Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Pharm ; 21(3): 1402-1413, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38331430

ABSTRACT

Despite decades of work, small-cell lung cancer (SCLC) remains a frustratingly recalcitrant disease. Both diagnosis and treatment are challenges: low-dose computed tomography (the approved method used for lung cancer screening) is unable to reliably detect early SCLC, and the malignancy's 5 year survival rate stands at a paltry 7%. Clearly, the development of novel diagnostic and therapeutic tools for SCLC is an urgent, unmet need. CD133 is a transmembrane protein that is expressed at low levels in normal tissue but is overexpressed by a variety of tumors, including SCLC. We previously explored CD133 as a biomarker for a novel autoantibody-to-immunopositron emission tomography (PET) strategy for the diagnosis of SCLC, work that first suggested the promise of the antigen as a radiotheranostic target in the disease. Herein, we report the in vivo validation of a pair of CD133-targeted radioimmunoconjugates for the PET imaging and radioimmunotherapy of SCLC. To this end, [89Zr]Zr-DFO-αCD133 was first interrogated in a trio of advanced murine models of SCLC─i.e., orthotopic, metastatic, and patient-derived xenografts─with the PET probe consistently producing high activity concentrations (>%ID/g) in tumor lesions combined with low uptake in healthy tissues. Subsequently, a variant of αCD133 labeled with the ß-emitting radiometal 177Lu─[177Lu]Lu-DTPA-A″-CHX-αCD133─was synthesized and evaluated in a longitudinal therapy study in a subcutaneous xenograft model of SCLC, ultimately revealing that treatment with a dose of 9.6 MBq of the radioimmunoconjugate produced a significant increase in median survival compared to a control cohort. Taken together, these data establish CD133 as a viable target for the nuclear imaging and radiopharmaceutical therapy of SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Animals , Mice , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Early Detection of Cancer , Cell Line, Tumor , Small Cell Lung Carcinoma/diagnostic imaging , Small Cell Lung Carcinoma/radiotherapy , Positron-Emission Tomography/methods
2.
J Nucl Med ; 65(7): 998-1003, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38871386

ABSTRACT

Gynecological pathologies account for approximately 4.5% of the overall global disease burden. Although cancers of the female reproductive system have understandably been the focus of a great deal of research, benign gynecological conditions-such as endometriosis, polycystic ovary syndrome, and uterine fibroids-have remained stubbornly understudied despite their astonishing ubiquity and grave morbidity. This historical inattention has frequently become manifested in flawed diagnostic and treatment paradigms. Molecular imaging could be instrumental in improving patient care on both fronts. In this Focus on Molecular Imaging review, we will examine recent advances in the use of PET, SPECT, MRI, and fluorescence imaging for the diagnosis and management of benign gynecological conditions, with particular emphasis on recent clinical reports, areas of need, and opportunities for growth.


Subject(s)
Molecular Imaging , Humans , Molecular Imaging/methods , Molecular Imaging/trends , Female , Gynecology
3.
Curr Opin Chem Biol ; 81: 102471, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833913

ABSTRACT

Monoclonal antibodies and antibody fragments have proven to be highly effective vectors for the delivery of radionuclides to target tissues for positron emission tomography (PET) and single-photon emission computed tomography (SPECT). However, the stochastic methods that have traditionally been used to attach radioisotopes to these biomolecules inevitably produce poorly defined and heterogeneous probes and can impair the ability of the immunoglobulins to bind their molecular targets. In response to this challenge, an array of innovative site-specific and site-selective bioconjugation strategies have been developed, and these approaches have repeatedly been shown to yield better-defined and more homogeneous radioimmunoconjugates with superior in vivo performance than their randomly modified progenitors. In this Current Opinion in Chemical Biology review, we will examine recent advances in this field, including the development - and, in some cases, clinical translation - of nuclear imaging agents radiolabeled using strategies that target the heavy chain glycans, peptide tags, and unnatural amino acids.

4.
J Nucl Med ; 64(8): 1179-1184, 2023 08.
Article in English | MEDLINE | ID: mdl-37442598

ABSTRACT

The worldwide proliferation of persistent environmental pollutants is accelerating at an alarming rate. Not surprisingly, many of these pollutants pose a risk to human health. In this review, we examine recent literature in which molecular imaging and radiochemistry have been harnessed to study environmental pollutants. Specifically, these techniques offer unique ways to interrogate the pharmacokinetic profiles and bioaccumulation patterns of pollutants at environmentally relevant concentrations, thereby helping to determine their potential health risks.


Subject(s)
Environmental Pollutants , Humans , Environmental Pollutants/analysis , Radiochemistry , Molecular Imaging
5.
RSC Adv ; 13(26): 17705-17709, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37313000

ABSTRACT

We report the in vitro characterization and in vivo evaluation of a novel 89Zr-labeled radioimmunoconjugate synthesized using a site-selective bioconjugation strategy based on the oxidation of tyrosinase residues exposed by the deglycosylation of the IgG and the subsequent strain-promoted oxidation-controlled 1,2-quinone cycloaddition between these amino acids and trans-cyclooctene-bearing cargoes. More specifically, we site-selectively modified a variant of the A33 antigen-targeting antibody huA33 with the chelator desferrioxamine (DFO), thereby producing an immunoconjugate (DFO-SPOCQhuA33) with equivalent antigen binding affinity to its parent immunoglobulin but attenuated affinity for the FcγRI receptor. This construct was subsequently radiolabeled with [89Zr]Zr4+ to create a radioimmunoconjugate - [89Zr]Zr-DFO-SPOCQhuA33 - in high yield and specific activity that exhibited excellent in vivo behavior in two murine models of human colorectal carcinoma.

SELECTION OF CITATIONS
SEARCH DETAIL