Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Soft Matter ; 19(46): 9050-9058, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37975238

ABSTRACT

Halloysite nanotubes (HNTs) are naturally occurring clay minerals found in the Earth's crust that typically exist in the form of high aspect-ratio nanometer-long rods. Here, we investigate the evaporation-driven self-assembly process of HNTs and show that a highly polydisperse collection of HNTs self-sort into a spatially inhomogeneous structure, displaying a systematic variation in the resulting nematic order. Through detailed quantification using the nematic order parameter S and nematic correlation functions, we show the existence of well-defined isotropic-nematic transitions in the emerging structures. We also show that the onset of these transitions gives rise to the formation of nematic islands, a phase resembling ordered nematic domains surrounded by an isotropic phase, which grow in size with S. Detailed image analysis indicates a strong correlation between local S and the local aspect ratio, L/D, with nematic order possible only for rods with L/D ≥ 6.5 ± 1. Finally, we conclude that the observed phenomena directly result from aspect ratio-based sorting in our system. Altogether, our results provide a unique method of tuning the local microscopic structure in self-assembled HNTs using L/D as an external parameter.

2.
Environ Monit Assess ; 193(12): 822, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34792660

ABSTRACT

A comprehensive measurement of concentrations of the natural radionuclides 238U, 232Th and 40K, and 226Ra in the soil and rocks along with natural uranium and tritium activity levels in lake water were carried out during the Indian expedition to Antarctica. The samples were collected from the Larsemann Hills region in Antarctica (latitude 69°20' S to 69°25'S, longitude 76°6' E to 76°23'E). The data on the natural radioactivity for this region is limited. The study was carried out to establish baseline levels of radioactivity in different terrestrial matrices of this region such as soil, rocks, and lake water. A radiation survey mapping for terrestrial radioactivity was conducted in the region before collection of soil and rock samples. The soil and rock samples were analyzed for natural radioactivity concentrations using high-resolution gamma spectroscopy system. The major contributor to elevated gamma radiation background is attributed to the higher concentration of 232Th and 40K radionuclides in both soil and rocks. Terrestrial components of gamma dose rate due to natural radioactivity have been estimated from the measured radioactivity concentrations and dose conversion coefficients. Several "hotspots" and high background areas in the region have been identified having significantly higher concentration of 232Th and 40K. Rocks in Larsemann Hills region showed high reserve of thorium mineralization in monazites and 40K in K-feldspar. The concentrations of 232Th in soil are found to be in the range of 106-603 Bq/kg, whereas in rock it is in the range of 8-4514 Bq/kg. Natural radioactivity U (nat) and 3H contents in the lake water samples in Larsemann Hills region were estimated as 0.4 and 1.3 Bq/L and are well within the prescribed limit of radioactivity in drinking water as recommended by World Health Organization.


Subject(s)
Radiation Monitoring , Radioactivity , Soil Pollutants, Radioactive , Antarctic Regions , Background Radiation , Lakes/analysis , Potassium Radioisotopes/analysis , Soil , Soil Pollutants, Radioactive/analysis , Spectrometry, Gamma , Thorium/analysis
3.
Mater Sci Eng C Mater Biol Appl ; 104: 109932, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31499934

ABSTRACT

Nanomaterial based paints are in current demand in the area of surface protective coatings due to the significant advances made to improve their antibacterial and anticorrosion characteristics. In this work, we have developed magnetic graphene oxide (MGO) paint with the incorporation of cobalt ferrite (CF) and graphene oxide (GO) along with paint materials by using high energy ball milling (HEBM). Morphological, elemental and functional analysis of the MGO paint is studied with ESEM, AFM, Raman, FTIR spectroscopy. EDS and PIXE methods are used for elemental analysis. Thermal analysis shows that the MGO film was stable up to 100 °C. The saturation magnetization of CF MNP is observed as 76 emu/g and it is reduced to 12 emu/g for MGP paint. The detailed antibacterial study of the prepared MGO paint has performed with S. typhimurium and E. coli. The dead-live assessment shows the dead population for S. typhimurium is superior up to 82% whereas it is 20% for E. coli. The morphological damage of bacterial cells is studied using SEM technique. Flow cytometry analysis of reactive oxygen species (ROS) generation experiments and computational analysis supported the proposed mechanism of induced ROS for the damage of bacterial membrane via interaction of GO and CF with bacterial proteins leading to alteration in their functionality. The observed results indicate that the prepared MGO paint could be a better candidate in the area of nano paint for surface protective coatings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/chemical synthesis , Ferric Compounds/chemical synthesis , Graphite/chemical synthesis , Magnetite Nanoparticles/chemistry , Secretory Pathway/drug effects , Anti-Bacterial Agents/chemical synthesis , Cell Death/drug effects , Cell Line, Tumor , Coated Materials, Biocompatible/pharmacology , Cobalt/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Ferric Compounds/pharmacology , Graphite/pharmacology , Humans , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/ultrastructure , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Surface Properties , Temperature , Thermogravimetry , Vibration
4.
J Hazard Mater ; 287: 207-16, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25666975

ABSTRACT

Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes.


Subject(s)
Calcium Compounds/chemistry , Metals/chemistry , Oxides/chemistry , Radioactive Waste , Titanium/chemistry , Waste Management/methods , Powder Diffraction , Temperature , X-Ray Diffraction
5.
J Hazard Mater ; 266: 94-101, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24384375

ABSTRACT

Ensuring environmental protection in and around nuclear facilities is a matter of deep concern. Toward this, layered chalcogenide with CdI2 crystal structure has been prepared. Structural characterizations of layered chalcogenide suggest 'topotactic ionic substitution' as the dominant mechanism behind uptake of different cations within its lattice structure. An equilibration time of 45 min and volume to mass ratio of 30:1 are found to absorb (233)U, (239)Pu, (106)Ru, (85+89)Sr, (137)Cs and (241)Am radionuclides to the maximum extents.


Subject(s)
Radioisotopes/chemistry , Sulfides/chemistry , Adsorption , Cadmium Compounds/chemistry , Environmental Pollution/prevention & control , Iodides/chemistry
6.
J Hazard Mater ; 235-236: 17-28, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22902141

ABSTRACT

Immobilization of phosphate containing high level nuclear wastes within commonly used silicate glasses is difficult due to restricted solubility of P(2)O(5) within such melts and its tendency to promote crystallization. The situation becomes more adverse when sulfate, chromate, etc. are also present within the waste. To solve this problem waste developers have carried out significant laboratory scale research works in various phosphate based glass systems and successfully identified few formulations which apparently look very promising as they are chemically durable, thermally stable and can be processed at moderate temperatures. However, in the absence of required plant scale manufacturing experiences it is not possible to replace existing silicate based vitrification processes by the phosphate based ones. A review on phosphate glass based wasteforms is presented here.


Subject(s)
Phosphates/chemistry , Radioactive Waste , Waste Management/methods , Silicates/chemistry
7.
J Hazard Mater ; 190(1-3): 229-39, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21477923

ABSTRACT

Given the environmental-, safety- and security risks associated with sealed radioactive sources it is important to identify suitable host matrices for (90)Sr that is used for various peaceful applications. As SrO promotes phase separation within borosilicate melt, aluminosilicate bulk compositions belonging to anorthite-wollastonite-gehlenite stability field are studied in this work. Tests for their homogeneity, microstructural characteristics and resistance to phase separation narrowed the choice down to the composition CAS11 (CaO=35 wt%, Al(2)O(3)=20 wt%, SiO(2)=45 wt%). We find that up to 30 wt% SrO can be loaded in this glass without phase separation (into Ca, Sr-rich and Sr-poor, Si-rich domains). Leaching behaviour of the glasses differs depending on the content and distribution of Sr. In general, the elemental leach rates determined from conventional PCT experimental procedure yield values better than 10(-7)gcm(-2)day(-1) for both CAS11 base glass as well as SrO doped glass. It was noted that leach rates calculated on the basis of Ca(2+) and Sr(2+) were of the same order and bit higher compared to those calculated on the basis of Si(4+) and Al(3+). During accelerated leaching tests, zeolite and zeolite+epidote were found to have developed on CAS11 base glass and SrO doped glasses respectively. The Sr bulk diffusion coefficients is found to vary from ∼ 10(-15) to 10(-13)cm(2)/s at temperature intervals as high as 725-850°C. Based on the experimental observations, it is suggested that CAS11 glass can be used as host matrix of (90)Sr for various applications of radioactive Sr-pencils.


Subject(s)
Glass/chemistry , Strontium Radioisotopes , Aluminum Silicates , Calcium Compounds , Diffusion , Hot Temperature , Kinetics , Silicates , Zeolites
8.
J Hazard Mater ; 192(1): 208-21, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21684682

ABSTRACT

Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt.


Subject(s)
Hazardous Substances , Nickel/chemistry , Radioactive Waste , Yttrium/chemistry , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL