Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 25(7): 1245-1256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38886592

ABSTRACT

Human immunodeficiency virus (HIV) cure efforts are increasingly focused on harnessing CD8+ T cell functions, which requires a deeper understanding of CD8+ T cells promoting HIV control. Here we identifiy an antigen-responsive TOXhiTCF1+CD39+CD8+ T cell population with high expression of inhibitory receptors and low expression of canonical cytolytic molecules. Transcriptional analysis of simian immunodeficiency virus (SIV)-specific CD8+ T cells and proteomic analysis of purified CD8+ T cell subsets identified TOXhiTCF1+CD39+CD8+ T cells as intermediate effectors that retained stem-like features with a lineage relationship with terminal effector T cells. TOXhiTCF1+CD39+CD8+ T cells were found at higher frequency than TCF1-CD39+CD8+ T cells in follicular microenvironments and were preferentially located in proximity of SIV-RNA+ cells. Their frequency was associated with reduced plasma viremia and lower SIV reservoir size. Highly similar TOXhiTCF1+CD39+CD8+ T cells were detected in lymph nodes from antiretroviral therapy-naive and antiretroviral therapy-suppressed people living with HIV, suggesting this population of CD8+ T cells contributes to limiting SIV and HIV persistence.


Subject(s)
CD8-Positive T-Lymphocytes , Lymph Nodes , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Simian Immunodeficiency Virus/immunology , CD8-Positive T-Lymphocytes/immunology , Animals , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Lymph Nodes/immunology , Humans , Macaca mulatta , HIV Infections/immunology , HIV Infections/virology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
2.
Cell ; 184(15): 3899-3914.e16, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34237254

ABSTRACT

The impact of the microbiome on HIV disease is widely acknowledged although the mechanisms downstream of fluctuations in microbial composition remain speculative. We detected rapid, dynamic changes in translocated microbial constituents during two years after cART initiation. An unbiased systems biology approach revealed two distinct pathways driven by changes in the abundance ratio of Serratia to other bacterial genera. Increased CD4 T cell numbers over the first year were associated with high Serratia abundance, pro-inflammatory innate cytokines, and metabolites that drive Th17 gene expression signatures and restoration of mucosal integrity. Subsequently, decreased Serratia abundance and downregulation of innate cytokines allowed re-establishment of systemic T cell homeostasis promoting restoration of Th1 and Th2 gene expression signatures. Analyses of three other geographically distinct cohorts of treated HIV infection established a more generalized principle that changes in diversity and composition of translocated microbial species influence systemic inflammation and consequently CD4 T cell recovery.


Subject(s)
Gastrointestinal Microbiome , HIV Infections/immunology , HIV Infections/microbiology , Antiretroviral Therapy, Highly Active , Biodiversity , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chemokines/blood , Cohort Studies , Glycolysis , HIV Infections/blood , HIV Infections/drug therapy , Humans , Inflammation/genetics , Inflammation/pathology , Mitochondria/metabolism , Monocytes/metabolism , Nucleic Acids/blood , Principal Component Analysis , Serratia/physiology , Th1 Cells/immunology , Th2 Cells/immunology , Transcription, Genetic , Uganda , Viral Load/immunology
3.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33278358

ABSTRACT

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Azetidines/administration & dosage , COVID-19 Drug Treatment , COVID-19/immunology , Macaca mulatta , Neutrophil Infiltration/drug effects , Purines/administration & dosage , Pyrazoles/administration & dosage , Sulfonamides/administration & dosage , Animals , COVID-19/physiopathology , Cell Death/drug effects , Cell Degranulation/drug effects , Disease Models, Animal , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Janus Kinases/antagonists & inhibitors , Lung/drug effects , Lung/immunology , Lung/pathology , Lymphocyte Activation/drug effects , Macrophages, Alveolar/immunology , SARS-CoV-2/physiology , Severity of Illness Index , T-Lymphocytes/immunology , Virus Replication/drug effects
4.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007262

ABSTRACT

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Subject(s)
Immunization, Passive/methods , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Gene Products, env/immunology , Gene Products, gag/immunology , Gene Products, pol/immunology , HIV-1/immunology , Immunoglobulin G/immunology , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome/immunology
5.
Nat Immunol ; 23(3): 360-370, 2022 03.
Article in English | MEDLINE | ID: mdl-35210622

ABSTRACT

Host genetic and environmental factors including age, biological sex, diet, geographical location, microbiome composition and metabolites converge to influence innate and adaptive immune responses to vaccines. Failure to understand and account for these factors when investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy may impair the development of the next generation of vaccines. Most studies aimed at identifying mechanisms of vaccine-mediated immune protection have focused on adaptive immune responses. It is well established, however, that mobilization of the innate immune response is essential to the development of effective cellular and humoral immunity. A comprehensive understanding of the innate immune response and environmental factors that contribute to the development of broad and durable cellular and humoral immune responses to SARS-CoV-2 and other vaccines requires a holistic and unbiased approach. Along with optimization of the immunogen and vectors, the development of adjuvants based on our evolving understanding of how the innate immune system shapes vaccine responses will be essential. Defining the innate immune mechanisms underlying the establishment of long-lived plasma cells and memory T cells could lead to a universal vaccine for coronaviruses, a key biomedical priority.


Subject(s)
Biological Variation, Population , COVID-19 Vaccines/immunology , COVID-19/epidemiology , COVID-19/prevention & control , Host-Pathogen Interactions/immunology , Immunity , SARS-CoV-2/immunology , Antibodies, Viral , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Global Health , Host Microbial Interactions/immunology , Humans , Immunity, Humoral , Immunity, Innate , Immunogenicity, Vaccine , Immunologic Memory , Microbiota/immunology , Pandemics , Public Health Surveillance , Vaccination
6.
Nat Immunol ; 23(12): 1777-1787, 2022 12.
Article in English | MEDLINE | ID: mdl-36316476

ABSTRACT

Several studies have shown that the pre-vaccination immune state is associated with the antibody response to vaccination. However, the generalizability and mechanisms that underlie this association remain poorly defined. Here, we sought to identify a common pre-vaccination signature and mechanisms that could predict the immune response across 13 different vaccines. Analysis of blood transcriptional profiles across studies revealed three distinct pre-vaccination endotypes, characterized by the differential expression of genes associated with a pro-inflammatory response, cell proliferation, and metabolism alterations. Importantly, individuals whose pre-vaccination endotype was enriched in pro-inflammatory response genes known to be downstream of nuclear factor-kappa B showed significantly higher serum antibody responses 1 month after vaccination. This pro-inflammatory pre-vaccination endotype showed gene expression characteristic of the innate activation state triggered by Toll-like receptor ligands or adjuvants. These results demonstrate that wide variations in the transcriptional state of the immune system in humans can be a key determinant of responsiveness to vaccination.


Subject(s)
Antibody Formation , Vaccines , Humans , Vaccination , Adjuvants, Immunologic , Immunity, Innate
7.
Nat Immunol ; 23(12): 1788-1798, 2022 12.
Article in English | MEDLINE | ID: mdl-36316475

ABSTRACT

Systems vaccinology has defined molecular signatures and mechanisms of immunity to vaccination. However, comparative analysis of immunity to different vaccines is lacking. We integrated transcriptional data of over 3,000 samples, from 820 adults across 28 studies of 13 vaccines and analyzed vaccination-induced signatures of antibody responses. Most vaccines induced signatures of innate immunity and plasmablasts at days 1 and 7, respectively, after vaccination. However, the yellow fever vaccine induced an early transient signature of T and B cell activation at day 1, followed by delayed antiviral/interferon and plasmablast signatures that peaked at days 7 and 14-21, respectively. Thus, there was no evidence for a 'universal signature' that predicted antibody response to all vaccines. However, accounting for the asynchronous nature of responses, we defined a time-adjusted signature that predicted antibody responses across vaccines. These results provide a transcriptional atlas of immunity to vaccination and define a common, time-adjusted signature of antibody responses.


Subject(s)
Antibody Formation , Vaccines , Adult , Humans , Antibody Formation/genetics , Gene Expression Profiling/methods , Vaccination , Immunity, Innate , Antibodies, Viral
8.
Nat Immunol ; 22(4): 423-433, 2021 04.
Article in English | MEDLINE | ID: mdl-33767427

ABSTRACT

Individuals infected with human immunodeficiency virus type-1 (HIV-1) show metabolic alterations of CD4+ T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4+ T cells from patients with HIV-1 and revealed that the elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the US Food and Drug Administration-approved drug metformin, which targets mitochondrial respiratory chain complex-I, suppresses HIV-1 replication in human CD4+ T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4+ T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein FASTKD5 to promote expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4+ T cells as a target for HIV-1 therapy.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Genomics , HIV Infections/virology , HIV-1/growth & development , Metabolome , Metabolomics , Oxidative Phosphorylation , Proteome , Transcriptome , Virus Replication , Animals , Antiviral Agents/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Female , Gene Expression Profiling , Gene Regulatory Networks , HEK293 Cells , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/drug effects , HIV-1/immunology , HIV-1/metabolism , Host-Pathogen Interactions , Humans , Jurkat Cells , Male , Metformin/pharmacology , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation/drug effects , Proteomics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Viral Load , Virus Replication/drug effects
9.
Nat Immunol ; 22(10): 1294-1305, 2021 10.
Article in English | MEDLINE | ID: mdl-34556879

ABSTRACT

Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.


Subject(s)
Cyclic AMP Response Element-Binding Protein/immunology , HIV Infections/immunology , HIV-1/immunology , Immunogenicity, Vaccine/immunology , Viral Vaccines/immunology , AIDS Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Gene Expression/immunology , Genetic Vectors/immunology , HIV Antibodies/immunology , HIV Infections/virology , Humans , Immunization/methods , Primates/immunology , Primates/virology , Vaccination/methods
10.
Cell ; 172(3): 517-533.e20, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29249358

ABSTRACT

B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Immunity, Innate , Influenza, Human/immunology , Interleukin-4/genetics , Killer Cells, Natural/immunology , Zika Virus Infection/immunology , Animals , Chickens , Dogs , Germinal Center/cytology , Humans , Interleukin-4/metabolism , Macaca , Macrophages/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL
11.
Nat Immunol ; 21(5): 578-587, 2020 05.
Article in English | MEDLINE | ID: mdl-32231298

ABSTRACT

The pool of beta cell-specific CD8+ T cells in type 1 diabetes (T1D) sustains an autoreactive potential despite having access to a constant source of antigen. To investigate the long-lived nature of these cells, we established a DNA methylation-based T cell 'multipotency index' and found that beta cell-specific CD8+ T cells retained a stem-like epigenetic multipotency score. Single-cell assay for transposase-accessible chromatin using sequencing confirmed the coexistence of naive and effector-associated epigenetic programs in individual beta cell-specific CD8+ T cells. Assessment of beta cell-specific CD8+ T cell anatomical distribution and the establishment of stem-associated epigenetic programs revealed that self-reactive CD8+ T cells isolated from murine lymphoid tissue retained developmentally plastic phenotypic and epigenetic profiles relative to the same cells isolated from the pancreas. Collectively, these data provide new insight into the longevity of beta cell-specific CD8+ T cell responses and document the use of this methylation-based multipotency index for investigating human and mouse CD8+ T cell differentiation.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Diabetes Mellitus, Type 1/immunology , Insulin-Secreting Cells/immunology , Pluripotent Stem Cells/physiology , Adolescent , Adult , Animals , Autoantigens/immunology , Cell Plasticity , Cells, Cultured , DNA Methylation , Epigenesis, Genetic , Female , Flow Cytometry , Humans , Immunologic Memory , Male , Mice , Single-Cell Analysis , Young Adult
12.
Immunity ; 56(5): 1132-1147.e6, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37030290

ABSTRACT

HIV infection persists during antiretroviral therapy (ART) due to a reservoir of latently infected cells that harbor replication-competent virus and evade immunity. Previous ex vivo studies suggested that CD8+ T cells from people with HIV may suppress HIV expression via non-cytolytic mechanisms, but the mechanisms responsible for this effect remain unclear. Here, we used a primary cell-based in vitro latency model and demonstrated that co-culture of autologous activated CD8+ T cells with HIV-infected memory CD4+ T cells promoted specific changes in metabolic and/or signaling pathways resulting in increased CD4+ T cell survival, quiescence, and stemness. Collectively, these pathways negatively regulated HIV expression and ultimately promoted the establishment of latency. As shown previously, we observed that macrophages, but not B cells, promoted latency in CD4+ T cells. The identification of CD8-specific mechanisms of pro-latency activity may favor the development of approaches to eliminate the viral reservoir in people with HIV.


Subject(s)
HIV Infections , Humans , CD8-Positive T-Lymphocytes , Virus Latency , CD4-Positive T-Lymphocytes , Virus Replication
13.
Cell ; 165(3): 656-67, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27085913

ABSTRACT

The earliest events following mucosal HIV-1 infection, prior to measurable viremia, remain poorly understood. Here, by detailed necropsy studies, we show that the virus can rapidly disseminate following mucosal SIV infection of rhesus monkeys and trigger components of the inflammasome, both at the site of inoculation and at early sites of distal virus spread. By 24 hr following inoculation, a proinflammatory signature that lacked antiviral restriction factors was observed in viral RNA-positive tissues. The early innate response included expression of NLRX1, which inhibits antiviral responses, and activation of the TGF-ß pathway, which negatively regulates adaptive immune responses. These data suggest a model in which the virus triggers specific host mechanisms that suppress the generation of antiviral innate and adaptive immune responses in the first few days of infection, thus facilitating its own replication. These findings have important implications for the development of vaccines and other strategies to prevent infection.


Subject(s)
Inflammasomes/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Animals , Bone Marrow/immunology , Immunity, Innate , Immunity, Mucosal , Killer Cells, Natural/immunology , Macaca mulatta , Mitochondrial Proteins/metabolism , Monocytes/immunology , T-Lymphocytes/immunology , Transcriptome , Transforming Growth Factor beta/metabolism , Virus Replication
14.
Immunity ; 47(4): 776-788.e5, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045906

ABSTRACT

Antiretroviral therapy (ART) suppresses viral replication in HIV-infected individuals but does not eliminate the reservoir of latently infected cells. Recent work identified PD-1+ follicular helper T (Tfh) cells as an important cellular compartment for viral persistence. Here, using ART-treated, SIV-infected rhesus macaques, we show that CTLA-4+PD-1- memory CD4+ T cells, which share phenotypic markers with regulatory T cells, were enriched in SIV DNA in blood, lymph nodes (LN), spleen, and gut, and contained replication-competent and infectious virus. In contrast to PD-1+ Tfh cells, SIV-enriched CTLA-4+PD-1- CD4+ T cells were found outside the B cell follicle of the LN, predicted the size of the persistent viral reservoir during ART, and significantly increased their contribution to the SIV reservoir with prolonged ART-mediated viral suppression. We have shown that CTLA-4+PD-1- memory CD4+ T cells are a previously unrecognized component of the SIV and HIV reservoir that should be therapeutically targeted for a functional HIV-1 cure.


Subject(s)
Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CTLA-4 Antigen/immunology , Programmed Cell Death 1 Receptor/immunology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/drug effects , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CTLA-4 Antigen/metabolism , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , HIV-1/physiology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory/drug effects , Immunologic Memory/immunology , In Situ Hybridization , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/virology , Macaca mulatta , Microscopy, Confocal , Programmed Cell Death 1 Receptor/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/physiology , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/virology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/virology
15.
J Virol ; 98(5): e0019424, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38567950

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE: Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.


Subject(s)
Dendritic Cells , Single-Cell Analysis , Zika Virus Infection , Zika Virus , Humans , Zika Virus/physiology , Zika Virus Infection/virology , Zika Virus Infection/immunology , Dendritic Cells/virology , Dendritic Cells/immunology , RNA, Viral/metabolism , RNA, Viral/genetics , Interferon Type I/metabolism , Host-Pathogen Interactions , Sequence Analysis, RNA
16.
Trends Immunol ; 43(9): 696-705, 2022 09.
Article in English | MEDLINE | ID: mdl-35907675

ABSTRACT

Innate immunity is an intrinsic baseline defense in cells, with its earliest origins in bacteria, and with key roles in defense against pathogens and in the activation of B and T cell responses. In mammals, the efficacy of innate immunity in initiating the cascades that lead to pathogen control results from the interplay of transcriptomic, epigenomic, and proteomic responses regulating immune activation and long-lived pathogen-specific memory responses. Recent studies suggest that intrinsic innate immunity is modulated by individual exposure histories - prior infections, vaccinations, and metabolites of microbial origin - and this promotes, or impairs, the development of efficacious innate immune responses. Understanding how environmental factors regulate innate immunity and boost protection from infection or response to vaccination could be a valuable tool for pandemic preparedness.


Subject(s)
Antiviral Agents , Proteomics , Animals , Humans , Immunity, Innate , Mammals , Pandemics , T-Lymphocytes
17.
PLoS Pathog ; 18(1): e1009903, 2022 01.
Article in English | MEDLINE | ID: mdl-35061851

ABSTRACT

It has been estimated that more than 390 million people are infected with Dengue virus every year; around 96 millions of these infections result in clinical pathologies. To date, there is only one licensed viral vector-based Dengue virus vaccine CYD-TDV approved for use in dengue endemic areas. While initially approved for administration independent of serostatus, the current guidance only recommends the use of this vaccine for seropositive individuals. Therefore, there is a critical need for investigating the influence of Dengue virus serostatus and immunological mechanisms that influence vaccine outcome. Here, we provide comprehensive evaluation of sero-status and host immune factors that correlate with robust immune responses to a Dengue virus vector based tetravalent vaccine (TV003) in a Phase II clinical cohort of human participants. We observed that sero-positive individuals demonstrate a much stronger immune response to the TV003 vaccine. Our multi-layered immune profiling revealed that sero-positive subjects have increased baseline/pre-vaccination frequencies of circulating T follicular helper (cTfh) cells and the Tfh related chemokine CXCL13/BLC. Importantly, this baseline/pre-vaccination cTfh profile correlated with the vaccinees' ability to launch neutralizing antibody response against all four sero-types of Dengue virus, an important endpoint for Dengue vaccine clinical trials. Overall, we provide novel insights into the favorable cTfh related immune status that persists in Dengue virus sero-positive individuals that correlate with their ability to mount robust vaccine specific immune responses. Such detailed interrogation of cTfh cell biology in the context of clinical vaccinology will help uncover mechanisms and targets for favorable immuno-modulatory agents.


Subject(s)
Antibodies, Viral/immunology , Dengue Vaccines/immunology , Immunogenicity, Vaccine/immunology , T Follicular Helper Cells/immunology , Antibodies, Neutralizing/immunology , Dengue/prevention & control , Female , Humans , Male , Vaccines, Combined/immunology
18.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903232

ABSTRACT

The development of follicular helper CD4 T (TFH) cells is a dynamic process resulting in a heterogenous pool of TFH subsets. However, the cellular and molecular determinants of this heterogeneity and the possible mechanistic links between them is not clear. We found that human TFH differentiation is associated with significant changes in phenotypic, chemokine, functional, metabolic and transcriptional profile. Furthermore, this differentiation was associated with distinct positioning to follicular proliferating B cells. Single-cell T cell receptor (TCR) clonotype analysis indicated the transitioning toward PD-1hiCD57hi phenotype. Furthermore, the differentiation of TFH cells was associated with significant reduction in TCR level and drastic changes in immunological synapse formation. TFH synapse lacks a tight cSMAC (central supra molecular activation Cluster) but displays the TCR in peripheral microclusters, which are potentially advantageous in the ability of germinal center (GC) B cells to receive necessary help. Our data reveal significant aspects of human TFH heterogeneity and suggest that the PD-1hiCD57hi TFH cells, in particular, are endowed with distinctive programming and spatial positioning for optimal GC B cell help.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/immunology , Receptors, Antigen, T-Cell/genetics , T Follicular Helper Cells/immunology , CD4-Positive T-Lymphocytes/immunology , CD57 Antigens/genetics , Cell Communication/immunology , Cell Differentiation/immunology , Cell Lineage/genetics , Chemokines/genetics , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunological Synapses/genetics , Immunological Synapses/immunology , Lymphocyte Activation/immunology , Phenotype , Programmed Cell Death 1 Receptor/genetics , Receptors, Antigen, T-Cell/immunology , T Follicular Helper Cells/metabolism , T-Lymphocyte Subsets/immunology
19.
PLoS Pathog ; 17(9): e1009941, 2021 09.
Article in English | MEDLINE | ID: mdl-34559866

ABSTRACT

The metabolic signaling pathways that drive pathologic tissue inflammation and damage in humans with pulmonary tuberculosis (TB) are not well understood. Using combined methods in plasma high-resolution metabolomics, lipidomics and cytokine profiling from a multicohort study of humans with pulmonary TB disease, we discovered that IL-1ß-mediated inflammatory signaling was closely associated with TCA cycle remodeling, characterized by accumulation of the proinflammatory metabolite succinate and decreased concentrations of the anti-inflammatory metabolite itaconate. This inflammatory metabolic response was particularly active in persons with multidrug-resistant (MDR)-TB that received at least 2 months of ineffective treatment and was only reversed after 1 year of appropriate anti-TB chemotherapy. Both succinate and IL-1ß were significantly associated with proinflammatory lipid signaling, including increases in the products of phospholipase A2, increased arachidonic acid formation, and metabolism of arachidonic acid to proinflammatory eicosanoids. Together, these results indicate that decreased itaconate and accumulation of succinate and other TCA cycle intermediates is associated with IL-1ß-mediated proinflammatory eicosanoid signaling in pulmonary TB disease. These findings support host metabolic remodeling as a key driver of pathologic inflammation in human TB disease.


Subject(s)
Citric Acid Cycle/physiology , Inflammation/metabolism , Signal Transduction/physiology , Tuberculosis, Pulmonary/metabolism , Humans
20.
PLoS Pathog ; 17(8): e1009825, 2021 08.
Article in English | MEDLINE | ID: mdl-34449812

ABSTRACT

Clinical outcomes are inferior for individuals with HIV having suboptimal CD4 T-cell recovery during antiretroviral therapy (ART). We investigated if the levels of infection and the response to homeostatic cytokines of CD4 T-cell subsets contributed to divergent CD4 T-cell recovery and HIV reservoir during ART by studying virologically-suppressed immunologic responders (IR, achieving a CD4 cell count >500 cells/µL on or before two years after ART initiation), and virologically-suppressed suboptimal responders (ISR, did not achieve a CD4 cell count >500 cells/µL in the first two years after ART initiation). Compared to IR, ISR demonstrated higher levels of HIV-DNA in naïve, central (CM), transitional (TM), and effector (EM) memory CD4 T-cells in blood, both pre- and on-ART, and specifically in CM CD4 T-cells in LN on-ART. Furthermore, ISR had higher pre-ART plasma levels of IL-7 and IL-15, cytokines regulating T-cell homeostasis. Notably, pre-ART PD-1 and TIGIT expression levels were higher in blood CM and TM CD4 T-cells for ISR; this was associated with a significantly lower fold-changes in HIV-DNA levels between pre- and on-ART time points exclusively on CM and TM T-cell subsets, but not naïve or EM T-cells. Finally, the frequency of CM CD4 T-cells expressing PD-1 or TIGIT pre-ART as well as plasma levels of IL-7 and IL-15 predicted HIV-DNA content on-ART. Our results establish the association between infection, T-cell homeostasis, and expression of PD-1 and TIGIT in long-lived CD4 T-cell subsets prior to ART with CD4 T-cell recovery and HIV persistence on-ART.


Subject(s)
Anti-Retroviral Agents/pharmacology , CD4-Positive T-Lymphocytes/immunology , Cytokines/metabolism , HIV Infections/virology , Homeostasis , T-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , DNA, Viral , Female , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/immunology , Humans , Immunologic Memory/immunology , Male , Middle Aged , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/virology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL