depletion on in vitro human adipogenesis were assessed. RESULTS: Adipose tissue gene expression of the lipin family is altered in type 2 diabetes. Depletion of every lipin family member in a human Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocyte cell line, alters expression levels of adipogenic transcription factors and lipid biosynthesis genes in early stages of differentiation. Lipin-1 knockdown alone causes a 95% depletion of PAP1 activity. Despite the reduced PAP1 activity and alterations in early adipogenesis, lipin-silenced cells differentiate and accumulate neutral lipids. Even combinatorial knockdown of lipins shows mild effects on triacylglycerol accumulation in mature adipocytes. CONCLUSIONS/INTERPRETATION: Overall, our data support the hypothesis of alternative pathways for triacylglycerol synthesis in human adipocytes under conditions of repressed lipin expression. We propose that induction of alternative lipid phosphate phosphatases, along with the inhibition of lipid hydrolysis, contributes to the maintenance of triacylglycerol content to near normal levels.


Subject(s)
Adipocytes/metabolism , Phosphatidate Phosphatase/metabolism , Triglycerides/metabolism , 3T3-L1 Cells , Adipogenesis/genetics , Adipogenesis/physiology , Adipose Tissue/metabolism , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cells, Cultured , Cross-Sectional Studies , Female , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Lipodystrophy/genetics , Lipodystrophy/metabolism , Male , Mice , Pancreatitis-Associated Proteins , Phosphatidate Phosphatase/genetics , RNA, Small Interfering/genetics
13.
PLoS Genet ; 8(12): e1003046, 2012.
Article in English | MEDLINE | ID: mdl-23236286

ABSTRACT

Type 2 Diabetes (T2D) is a highly prevalent chronic metabolic disease with strong co-morbidity with obesity and cardiovascular diseases. There is growing evidence supporting the notion that a crosstalk between mitochondria and the insulin signaling cascade could be involved in the etiology of T2D and insulin resistance. In this study we investigated the molecular basis of this crosstalk by using systems biology approaches. We combined, filtered, and interrogated different types of functional interaction data, such as direct protein-protein interactions, co-expression analyses, and metabolic and signaling dependencies. As a result, we constructed the mitochondria-insulin (MITIN) network, which highlights 286 genes as candidate functional linkers between these two systems. The results of internal gene expression analysis of three independent experimental models of mitochondria and insulin signaling perturbations further support the connecting roles of these genes. In addition, we further assessed whether these genes are involved in the etiology of T2D using the genome-wide association study meta-analysis from the DIAGRAM consortium, involving 8,130 T2D cases and 38,987 controls. We found modest enrichment of genes associated with T2D amongst our linker genes (p = 0.0549), including three already validated T2D SNPs and 15 additional SNPs, which, when combined, were collectively associated to increased fasting glucose levels according to MAGIC genome wide meta-analysis (p = 8.12×10(-5)). This study highlights the potential of combining systems biology, experimental, and genome-wide association data mining for identifying novel genes and related variants that increase vulnerability to complex diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Insulin Resistance/genetics , Mitochondria , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Genetic Predisposition to Disease , Glucose/metabolism , Humans , Insulin/genetics , Insulin/metabolism , Metabolic Networks and Pathways , Mitochondria/genetics , Mitochondria/metabolism , Obesity/genetics , Polymorphism, Single Nucleotide , Systems Biology
14.
Proc Natl Acad Sci U S A ; 109(14): 5523-8, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22427360

ABSTRACT

Mitochondria are dynamic organelles that play a key role in energy conversion. Optimal mitochondrial function is ensured by a quality-control system tightly coupled to fusion and fission. In this connection, mitofusin 2 (Mfn2) participates in mitochondrial fusion and undergoes repression in muscle from obese or type 2 diabetic patients. Here, we provide in vivo evidence that Mfn2 plays an essential role in metabolic homeostasis. Liver-specific ablation of Mfn2 in mice led to numerous metabolic abnormalities, characterized by glucose intolerance and enhanced hepatic gluconeogenesis. Mfn2 deficiency impaired insulin signaling in liver and muscle. Furthermore, Mfn2 deficiency was associated with endoplasmic reticulum stress, enhanced hydrogen peroxide concentration, altered reactive oxygen species handling, and active JNK. Chemical chaperones or the antioxidant N-acetylcysteine ameliorated glucose tolerance and insulin signaling in liver-specific Mfn2 KO mice. This study provides an important description of a unique unexpected role of Mfn2 coordinating mitochondria and endoplasmic reticulum function, leading to modulation of insulin signaling and glucose homeostasis in vivo.


Subject(s)
Endoplasmic Reticulum/physiology , GTP Phosphohydrolases/physiology , Glucose/metabolism , Homeostasis , Insulin/metabolism , Mitochondria/physiology , Signal Transduction , Animals , Insulin Resistance , Liver/metabolism , Mice , Mice, Knockout , Muscle, Skeletal/metabolism
15.
Chemistry ; 20(34): 10679-84, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-24939731

ABSTRACT

A composite Pd-based electrocatalyst consisting of a surface layer of Pt (5 wt.%) supported on a core Pd3Co1 alloy (95 wt.%) and dispersed as nanoparticles on a carbon black support (50 wt.% metal content) was prepared by using a sulphite-complex route. The structure, composition, morphology, and surface properties of the catalyst were investigated by XRD, XRF, TEM, XPS and low-energy ion scattering spectroscopy (LE-ISS). The catalyst showed an enrichment of Pt on the surface and a smaller content of Co in the outermost layers. These characteristics allow a decrease the Pt content in direct methanol fuel cell cathode electrodes (from 1 to 0.06 mg cm(-2)) without significant decay in performance, due also to a better tolerance to methanol permeated through the polymer electrolyte membrane.

16.
Autophagy ; 20(8): 1815-1824, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38545813

ABSTRACT

Sarcopenia is a major contributor to disability in older adults, and thus, it is key to elucidate the mechanisms underlying its development. Increasing evidence suggests that impaired macroautophagy/autophagy contributes to the development of sarcopenia. However, the mechanisms leading to reduced autophagy during aging remain largely unexplored, and whether autophagy activation protects from sarcopenia has not been fully addressed. Here we show that the autophagy regulator TP53INP2/TRP53INP2 is decreased during aging in mouse and human skeletal muscle. Importantly, chronic activation of autophagy by muscle-specific overexpression of TRP53INP2 prevents sarcopenia and the decline of muscle function in mice. Acute re-expression of TRP53INP2 in aged mice also improves muscle atrophy, enhances mitophagy, and reduces ROS production. In humans, high levels of TP53INP2 in muscle are associated with increased muscle strength and healthy aging. Our findings highlight the relevance of an active muscle autophagy in the maintenance of muscle mass and prevention of sarcopenia.Abbreviation: ATG7: autophagy related 7; BMI: body mass index; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; ROS: reactive oxygen species; TP53INP2: tumor protein p53 inducible nuclear protein 2; WT: wild type.


Subject(s)
Autophagy , Muscle, Skeletal , Sarcopenia , Sarcopenia/pathology , Sarcopenia/metabolism , Autophagy/physiology , Animals , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Healthy Aging/physiology , Healthy Aging/metabolism , Reactive Oxygen Species/metabolism , Mitophagy/physiology , Male , Mice, Inbred C57BL , Nuclear Proteins
17.
ACS Appl Energy Mater ; 7(7): 2779-2790, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38606034

ABSTRACT

An increasing number of studies focus on organic flow batteries (OFBs) as possible substitutes for the vanadium flow battery (VFB), featuring anthraquinone derivatives, such as anthraquinone-2,7-disulfonic acid (2,7-AQDS). VFBs have been postulated as a promising energy storage technology. However, the fluctuating cost of vanadium minerals and risky supply chains have hampered their implementation, while OFBs could be prepared from renewable raw materials. A critical component of flow batteries is the electrode material, which can determine the power density and energy efficiency. Yet, and in contrast to VFBs, studies on electrodes tailored for OFBs are scarce. Hence, in this work, we propose the modification of commercial carbon felts with reduced graphene oxide (rGO) and poly(ethylene glycol) for the 2,7-AQDS redox couple and to preliminarily assess its effects on the efficiency of a 2,7-AQDS/ferrocyanide flow battery. Results are compared to those of a VFB to evaluate if the benefits of the modification are transferable to OFBs. The modification of carbon felts with surface oxygen groups introduced by the presence of rGO enhanced both its hydrophilicity and surface area, favoring the catalytic activity toward VFB and OFB reactions. The results are promising, given the improved behavior of the modified electrodes. Parallels are established between the electrodes of both FB technologies.

18.
Aging Cell ; 23(2): e14047, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37994388

ABSTRACT

Orexigenic neurons expressing agouti-related protein (AgRP) and neuropeptide Y in the arcuate nucleus (ARC) of the hypothalamus are activated in response to dynamic variations in the metabolic state, including exercise. We previously observed that carnitine palmitoyltransferase 1a (CPT1A), a rate-limiting enzyme of mitochondrial fatty acid oxidation, is a key factor in AgRP neurons, modulating whole-body energy balance and fluid homeostasis. However, the effect of CPT1A in AgRP neurons in aged mice and during exercise has not been explored yet. We have evaluated the physical and cognitive capacity of adult and aged mutant male mice lacking Cpt1a in AgRP neurons (Cpt1a KO). Adult Cpt1a KO male mice exhibited enhanced endurance performance, motor coordination, locomotion, and exploration compared with control mice. No changes were observed in anxiety-related behavior, cognition, and muscle strength. Adult Cpt1a KO mice showed a reduction in gastrocnemius and tibialis anterior muscle mass. The cross-sectional area (CSA) of these muscles were smaller than those of control mice displaying a myofiber remodeling from type II to type I fibers. In aged mice, changes in myofiber remodeling were maintained in Cpt1a KO mice, avoiding loss of physical capacity during aging progression. Additionally, aged Cpt1a KO mice revealed better cognitive skills, reduced inflammation, and oxidative stress in the hypothalamus and hippocampus. In conclusion, CPT1A in AgRP neurons appears to modulate health and protects against aging. Future studies are required to clarify whether CPT1A is a potential antiaging candidate for treating diseases affecting memory and physical activity.


Subject(s)
Carnitine O-Palmitoyltransferase , Healthy Aging , Animals , Male , Mice , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Hypothalamus/metabolism , Neurons/metabolism
19.
Metabolism ; 152: 155765, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142958

ABSTRACT

BACKGROUND AND AIM: The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS: Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS: This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , Diet, High-Fat , Fatty Acids/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Liver/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
20.
Nanomaterials (Basel) ; 13(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37177094

ABSTRACT

The electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the most critical processes in renewable energy-related technologies, such as fuel cells, water electrolyzers, and unitized regenerative fuel cells. N-doped carbon composites have been demonstrated to be promising ORR/OER catalyst candidates because of their excellent electrical properties, tunable pore structure, and environmental compatibility. In this study, we prepared porous N-doped carbon nanocomposites (NC) by combining mussel-inspired polydopamine (PDA) chemistry and transition metals using a solvothermal carbonization strategy. The complexation between dopamine catechol groups and transition metal ions (Fe, Ni, Co, Zn, Mn, Cu, and Ti) results in hybrid structures with embedded metal nanoparticles converted to metal-NC composites after the carbonization process. The influence of the transition metals on the structural, morphological, and electrochemical properties was analyzed in detail. Among them, Cu, Co, Mn, and Fe N-doped carbon nanocomposites exhibit efficient catalytic activity and excellent stability toward ORR. This method improves the homogeneous distribution of the catalytically active sites. The metal nanoparticles in reduced (MnO, Fe3C) or metallic (Cu, Co) oxidation states are protected by the N-doped carbon layers, thus further enhancing the ORR performance of the composites. Still, only Co nanocomposite is also effective toward OER with a potential bifunctional gap (ΔE) of 0.867 V. The formation of Co-N active sites during the carbonization process, and the strong coupling between Co nanoparticles and the N-doped carbon layer could promote the formation of defects and the interfacial electron transfer between the catalyst surface, and the reaction intermediates, increasing the bifunctional ORR/OER performance.

SELECTION OF CITATIONS
SEARCH DETAIL