Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Arch Biochem Biophys ; 752: 109882, 2024 02.
Article in English | MEDLINE | ID: mdl-38211639

ABSTRACT

G protein-coupled receptor 30 (GPR30), also named G protein-coupled estrogen receptor (GPER), and the ß1-adrenergic receptor (ß1AR) are G protein-coupled receptors (GPCR) that are implicated in breast cancer progression. Both receptors contain PSD-95/Discs-large/ZO-1 homology (PDZ) motifs in their C-terminal tails through which they interact in the plasma membrane with membrane-associated guanylate kinase (MAGUK) scaffold proteins, and in turn protein kinase A anchoring protein (AKAP) 5. GPR30 constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. We hypothesized that this inhibition is a consequence of a plasma membrane complex of these receptors. Using co-immunoprecipitation, confocal immunofluorescence microscopy, and bioluminescence resonance energy transfer (BRET), we show that GPR30 and ß1AR reside in close proximity in a plasma membrane complex when transiently expressed in HEK293. Deleting the GPR30 C-terminal PDZ motif (-SSAV) does not interfere with the receptor complex, indicating that the complex is not PDZ-dependent. MCF7 breast cancer cells express GPR30, ß1AR, MAGUKs, and AKAP5 in the plasma membrane, and co-immunoprecipitation revealed that these proteins exist in close proximity also under native conditions. Furthermore, expression of GPR30 in MCF7 cells constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. AKAP5 also inhibits ß1AR-mediated cAMP production, which is not additive with GPR30-promoted inhibition. These results argue that GPR30 and ß1AR form a PDZ-independent complex in MCF7 cells through which GPR30 constitutively and PDZ-dependently inhibits ß1AR signaling via receptor interaction with MAGUKs and AKAP5.


Subject(s)
Breast Neoplasms , Cyclic AMP-Dependent Protein Kinases , Female , Humans , A Kinase Anchor Proteins/metabolism , Carrier Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , GTP-Binding Proteins/metabolism , Guanylate Kinases , HEK293 Cells , MCF-7 Cells , Receptors, Adrenergic/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism
2.
Circ Res ; 130(1): 5-23, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34789016

ABSTRACT

BACKGROUND: The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling. METHODS: Cdh5flox/flox;Prox1CreERT2 mice were used to delete VE-cadherin in lymphatic endothelial cells across life stages, including embryonic, postnatal, and adult. Lymphatic architecture and function was characterized using immunostaining and functional lymphangiography. To evaluate the impact of temporal and functional regression of cardiac lymphatics in Cdh5flox/flox;Prox1CreERT2 mice, left anterior descending artery ligation was performed and cardiac function and repair after myocardial infarction was evaluated by echocardiography and histology. Cellular effects of VE-cadherin deletion on lymphatic signaling pathways were assessed by knockdown of VE-cadherin in cultured lymphatic endothelial cells. RESULTS: Embryonic deletion of VE-cadherin produced edematous embryos with dilated cardiac lymphatics with significantly altered vessel tip morphology. Postnatal deletion of VE-cadherin caused complete disassembly of cardiac lymphatics. Adult deletion caused a temporal regression of the quiescent epicardial lymphatic network which correlated with significant dermal and cardiac lymphatic dysfunction, as measured by fluorescent and quantum dot lymphangiography, respectively. Surprisingly, despite regression of cardiac lymphatics, Cdh5flox/flox;Prox1CreERT2 mice exhibited preserved cardiac function, both at baseline and following myocardial infarction, compared with control mice. Mechanistically, loss of VE-cadherin leads to aberrant cellular internalization of VEGFR3, precluding the ability of VEGFR3 to be either canonically activated by VEGF-C or noncanonically transactivated by adrenomedullin signaling, impairing downstream processes such as cellular proliferation. CONCLUSIONS: VE-cadherin is an essential scaffolding protein to maintain prolymphangiogenic signaling nodes at the plasma membrane, which are required for the development and adult maintenance of cardiac lymphatics, but not for cardiac function basally or after injury.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Lymphatic Vessels/metabolism , Pericardium/metabolism , Signal Transduction , Animals , Antigens, CD/genetics , Cadherins/genetics , Cells, Cultured , Female , Humans , Lymphatic Vessels/physiology , Male , Mice , Mice, Inbred C57BL , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism
3.
Anal Chem ; 88(15): 7786-92, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27391352

ABSTRACT

The etiology of rheumatoid arthritis (RA) is poorly understood, and 30% of patients are unresponsive to established treatments targeting tumor necrosis factor α (TNFα). Akt kinase is implicated in TNFα signaling and may act as a barometer of patient responses to biologic therapies. Fluorescent peptide sensors and chemical cytometry were employed to directly measure Akt activity as well as proteolytic activity in individual fibroblast-like synoviocytes (FLS) from RA and normal subjects. The specificity of the peptide reporter was evaluated and shown to be a valid measure of Akt activity in single cells. The effect of TNFα treatment on Akt activity was highly heterogeneous between normal and RA subjects, which was not observable in bulk analyses. In 2 RA subjects, a bimodal distribution of Akt activity was observed, primarily due to a subpopulation (21.7%: RA Subject 5; 23.8%: RA Subject 6) of cells in which >60% of the reporter was phosphorylated. These subjects also possessed statistically elevated proteolytic cleavage of the reporter relative to normal subjects, suggesting heterogeneity in Akt and protease activity that may play a role in the RA-affected joint. We expect that chemical cytometry studies pairing peptide reporters with capillary electrophoresis will provide valuable data regarding aberrant kinase activity from small samples of clinical interest.


Subject(s)
Arthritis, Rheumatoid/pathology , Electrophoresis, Capillary , Proto-Oncogene Proteins c-akt/metabolism , Synoviocytes/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Chromones/pharmacology , Fibroblasts/cytology , Humans , Insulin/pharmacology , Morpholines/pharmacology , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction/drug effects , Single-Cell Analysis , Synoviocytes/cytology , Synoviocytes/metabolism
4.
J Clin Invest ; 134(15)2024 May 14.
Article in English | MEDLINE | ID: mdl-38743922

ABSTRACT

Recently developed antimigraine therapeutics targeting calcitonin gene-related peptide (CGRP) signaling are effective, though their sites of activity remain elusive. Notably, the lymphatic vasculature is responsive to CGRP signaling, but whether meningeal lymphatic vessels (MLVs) contribute to migraine pathophysiology is unknown. Mice with lymphatic vasculature deficient in the CGRP receptor (CalcrliLEC mice) treated with nitroglycerin-mediated (NTG-mediated) chronic migraine exhibit reduced pain and light avoidance compared with NTG-treated littermate controls. Gene expression profiles of lymphatic endothelial cells (LECs) isolated from the meninges of Rpl22HA/+;Lyve1Cre RiboTag mice treated with NTG revealed increased MLV-immune interactions compared with cells from untreated mice. Interestingly, the relative abundance of mucosal vascular addressin cell adhesion molecule 1-interacting (MAdCAM1-interacting) CD4+ T cells was increased in the deep cervical lymph nodes of NTG-treated control mice but not in NTG-treated CalcrliLEC mice. Treatment of cultured hLECs with CGRP peptide in vitro induced vascular endothelial-cadherin (VE-cadherin) rearrangement and reduced functional permeability. Likewise, intra cisterna magna injection of CGRP caused rearrangement of VE-cadherin, decreased MLV uptake of cerebrospinal fluid (CSF), and impaired CSF drainage in control mice but not in CalcrliLEC mice. Collectively, these findings reveal a previously unrecognized role for lymphatics in chronic migraine, whereby CGRP signaling primes MLV-immune interactions and reduces CSF efflux.


Subject(s)
Calcitonin Gene-Related Peptide , Meninges , Migraine Disorders , Signal Transduction , Animals , Male , Mice , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/genetics , CD4-Positive T-Lymphocytes/metabolism , Cerebrospinal Fluid/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Inflammation/metabolism , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Meninges/metabolism , Migraine Disorders/metabolism , Migraine Disorders/pathology , Nitroglycerin/pharmacology , Pain/metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism , Humans , Female
5.
Stem Cell Res Ther ; 13(1): 37, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093170

ABSTRACT

BACKGROUND: The bone marrow niche supports hematopoietic cell development through intimate contact with multipotent stromal mesenchymal stem cells; however, the intracellular signaling, function, and regulation of such supportive niche cells are still being defined. Our study was designed to understand how G protein receptor kinase 3 (GRK3) affects bone marrow mesenchymal stem cell function by examining primary cells from GRK3-deficient mice, which we have previously published to have a hypercellular bone marrow and leukocytosis through negative regulation of CXCL12/CXCR4 signaling. METHODS: Murine GRK3-deficient bone marrow mesenchymal stromal cells were harvested and cultured to differentiate into three lineages (adipocyte, chondrocyte, and osteoblast) to confirm multipotency and compared to wild type cells. Immunoblotting, modified-TANGO experiments, and flow cytometry were used to further examine the effects of GRK3 deficiency on bone marrow mesenchymal stromal cell receptor signaling. Microcomputed tomography was used to determine trabecular and cortical bone composition of GRK3-deficient mice and standard ELISA to quantitate CXCL12 production from cellular cultures. RESULTS: GRK3-deficient, bone marrow-derived mesenchymal stem cells exhibit enhanced and earlier osteogenic differentiation in vitro. The addition of a sphingosine kinase inhibitor abrogated the osteogenic proliferation and differentiation, suggesting that sphingosine-1-phosphate receptor signaling was a putative G protein-coupled receptor regulated by GRK3. Immunoblotting showed prolonged ERK1/2 signaling after stimulation with sphingosine-1-phosphate in GRK3-deficient cells, and modified-TANGO assays suggested the involvement of ß-arrestin-2 in sphingosine-1-phosphate receptor internalization. CONCLUSIONS: Our work suggests that GRK3 regulates sphingosine-1-phosphate receptor signaling on bone marrow mesenchymal stem cells by recruiting ß-arrestin to the occupied GPCR to promote internalization, and lack of such regulation affects mesenchymal stem cell functionality.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells/metabolism , Mice , Sphingosine-1-Phosphate Receptors , X-Ray Microtomography
6.
Trends Pharmacol Sci ; 41(4): 249-265, 2020 04.
Article in English | MEDLINE | ID: mdl-32115276

ABSTRACT

Receptor activity-modifying proteins (RAMPs) interact with G-protein-coupled receptors (GPCRs) to modify their functions, imparting significant implications upon their physiological and therapeutic potentials. Resurging interest in identifying RAMP-GPCR interactions has recently been fueled by coevolution studies and orthogonal technological screening platforms. These new studies reveal previously unrecognized RAMP-interacting GPCRs, many of which expand beyond Class B GPCRs. The consequences of these interactions on GPCR function and physiology lays the foundation for new molecular therapeutic targets, as evidenced by the recent success of erenumab. Here, we highlight recent papers that uncovered novel RAMP-GPCR interactions, human RAMP-GPCR disease-causing mutations, and RAMP-related human pathologies, paving the way for a new era of RAMP-targeted drug development.


Subject(s)
Receptor Activity-Modifying Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Humans , Molecular Targeted Therapy , Mutation , Receptor Activity-Modifying Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Signal Transduction/drug effects
7.
ACS Pharmacol Transl Sci ; 3(4): 676-689, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32832870

ABSTRACT

The G protein-coupled receptor 182 (GPR182) is an orphan GPCR, the expression of which is enriched in embryonic endothelial cells (ECs). However, the physiological role and molecular mechanism of action of GPR182 are unknown. Here, we show that GPR182 negatively regulates definitive hematopoiesis in zebrafish and mice. In zebrafish, gpr182 expression is enriched in the hemogenic endothelium (HE), and gpr182 -/- display an increased expression of HE and hematopoietic stem cell (HSC) marker genes. Notably, we find an increased number of myeloid cells in gpr182 -/- compared to wild-type. Further, by time-lapse imaging of zebrafish embryos during the endothelial-to-hematopoietic transition, we find that HE/HSC cell numbers are increased in gpr182 -/- compared to wild-type. GPR182 -/- mice also exhibit an increased number of myeloid cells compared to wild-type, indicating a conserved role for GPR182 in myelopoiesis. Using cell-based small molecule screening and transcriptomic analyses, we further find that GPR182 regulates the leukotriene B4 (LTB4) biosynthesis pathway. Taken together, these data indicate that GPR182 is a negative regulator of definitive hematopoiesis in zebrafish and mice, and provide further evidence for LTB4 signaling in HSC biology.

8.
Sci Rep ; 9(1): 13470, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530866

ABSTRACT

While best known for its role in the innate immune system, the TANK-binding kinase 1 (TBK1) is now known to play a role in modulating cellular growth and autophagy. One of the major ways that TBK1 accomplishes this task is by modulating the mechanistic Target of Rapamycin (mTOR), a master regulator that when activated promotes cell growth and inhibits autophagy. However, whether TBK1 promotes or inhibits mTOR activity is highly cell type and context dependent. To further understand the mechanism whereby TBK1 regulates mTOR, we tested the hypothesis that TBK1 phosphorylates a key component of the mTOR complex 1 (mTORC1), Raptor. Using kinase assays coupled with mass spectrometry, we mapped the position of the TBK1 dependent phosphorylation sites on Raptor in vitro. Among the sites identified in vitro, we found that TBK1 promotes Raptor Ser877 phosphorylation in cells both basally and in response to pathogen-associated molecules known to induce TBK1 activity. The levels of Raptor Ser877 phosphorylation were inversely correlated with the levels of mTOR activity. Expression of a mutant Raptor that could not be phosphorylated at Ser877 led to an increase in mTORC1 activity. We conclude that TBK1 limits mTORC1 activity by promoting Raptor Ser877 phosphorylation.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Serine-Threonine Kinases/metabolism , Regulatory-Associated Protein of mTOR/metabolism , Serine/metabolism , Amino Acid Sequence , Cell Line , Enzyme Activation , Humans , Immunity, Innate , Mass Spectrometry , Mechanistic Target of Rapamycin Complex 1/chemistry , Models, Molecular , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Regulatory-Associated Protein of mTOR/chemistry , Signal Transduction , Structure-Activity Relationship
9.
Mol Immunol ; 106: 12-21, 2019 02.
Article in English | MEDLINE | ID: mdl-30576947

ABSTRACT

Chemerin receptor (CMKLR1) is a G protein-coupled receptor (GPCR) implicated in macrophage-mediated inflammation and in several forms of human arthritis. Analogous to other GPCR, CMKLR1 is likely regulated by G protein-coupled receptor kinase (GRK) phosphorylation of intracellular domains in an activation-dependent manner, which leads to recruitment and termination of intracellular signaling via desensitization and internalization of the receptor. The ubiquitously expressed GRK family members include GRK2, GRK3, GRK5, and GRK6, but it is unknown which GRK regulates CMKLR1 cellular and signaling functions. Our data show that activation of CMKLR1 by chemerin in primary macrophages leads to signaling and functional outcomes that are regulated by GRK6 and ß-arrestin 2. We show that arrestin recruitment to CMKLR1 following chemerin stimulation is enhanced with co-expression of GRK6. Further, internalization of endogenous CMKLR1, following the addition of chemerin, is decreased in inflammatory macrophages from GRK6- and ß-arrestin 2-deficient mice. These GRK6- and ß-arrestin 2-deficient macrophages display increased migration toward chemerin and altered AKT and Extracellular-signal Related Kinase (ERK) signaling. Our findings show that chemerin-activated CMKLR1 regulation in inflammatory macrophages is largely GRK6 and ß-arrestin mediated, which may impact innate immunity and have therapeutic implications in rheumatic disease.


Subject(s)
Chemokines/immunology , G-Protein-Coupled Receptor Kinases/immunology , Immunity, Innate , Intercellular Signaling Peptides and Proteins/immunology , Macrophages/immunology , Receptors, G-Protein-Coupled/immunology , beta-Arrestin 2/immunology , Animals , Cell Line , Chemokines/genetics , G-Protein-Coupled Receptor Kinases/genetics , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/genetics , Macrophages/pathology , Mice , Mice, Knockout , Receptors, Chemokine , Receptors, G-Protein-Coupled/genetics , Rheumatic Diseases/genetics , Rheumatic Diseases/immunology , Rheumatic Diseases/pathology , beta-Arrestin 2/genetics
10.
Cell Rep ; 26(1): 79-93.e8, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30605688

ABSTRACT

ß-Catenin-dependent WNT signal transduction governs development, tissue homeostasis, and a vast array of human diseases. Signal propagation through a WNT-Frizzled/LRP receptor complex requires proteins necessary for clathrin-mediated endocytosis (CME). Paradoxically, CME also negatively regulates WNT signaling through internalization and degradation of the receptor complex. Here, using a gain-of-function screen of the human kinome, we report that the AP2 associated kinase 1 (AAK1), a known CME enhancer, inhibits WNT signaling. Reciprocally, AAK1 genetic silencing or its pharmacological inhibition using a potent and selective inhibitor activates WNT signaling. Mechanistically, we show that AAK1 promotes clearance of LRP6 from the plasma membrane to suppress the WNT pathway. Time-course experiments support a transcription-uncoupled, WNT-driven negative feedback loop; prolonged WNT treatment drives AAK1-dependent phosphorylation of AP2M1, clathrin-coated pit maturation, and endocytosis of LRP6. We propose that, following WNT receptor activation, increased AAK1 function and CME limits WNT signaling longevity.


Subject(s)
Clathrin/metabolism , Endocytosis/physiology , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Protein Serine-Threonine Kinases/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology , Animals , Feedback, Physiological , HEK293 Cells , Humans , Male , Mice , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors
11.
PLoS One ; 11(4): e0152856, 2016.
Article in English | MEDLINE | ID: mdl-27049755

ABSTRACT

Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.


Subject(s)
Breast Neoplasms/pathology , G-Protein-Coupled Receptor Kinase 3/physiology , Animals , Female , G-Protein-Coupled Receptor Kinase 3/genetics , Gene Silencing , Humans , Mice , Neoplasm Invasiveness , Neoplasm Metastasis
12.
J Leukoc Biol ; 94(6): 1243-51, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23935208

ABSTRACT

Chemokine receptor interactions coordinate leukocyte migration in inflammation. Chemokine receptors are GPCRs that when activated, are phosphorylated by GRKs to turn off G protein-mediated signaling yet recruit additional signaling machinery. Recently, GRK3 was identified as a negative regulator of CXCL12/CXCR4 signaling that is defective in human WHIM syndrome. Here, we report that GRK3-/- mice exhibit numerous features of human WHIM, such as impaired CXCL12-mediated desensitization, enhanced CXCR4 signaling to ERK activation, altered granulocyte migration, and a mild myelokathexis. Moreover, GRK3-/- protects mice from two acute models of inflammatory arthritis (K/BxN serum transfer and CAIA). In these granulocyte-dependent disease models, protection of GRK3-/- mice is mediated by retention of cells in the marrow, fewer circulating granulocytes in the peripheral blood, and reduced granulocytes in the joints during active inflammation. In contrast to WHIM, GRK3-/- mice have minimal hypogammaglobulinemia and a peripheral leukocytosis with increased lymphocytes and absent neutropenia. Thus, we conclude that the loss of GRK3-mediated regulation of CXCL12/CXCR4 signaling contributes to some, but not all, of the complete WHIM phenotype and that GRK3 inhibition may be beneficial in the treatment of inflammatory arthritis.


Subject(s)
G-Protein-Coupled Receptor Kinase 3/immunology , Immunologic Deficiency Syndromes/immunology , MAP Kinase Signaling System/immunology , Warts/immunology , Animals , Cell Line, Transformed , Chemokine CXCL12/genetics , Chemokine CXCL12/immunology , Chemokine CXCL12/metabolism , Disease Models, Animal , G-Protein-Coupled Receptor Kinase 3/genetics , G-Protein-Coupled Receptor Kinase 3/metabolism , Granulocytes/enzymology , Granulocytes/immunology , Granulocytes/pathology , Humans , Immunologic Deficiency Syndromes/enzymology , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/pathology , Inflammation/enzymology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , Primary Immunodeficiency Diseases , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , Receptors, CXCR4/metabolism , Warts/enzymology , Warts/genetics , Warts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL