Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cancer Discov ; 11(9): 2216-2229, 2021 09.
Article in English | MEDLINE | ID: mdl-33741711

ABSTRACT

ZFTA (C11orf95)-a gene of unknown function-partners with a variety of transcriptional coactivators in translocations that drive supratentorial ependymoma, a frequently lethal brain tumor. Understanding the function of ZFTA is key to developing therapies that inhibit these fusion proteins. Here, using a combination of transcriptomics, chromatin immunoprecipitation sequencing, and proteomics, we interrogated a series of deletion-mutant genes to identify a tripartite transformation mechanism of ZFTA-containing fusions, including: spontaneous nuclear translocation, extensive chromatin binding, and SWI/SNF, SAGA, and NuA4/Tip60 HAT chromatin modifier complex recruitment. Thereby, ZFTA tethers fusion proteins across the genome, modifying chromatin to an active state and enabling its partner transcriptional coactivators to promote promiscuous expression of a transforming transcriptome. Using mouse models, we validate further those elements of ZFTA-fusion proteins that are critical for transformation-including ZFTA zinc fingers and partner gene transactivation domains-thereby unmasking vulnerabilities for therapeutic targeting. SIGNIFICANCE: Ependymomas are hard-to-treat brain tumors driven by translocations between ZFTA and a variety of transcriptional coactivators. We dissect the transforming mechanism of these fusion proteins and identify protein domains indispensable for tumorigenesis, thereby providing insights into the molecular basis of ependymoma tumorigenesis and vulnerabilities for therapeutic targeting.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
Cell Transformation, Neoplastic , Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , Ependymoma/genetics , Supratentorial Neoplasms/genetics , Transcription Factors/genetics , Translocation, Genetic , Animals , Mice
2.
Clin Cancer Res ; 26(4): 922-934, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31699827

ABSTRACT

PURPOSE: Cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and potential therapeutic target for many cancers. Multiple nonselective CDK9 inhibitors have progressed clinically but were limited by a narrow therapeutic window. This work describes a novel, potent, and highly selective CDK9 inhibitor, AZD4573. EXPERIMENTAL DESIGN: The antitumor activity of AZD4573 was determined across broad cancer cell line panels in vitro as well as cell line- and patient-derived xenograft models in vivo. Multiple approaches, including integrated transcriptomic and proteomic analyses, loss-of-function pathway interrogation, and pharmacologic comparisons, were employed to further understand the major mechanism driving AZD4573 activity and to establish an exposure/effect relationship. RESULTS: AZD4573 is a highly selective and potent CDK9 inhibitor. It demonstrated rapid induction of apoptosis and subsequent cell death broadly across hematologic cancer models in vitro, and MCL-1 depletion in a dose- and time-dependent manner was identified as a major mechanism through which AZD4573 induces cell death in tumor cells. This pharmacodynamic (PD) response was also observed in vivo, which led to regressions in both subcutaneous tumor xenografts and disseminated models at tolerated doses both as monotherapy or in combination with venetoclax. This understanding of the mechanism, exposure, and antitumor activity of AZD4573 facilitated development of a robust pharmacokinetic/PD/efficacy model used to inform the clinical trial design. CONCLUSIONS: Selective targeting of CDK9 enables the indirect inhibition of MCL-1, providing a therapeutic option for MCL-1-dependent diseases. Accordingly, AZD4573 is currently being evaluated in a phase I clinical trial for patients with hematologic malignancies (clinicaltrials.gov identifier: NCT03263637).See related commentary by Alcon et al., p. 761.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Apoptosis/drug effects , Cyclin-Dependent Kinase 9 , Humans , Myeloid Cell Leukemia Sequence 1 Protein , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL