Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Mol Cell ; 75(3): 605-619.e6, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31255466

ABSTRACT

Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.


Subject(s)
DNA Helicases/genetics , DNA Replication/genetics , Exodeoxyribonucleases/genetics , RecQ Helicases/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genomic Instability/genetics , HeLa Cells , Humans , Neoplasms/genetics , Synthetic Lethal Mutations/genetics
2.
Genes Dev ; 30(6): 645-59, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26980189

ABSTRACT

Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5'-3' exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit(+) cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency.


Subject(s)
Endodeoxyribonucleases/deficiency , Endodeoxyribonucleases/genetics , Kidney/pathology , Liver Diseases/genetics , Animals , Bone Marrow/drug effects , Cross-Linking Reagents/pharmacology , DNA Damage/genetics , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Endodeoxyribonucleases/metabolism , Endonucleases/metabolism , Epistasis, Genetic , Exodeoxyribonucleases/metabolism , Liver/pathology , Mice , Multifunctional Enzymes , Protein Structure, Tertiary , Protein Transport
3.
Genes Dev ; 29(18): 1955-68, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26338419

ABSTRACT

MERIT40 is an essential component of the RAP80 ubiquitin recognition complex that targets BRCA1 to DNA damage sites. Although this complex is required for BRCA1 foci formation, its physiologic role in DNA repair has remained enigmatic, as has its relationship to canonical DNA repair mechanisms. Surprisingly, we found that Merit40(-/-) mice displayed marked hypersensitivity to DNA interstrand cross-links (ICLs) but not whole-body irradiation. MERIT40 was rapidly recruited to ICL lesions prior to FANCD2, and Merit40-null cells exhibited delayed ICL unhooking coupled with reduced end resection and homologous recombination at ICL damage. Interestingly, Merit40 mutation exacerbated ICL-induced chromosome instability in the context of concomitant Brca2 deficiency but not in conjunction with Fancd2 mutation. These findings implicate MERIT40 in the earliest stages of ICL repair and define specific functional interactions between RAP80 complex-dependent ubiquitin recognition and the Fanconi anemia (FA)-BRCA ICL repair network.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , BRCA2 Protein/metabolism , DNA Repair/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins/metabolism , Cell Line , Chromosomal Instability/genetics , DNA Damage , DNA Helicases/metabolism , DNA-Binding Proteins , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Histone Chaperones , Humans , Mice , Mice, Inbred C57BL , Mutation , Protein Transport , Transcription Factors/metabolism , Ubiquitination
4.
Nucleic Acids Res ; 48(16): 9161-9180, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32797166

ABSTRACT

FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.


Subject(s)
BRCA1 Protein/genetics , DNA-Binding Proteins/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Genomic Instability/genetics , Histone Chaperones/genetics , RNA Helicases/genetics , Rad51 Recombinase/genetics , Chromosomal Instability/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Damage/genetics , DNA Repair/genetics , DNA-Binding Proteins/deficiency , Gene Knockout Techniques , HeLa Cells , Histone Chaperones/deficiency , Humans , Mitomycin/pharmacology , Recombinational DNA Repair/genetics
5.
Mol Cell ; 52(3): 434-46, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24207054

ABSTRACT

The replicative machinery encounters many impediments, some of which can be overcome by lesion bypass or replication restart pathways, leaving repair for a later time. However, interstrand crosslinks (ICLs), which preclude DNA unwinding, are considered absolute blocks to replication. Current models suggest that fork collisions, either from one or both sides of an ICL, initiate repair processes required for resumption of replication. To test these proposals, we developed a single-molecule technique for visualizing encounters of replication forks with ICLs as they occur in living cells. Surprisingly, the most frequent patterns were consistent with replication traverse of an ICL, without lesion repair. The traverse frequency was strongly reduced by inactivation of the translocase and DNA binding activities of the FANCM/MHF complex. The results indicate that translocase-based mechanisms enable DNA synthesis to continue past ICLs and that these lesions are not always absolute blocks to replication.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , DNA Helicases/metabolism , DNA Replication/genetics , DNA/biosynthesis , Fanconi Anemia/genetics , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Cricetinae , DNA Helicases/genetics , DNA-Binding Proteins , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Humans , Mice , Multiprotein Complexes/metabolism , Tumor Suppressor Proteins/genetics
6.
Mol Cell ; 47(1): 61-75, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22705371

ABSTRACT

The Fanconi anemia (FA) protein network is necessary for repair of DNA interstrand crosslinks (ICLs), but its control mechanism remains unclear. Here we show that the network is regulated by a ubiquitin signaling cascade initiated by RNF8 and its partner, UBC13, and mediated by FAAP20, a component of the FA core complex. FAAP20 preferentially binds the ubiquitin product of RNF8-UBC13, and this ubiquitin-binding activity and RNF8-UBC13 are both required for recruitment of FAAP20 to ICLs. Both RNF8 and FAAP20 are required for recruitment of FA core complex and FANCD2 to ICLs, whereas RNF168 can modulate efficiency of the recruitment. RNF8 and FAAP20 are needed for efficient FANCD2 monoubiquitination, a key step of the FA network; RNF8 and the FA core complex work in the same pathway to promote cellular resistance to ICLs. Thus, the RNF8-FAAP20 ubiquitin cascade is critical for recruiting FA core complex to ICLs and for normal function of the FA network.


Subject(s)
DNA Repair , DNA-Binding Proteins/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Ubiquitination , Amino Acid Sequence , Animals , Cell Line, Tumor , DNA-Binding Proteins/genetics , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group Proteins/chemistry , Fanconi Anemia Complementation Group Proteins/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Microscopy, Fluorescence , Molecular Sequence Data , Mutation , Protein Binding , Protein Structure, Tertiary , RNA Interference , Sequence Homology, Amino Acid , Signal Transduction , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
J Allergy Clin Immunol ; 142(1): 219-234, 2018 07.
Article in English | MEDLINE | ID: mdl-29248492

ABSTRACT

BACKGROUND: Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. OBJECTIVE: We sought to define how dysfunctional gene transcription is causally linked to the degree of TH cell deficiency and genomic instability in the XLT/WAS clinical spectrum. METHODS: In human TH1- or TH2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. RESULTS: WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in TH1 cells relative to TH2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (TH1 genes) in TH1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (TH2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. CONCLUSION: Transcriptional R-loop imbalance is a novel molecular defect causative in TH1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum and could be targeted therapeutically.


Subject(s)
Genomic Instability/genetics , Th1 Cells/pathology , Wiskott-Aldrich Syndrome/genetics , Cells, Cultured , DNA Damage/genetics , Humans , Transcription, Genetic , Wiskott-Aldrich Syndrome/pathology
8.
Mol Cell ; 37(6): 865-78, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20347428

ABSTRACT

FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.


Subject(s)
DNA Helicases/metabolism , DNA/metabolism , Genomic Instability , Histones/metabolism , Protein Folding , Protein Multimerization , Amino Acid Sequence , Animals , Cell Line , Chickens , DNA/genetics , DNA Damage , DNA Helicases/chemistry , DNA Helicases/genetics , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Evolution, Molecular , Fanconi Anemia Complementation Group Proteins , Humans , Molecular Sequence Data , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Sequence Alignment , Sister Chromatid Exchange
9.
Nucleic Acids Res ; 43(1): 247-58, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25505141

ABSTRACT

Cockayne syndrome (CS) is a premature aging disorder characterized by photosensitivity, impaired development and multisystem progressive degeneration, and consists of two strict complementation groups, A and B. Using a yeast two-hybrid approach, we identified the 5'-3' exonuclease SNM1A as one of four strong interacting partners of CSB. This direct interaction was confirmed using purified recombinant proteins-with CSB able to modulate the exonuclease activity of SNM1A on oligonucleotide substrates in vitro-and the two proteins were shown to exist in a common complex in human cell extracts. CSB and SNM1A were also found, using fluorescently tagged proteins in combination with confocal microscopy and laser microirradiation, to be recruited to localized trioxsalen-induced ICL damage in human cells, with accumulation being suppressed by transcription inhibition. Moreover, SNM1A recruitment was significantly reduced in CSB-deficient cells, suggesting coordination between the two proteins in vivo. CSB-deficient neural cells exhibited increased sensitivity to DNA crosslinking agents, particularly, in a non-cycling, differentiated state, as well as delayed ICL processing as revealed by a modified Comet assay and γ-H2AX foci persistence. The results indicate that CSB coordinates the resolution of ICLs, possibly in a transcription-associated repair mechanism involving SNM1A, and that defects in the process could contribute to the post-mitotic degenerative pathologies associated with CS.


Subject(s)
DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Cell Cycle Proteins , Cell Line , Cross-Linking Reagents , DNA/metabolism , DNA Damage , Exodeoxyribonucleases , Exonucleases/metabolism , HeLa Cells , Humans , Poly-ADP-Ribose Binding Proteins
10.
Trends Biochem Sci ; 35(5): 247-52, 2010 May.
Article in English | MEDLINE | ID: mdl-20172733

ABSTRACT

DNA interstrand crosslinks (ICLs) can arise from reactions with endogenous chemicals, such as malondialdehyde - a lipid peroxidation product - or from exposure to various clinical anti-cancer drugs, most notably bifunctional alkylators and platinum compounds. Because they covalently link the two strands of DNA, ICLs completely block transcription and replication, and, as a result, are lethal to the cell. It is well established that proteins that function in nucleotide excision repair and homologous recombination are involved in ICL resolution. Recent work, coupled with a much earlier report, now suggest an emerging link between proteins of the base excision repair pathway and crosslink processing.


Subject(s)
DNA Repair/physiology , Animals , Cricetinae , DNA/genetics , DNA/metabolism , DNA Damage , DNA Replication , Humans , Proteins/genetics , Proteins/metabolism , Recombination, Genetic
11.
J Biol Chem ; 288(18): 12426-36, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23508956

ABSTRACT

Recent evidence suggests a role for base excision repair (BER) proteins in the response to DNA interstrand crosslinks, which block replication and transcription, and lead to cell death and genetic instability. Employing fluorescently tagged fusion proteins and laser microirradiation coupled with confocal microscopy, we observed that the endonuclease VIII-like DNA glycosylase, NEIL1, accumulates at sites of oxidative DNA damage, as well as trioxsalen (psoralen)-induced DNA interstrand crosslinks, but not to angelicin monoadducts. While recruitment to the oxidative DNA lesions was abrogated by the anti-oxidant N-acetylcysteine, this treatment did not alter the accumulation of NEIL1 at sites of interstrand crosslinks, suggesting distinct recognition mechanisms. Consistent with this conclusion, recruitment of the NEIL1 population variants, G83D, C136R, and E181K, to oxidative DNA damage and psoralen-induced interstrand crosslinks was differentially affected by the mutation. NEIL1 recruitment to psoralen crosslinks was independent of the nucleotide excision repair recognition factor, XPC. Knockdown of NEIL1 in LN428 glioblastoma cells resulted in enhanced recruitment of XPC, a more rapid removal of digoxigenin-tagged psoralen adducts, and decreased cellular sensitivity to trioxsalen plus UVA, implying that NEIL1 and BER may interfere with normal cellular processing of interstrand crosslinks. While exhibiting no enzymatic activity, purified NEIL1 protein bound stably to psoralen interstrand crosslink-containing synthetic oligonucleotide substrates in vitro. Our results indicate that NEIL1 recognizes specifically and distinctly interstrand crosslinks in DNA, and can obstruct the efficient removal of lethal crosslink adducts.


Subject(s)
Cross-Linking Reagents/pharmacology , DNA Adducts/metabolism , DNA Damage , DNA Glycosylases/metabolism , DNA Repair/drug effects , Ficusin/pharmacology , Acetylcysteine/pharmacology , DNA Adducts/genetics , DNA Glycosylases/genetics , DNA Repair/radiation effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Free Radical Scavengers/pharmacology , Gene Knockdown Techniques , HeLa Cells , Humans , Oxidation-Reduction/drug effects , Protein Binding/drug effects , Protein Binding/radiation effects , Ultraviolet Rays/adverse effects
12.
J Am Chem Soc ; 136(37): 12884-7, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25170678

ABSTRACT

Arsenic is a widespread environmental contaminant. However, the exact molecular mechanisms underlying the carcinogenic effects of arsenic remain incompletely understood. Core histones can be ubiquitinated by RING finger E3 ubiquitin ligases, among which the RNF20-RNF40 heterodimer catalyzes the ubiquitination of histone H2B at lysine 120. This ubiquitination event is important for the formation of open and biochemically accessible chromatin fiber that is conducive for DNA repair. Herein, we found that arsenite could bind directly to the RING finger domains of RNF20 and RNF40 in vitro and in cells, and treatment with arsenite resulted in substantially impaired H2B ubiquitination in multiple cell lines. Exposure to arsenite also diminished the recruitment of BRCA1 and RAD51 to laser-induced DNA double-strand break (DSB) sites, compromised DNA DSB repair in human cells, and rendered cells sensitive toward a radiomimetic agent, neocarzinostatin. Together, the results from the present study revealed, for the first time, that arsenite may exert its carcinogenic effect by targeting cysteine residues in the RING finger domains of histone E3 ubiquitin ligase, thereby altering histone epigenetic mark and compromising DNA DSB repair. Our results also suggest arsenite as a general inhibitor for RING finger E3 ubiquitin ligases.


Subject(s)
Arsenites/metabolism , Carcinogens/metabolism , DNA Breaks, Double-Stranded/drug effects , RING Finger Domains , Ubiquitin-Protein Ligases/metabolism , Cell Line , Histones/metabolism , Humans , Ubiquitin-Protein Ligases/chemistry , Ubiquitination/drug effects
13.
Carcinogenesis ; 34(10): 2218-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23715498

ABSTRACT

Interstrand cross-links (ICLs) are very severe lesions as they are absolute blocks of replication and transcription. This property of interstrand cross-linking agents has been exploited clinically for the treatment of cancers and other diseases. ICLs are repaired in human cells by specialized DNA repair pathways including components of the nucleotide excision repair pathway, double-strand break repair pathway and the Fanconi anemia pathway. In this report, we identify the role of RECQL5, a member of the RecQ family of helicases, in the repair of ICLs. Using laser-directed confocal microscopy, we demonstrate that RECQL5 is recruited to ICLs formed by trioxalen (a psoralen-derived compound) and ultraviolet irradiation A. Using single-cell gel electrophoresis and proliferation assays, we identify the role of RECQL5 in the repair of ICL lesions. The domain of RECQL5 that recruits to the site of ICL was mapped to the KIX region between amino acids 500 and 650. Inhibition of transcription and of topoisomerases did not affect recruitment, which was inhibited by DNA-intercalating agents, suggesting that the DNA structure itself may be responsible for the recruitment of RECQL5 to the sites of ICLs.


Subject(s)
Cross-Linking Reagents/toxicity , DNA Damage/drug effects , DNA Repair/physiology , Ficusin/toxicity , RecQ Helicases/metabolism , Cell Line , DNA Topoisomerases/metabolism , Exodeoxyribonucleases/metabolism , Humans , Kinetics , Protein Binding , Protein Interaction Domains and Motifs , RecQ Helicases/chemistry , Topoisomerase Inhibitors/pharmacology , Transcription, Genetic , Werner Syndrome Helicase
14.
Crit Rev Biochem Mol Biol ; 45(1): 23-49, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20039786

ABSTRACT

Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by nucleotide excision repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G(1) phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells.


Subject(s)
DNA Damage , DNA Repair , DNA/genetics , DNA/metabolism , Animals , Cell Cycle/genetics , Cross-Linking Reagents/pharmacology , DNA/drug effects , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Humans , Recombination, Genetic
15.
Cells ; 12(22)2023 11 11.
Article in English | MEDLINE | ID: mdl-37998342

ABSTRACT

Duplication of the genome requires the replication apparatus to overcome a variety of impediments, including covalent DNA adducts, the most challenging of which is on the leading template strand. Replisomes consist of two functional units, a helicase to unwind DNA and polymerases to synthesize it. The helicase is a multi-protein complex that encircles the leading template strand and makes the first contact with a leading strand adduct. The size of the channel in the helicase would appear to preclude transit by large adducts such as DNA: protein complexes (DPC). Here we discuss some of the extensively studied pathways that support replication restart after replisome encounters with leading template strand adducts. We also call attention to recent work that highlights the tolerance of the helicase for adducts ostensibly too large to pass through the central channel.


Subject(s)
DNA Helicases , DNA Replication , DNA Helicases/metabolism , DNA/metabolism
16.
DNA Repair (Amst) ; 128: 103525, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37320956

ABSTRACT

Immunofluorescence imaging is a standard experimental tool for monitoring the response of cellular factors to DNA damage. Visualizing the recruitment of DNA Damage Response (DDR) components requires high affinity antibodies, which are generally available. In contrast, reagents for the display of the lesions that induce the response are far more limited. Consequently, DDR factor accumulation often serves as a surrogate for damage, without reporting the actual inducing structure. This limitation has practical implications given the importance of the response to DNA reactive drugs such as those used in cancer therapy. These include interstrand crosslink (ICL) forming compounds which are frequently employed clinically. Among them are the psoralens, natural products that form ICLs upon photoactivation and applied therapeutically since antiquity. However, despite multiple attempts, antibodies against psoralen ICLs have not been developed. To overcome this limitation, we developed a psoralen tagged with an antigen for which there are commercial antibodies. In this report we describe our application of the tagged psoralen in imaging experiments, and the unexpected discoveries they revealed.


Subject(s)
DNA Repair , Ficusin , Ficusin/pharmacology , Cross-Linking Reagents/pharmacology , DNA Damage , DNA
17.
STAR Protoc ; 3(3): 101610, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36035793

ABSTRACT

Telomere dysfunction-induced foci (TIF) can be measured by immunofluorescence, combined with telomere-fluorescent in situ hybridization. We modified this approach by combining the proximity ligation assay (PLA), which detects colocalization of two molecules in proximity through a signal amplification step and improves the fidelity and sensitivity of TIF detection in human and mouse cells. The protocol includes cell preparation, permeabilization, fixation, and blocking PLA detection of DNA damage response proteins within proximity with telomeres and optional PLA verification by immunofluorescence-based technique.


Subject(s)
Telomere , Animals , Fluorescent Antibody Technique , Humans , In Situ Hybridization, Fluorescence , Mice
18.
J Biol Chem ; 285(30): 23198-207, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20489199

ABSTRACT

Double strand breaks (DSBs) can be repaired by homology independent nonhomologous end joining (NHEJ) pathways involving proteins such as Ku70/80, DNAPKcs, Xrcc4/Ligase 4, and the Mre11/Rad50/Nbs1 (MRN) complex. DSBs can also be repaired by homology-dependent pathways (HDR), in which the MRN and CtIP nucleases produce single strand ends that engage homologous sequences either by strand invasion or strand annealing. The entry of ends into HDR pathways underlies protocols for genomic manipulation that combine site-specific DSBs with appropriate informational donors. Most strategies utilize long duplex donors that participate by strand invasion. Work in yeast indicates that single strand oligonucleotide (SSO) donors are also active, over considerable distance, via a single strand annealing pathway. We examined the activity of SSO donors in mammalian cells at DSBs induced either by a restriction nuclease or by a targeted interstrand cross-link. SSO donors were effective immediately adjacent to the break, but activity declined sharply beyond approximately 100 nucleotides. Overexpression of the resection nuclease CtIP increased the frequency of SSO-mediated sequence modulation distal to the break site, but had no effect on the activity of an SSO donor adjacent to the break. Genetic and in vivo competition experiments showed that sequence conversion by SSOs in the immediate vicinity of the break was not by strand invasion or strand annealing pathways. Instead these donors competed for ends that would have otherwise entered NHEJ pathways.


Subject(s)
DNA, Single-Stranded/genetics , Oligodeoxyribonucleotides/genetics , Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , DNA Breaks, Double-Stranded , DNA Repair , DNA, Single-Stranded/metabolism , Deoxyribonucleases/metabolism , Humans , Oligodeoxyribonucleotides/metabolism , Sequence Deletion , Sequence Homology, Nucleic Acid
19.
Proc Natl Acad Sci U S A ; 105(36): 13514-9, 2008 Sep 09.
Article in English | MEDLINE | ID: mdl-18757759

ABSTRACT

Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. We have designed a series of triplex-forming PNAs that can specifically bind to sequences in the human beta-globin gene. We demonstrate here that these PNAs, when cotransfected with recombinatory donor DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta-globin fusion gene. The ability of these PNAs to induce recombination was dependent on dose, sequence, cell-cycle stage, and the presence of a homologous donor DNA molecule. Enhanced recombination, with frequencies up to 0.4%, was observed with use of the lysomotropic agent chloroquine. Finally, we demonstrate that these PNAs were effective in stimulating the modification of the endogenous beta-globin locus in human cells, including primary hematopoietic progenitor cells. This work suggests that PNAs can be effective tools to induce heritable, site-specific modification of disease-related genes in human cells.


Subject(s)
Globins/genetics , Peptide Nucleic Acids/pharmacology , RNA Splice Sites/genetics , Animals , Base Sequence , Cell Line , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Genome/genetics , Humans , Molecular Sequence Data , Mutation/genetics
20.
Front Genet ; 12: 753535, 2021.
Article in English | MEDLINE | ID: mdl-34868226

ABSTRACT

Sumoylation is an important enhancer of responses to DNA replication stress and the SUMO-targeted ubiquitin E3 ligase RNF4 regulates these responses by ubiquitylation of sumoylated DNA damage response factors. The specific targets and functional consequences of RNF4 regulation in response to replication stress, however, have not been fully characterized. Here we demonstrated that RNF4 is required for the restart of DNA replication following prolonged hydroxyurea (HU)-induced replication stress. Contrary to its role in repair of γ-irradiation-induced DNA double-strand breaks (DSBs), our analysis revealed that RNF4 does not significantly impact recognition or repair of replication stress-associated DSBs. Rather, using DNA fiber assays, we found that the firing of new DNA replication origins, which is required for replication restart following prolonged stress, was inhibited in cells depleted of RNF4. We also provided evidence that RNF4 recognizes and ubiquitylates sumoylated Bloom syndrome DNA helicase BLM and thereby promotes its proteosome-mediated turnover at damaged DNA replication forks. Consistent with it being a functionally important RNF4 substrate, co-depletion of BLM rescued defects in the firing of new replication origins observed in cells depleted of RNF4 alone. We concluded that RNF4 acts to remove sumoylated BLM from collapsed DNA replication forks, which is required to facilitate normal resumption of DNA synthesis after prolonged replication fork stalling and collapse.

SELECTION OF CITATIONS
SEARCH DETAIL