Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 100(1): 38-54, 2019 10.
Article in English | MEDLINE | ID: mdl-31148289

ABSTRACT

Symbiotic hemoglobins provide O2 to N2 -fixing bacteria within legume nodules, but the functions of non-symbiotic hemoglobins or phytoglobins (Glbs) are much less defined. Immunolabeling combined with confocal microscopy of the Glbs tagged at the C-terminus with green fluorescent protein was used to determine their subcellular localizations in Arabidopsis and Lotus japonicus. Recombinant proteins were used to examine nitric oxide (NO) scavenging in vitro and transgenic plants to show S-nitrosylation and other in vivo interactions with NO and abscisic acid (ABA) responses. We found that Glbs occur in the nuclei, chloroplasts and amyloplasts of both model plants, and also in the cytoplasm of Arabidopsis cells. The proteins show similar NO dioxygenase activities in vitro, are nitrosylated in Cys residues in vivo, and scavenge NO in the stomatal cells. The Cys/Ser mutation does not affect NO dioxygenase activity, and S-nitrosylation does not significantly consume NO. We demonstrate an interaction between Glbs and ABA on several grounds: Glb1 and Glb2 scavenge NO produced in stomatal guard cells following ABA supply; plants overexpressing Glb1 show higher constitutive expression of the ABA responsive genes Responsive to ABA (RAB18), Responsive to Dehydration (RD29A) and Highly ABA-Induced 2 (HAI2), and are more tolerant to dehydration; and ABA strongly upregulates class 1 Glbs. We conclude that Glbs modulate NO and interact with ABA in crucial physiological processes such as the plant's response to dessication.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Chloroplasts/metabolism , Cytoplasm/metabolism , Hemoglobins/genetics , Nitric Oxide/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Hemoglobins/metabolism , Lotus/genetics , Lotus/metabolism , Microscopy, Immunoelectron , Plant Stomata/genetics , Plant Stomata/metabolism , Plant Stomata/ultrastructure , Plants, Genetically Modified , Protein Binding , Signal Transduction
2.
Biochem J ; 475(1): 151-168, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29203647

ABSTRACT

FUR (Ferric uptake regulator) proteins are among the most important families of transcriptional regulators in prokaryotes, often behaving as global regulators. In the cyanobacterium Anabaena PCC 7120, FurB (Zur, Zinc uptake regulator) controls zinc and redox homeostasis through the repression of target genes in a zinc-dependent manner. In vitro, non-specific binding of FurB to DNA elicits protection against oxidative damage and avoids cleavage by deoxyribonuclease I. The present study provides, for the first time, evidence of the influence of redox environment in the interaction of FurB with regulatory zinc and its consequences in FurB-DNA-binding affinity. Calorimetry studies showed that, in addition to one structural Zn(II), FurB is able to bind two additional Zn(II) per monomer and demonstrated the implication of cysteine C93 in regulatory Zn(II) coordination. The interaction of FurB with the second regulatory zinc occurred only under reducing conditions. While non-specific FurB-DNA interaction is Zn(II)-independent, the optimal binding of FurB to target promoters required loading of two regulatory zinc ions. Those results combined with site-directed mutagenesis and gel-shift assays evidenced that the redox state of cysteine C93 conditions the binding of the second regulatory Zn(II) and, in turn, modulates the affinity for a specific DNA target. Furthermore, differential spectroscopy studies showed that cysteine C93 could also be involved in heme coordination by FurB, either as a direct ligand or being located near the binding site. The results indicate that besides controlling zinc homeostasis, FurB could work as a redox-sensing protein probably modifying its zinc and DNA-binding abilities depending upon environmental conditions.


Subject(s)
Anabaena/metabolism , Bacterial Proteins/chemistry , DNA, Bacterial/chemistry , DNA-Binding Proteins/chemistry , Heme/chemistry , Metalloproteins/chemistry , Zinc/chemistry , Amino Acid Sequence , Anabaena/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Deoxyribonuclease I/chemistry , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Gene Expression , Gene Expression Regulation, Bacterial , Heme/metabolism , Kinetics , Metalloproteins/genetics , Metalloproteins/metabolism , Models, Molecular , Oxidation-Reduction , Oxidative Stress , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structural Homology, Protein , Zinc/metabolism
3.
Environ Microbiol ; 17(6): 2006-17, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25244409

ABSTRACT

Iron and zinc are necessary nutrients whose homeostasis is tightly controlled by members of the ferric uptake regulator (FUR) superfamily in the cyanobacterium Anabaena sp. PCC7120. Although the link between iron metabolism and oxidative stress management is well documented, little is known about the connection between zinc homeostasis and the oxidative stress response in cyanobacteria. Zinc homeostasis in Anabaena is controlled by Zur, also named FurB. When overexpressed in Escherichia coli, Zur (FurB) improved cell survival during oxidative stress. In order to investigate the possible correlation between Zur and the oxidative stress response in Anabaena, zur deletion and zur-overexpressing strains have been constructed, and the consequences of Zur imbalance evaluated. The lack of Zur increased sensitivity to hydrogen peroxide (H2 O2 ), whereas an excess of Zur enhanced oxidative stress resistance. Both mutants displayed pleiotropic phenotypes, including alterations on the filament surfaces observable by scanning electron microscopy, reduced content of endogenous H2 O2 and altered expression of sodA, catalases and several peroxiredoxins. Transcriptional and biochemical analyses unveiled that the appropriate level of Zur is required for proper control of the oxidative stress response and allowed us to identify major antioxidant enzymes as novel members of the Zur regulon.


Subject(s)
Anabaena/metabolism , Anabaena/physiology , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress/physiology , Anabaena/genetics , Catalase/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Iron/metabolism , Oxidation-Reduction , Oxidative Stress/genetics , Peroxiredoxins/metabolism , Regulon , Superoxide Dismutase/metabolism , Zinc/metabolism
4.
Antioxid Redox Signal ; 24(4): 173-185, 2016 02.
Article in English | MEDLINE | ID: mdl-26414804

ABSTRACT

AIMS: The ferric uptake regulator (Fur) is the main transcriptional regulator of genes involved in iron homeostasis in most prokaryotes. FurA from Anabaena sp. PCC 7120 contains five cysteine residues, four of them arranged in two redox-active CXXC motifs. The protein needs not only metal but also reducing conditions to remain fully active in vitro. Through a mutational study of the cysteine residues present in FurA, we have investigated their involvement in metal and DNA binding. RESULTS: Residue C101 that belongs to a conserved CXXC motif plays an essential role in both metal and DNA binding activities in vitro. Substitution of C101 by serine impairs DNA and metal binding abilities of FurA. Isothermal titration calorimetry measurements show that the redox state of C101 is responsible for the protein ability to coordinate the metal corepressor. Moreover, the redox state of C101 varies with the presence or absence of C104 or C133, suggesting that the environments of these cysteines are mutually interdependent. INNOVATION: We propose that C101 is part of a thiol/disulfide redox switch that determines FurA ability to bind the metal corepressor. CONCLUSION: This mechanism supports a novel feature of a Fur protein that emerges as a regulator, which connects the response to changes in the intracellular redox state and iron management in cyanobacteria. Antioxid. Redox Signal. 00, 000-000.

SELECTION OF CITATIONS
SEARCH DETAIL