Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Bioorg Med Chem Lett ; 28(4): 748-755, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29336873

ABSTRACT

Metallo-ß-lactamases (MBLs), such as New Delhi metallo-ß-lactamase (NDM-1) have spread world-wide and present a serious threat. Expression of MBLs confers resistance in Gram-negative bacteria to all classes of ß-lactam antibiotics, with the exception of monobactams, which are intrinsically stable to MBLs. However, existing first generation monobactam drugs like aztreonam have limited clinical utility against MBL-expressing strains because they are impacted by serine ß-lactamases (SBLs), which are often co-expressed in clinical isolates. Here, we optimized novel monobactams for stability against SBLs, which led to the identification of LYS228 (compound 31). LYS228 is potent in the presence of all classes of ß-lactamases and shows potent activity against carbapenem-resistant isolates of Enterobacteriaceae (CRE).


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Carbapenem-Resistant Enterobacteriaceae/drug effects , Monobactams/pharmacology , beta-Lactam Resistance/drug effects , beta-Lactamases/metabolism , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Aztreonam/pharmacology , CHO Cells , Cricetulus , Drug Stability , Escherichia coli/drug effects , Female , Humans , Meropenem , Mice , Microbial Sensitivity Tests , Molecular Structure , Monobactams/adverse effects , Monobactams/chemistry , Monobactams/metabolism , Pseudomonas aeruginosa/drug effects , Receptors, GABA-A/metabolism , Seizures/chemically induced , Structure-Activity Relationship , Thienamycins/pharmacology
2.
Angew Chem Int Ed Engl ; 55(21): 6175-81, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27079940

ABSTRACT

Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films in the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way. Both theory and experiment show strain controls reactivity in a controlled manner consistent with the qualitative predictions of the HER volcano plot and the d-band theory: Ni and Pt's activities were accelerated by compression, while Cu's activity was accelerated by tension. By isolating the elastic strain effect from the ligand effect, this study provides a greater insight into the role of elastic strain in controlling electrocatalytic activity.

3.
Pharmaceutics ; 15(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37631312

ABSTRACT

Proteolysis-Targeting Chimeras (PROTACs) are a promising new technology in drug development. They have rapidly evolved in recent years, with several of them in clinical trials. While most of these advances have been associated with monovalent protein degraders, bivalent PROTACs have also entered clinical trials, although progression to market has been limited. One of the reasons is the complex physicochemical properties of the heterobifunctional PROTACs. A promising strategy to improve pharmacokinetics of highly lipophilic compounds, such as PROTACs, is encapsulation in liposome systems. Here we describe liposome systems for intravenous administration to enhance the PK properties of two bivalent PROTAC molecules, by reducing clearance and increasing systemic coverage. We developed and characterized a PROTAC-in-cyclodextrin liposome system where the drug was retained in the liposome core. In PK studies at 1 mg/kg for GNE-01 the PROTAC-in-cyclodextrin liposome, compared to the solution formulation, showed a 80- and a 380-fold enhancement in AUC for mouse and rat studies, respectively. We further investigated the same PROTAC-in-cyclodextrin liposome system with the second PROTAC (GNE-02), where we monitored both lipid and drug concentrations in vivo. Similarly, in a mouse PK study of GEN-02, the PROTAC-in-cyclodextrin liposome system exhibited enhancement in plasma concentration of a 23× increase over the conventional solution formulation. Importantly, the lipid CL correlated with the drug CL. Additionally, we investigated a conventional liposome approach for GNE-02, where the PROTAC resides in the lipid bilayer. Here, a 5× increase in AUC was observed, compared to the conventional solution formulation, and the drug CL was faster than the lipid CL. These results indicate that the different liposome systems can be tailored to translate across multiple PROTAC systems to modulate and improve plasma concentrations. Optimization of the liposomes could further improve tumor concentration and improve the overall therapeutic index (TI). This delivery technology may be well suited to bring novel protein targeted PROTACs into clinics.

4.
J Chromatogr A ; 1662: 462688, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-34915190

ABSTRACT

Liposomes are an attractive drug delivery platform for a wide variety of pharmaceutical molecules. Encapsulation efficiency, which refers to the amount of drug contained inside liposomes compared with the total amount of drug, is a critical quality attribute of liposome products, as the free drug in a liposomal formulation may cause toxicity or undesired biodistribution. The determination of encapsulation efficiency requires the measurement of at least two of the three drug populations: total drug, encapsulated drug and free drug. However, direct measurement of the encapsulated drug and free drug remains a challenging analytical task. Nanoparticle exclusion chromatography (nPEC), an emerging high-performance liquid chromatography (HPLC) technique, has shown great potential in separating and quantifying the free drug in liposomal formulations. In this study, nPEC was systematically evaluated for two representative liposomal formulations containing either hydrophilic or hydrophobic small molecule drugs. It is reported for the first time that the insoluble free drug suspended in the aqueous formulation can be directly measured by nPEC. This free drug in the suspension sample was quantified with excellent accuracy and precision. On the other hand, the total drug measurement from dissociated liposomes was confirmed by the benchmark methodology of reversed phase liquid chromatography (RPLC). The facile quantitation of free and total drug in the liposome formulation enables the fast and accurate determination of the encapsulation efficiency, which can be used to guide the formulation development and characterize the product quality.


Subject(s)
Liposomes , Nanoparticles , Chromatography, Gel , Drug Delivery Systems , Tissue Distribution
5.
J Med Chem ; 64(9): 6329-6357, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33929852

ABSTRACT

Herein, we describe the discovery and optimization of a novel series that inhibits bacterial DNA gyrase and topoisomerase IV via binding to, and stabilization of, DNA cleavage complexes. Optimization of this series led to the identification of compound 25, which has potent activity against Gram-positive bacteria, a favorable in vitro safety profile, and excellent in vivo pharmacokinetic properties. Compound 25 was found to be efficacious against fluoroquinolone-sensitive Staphylococcus aureus infection in a mouse thigh model at lower doses than moxifloxacin. An X-ray crystal structure of the ternary complex formed by topoisomerase IV from Klebsiella pneumoniae, compound 25, and cleaved DNA indicates that this compound does not engage in a water-metal ion bridge interaction and forms no direct contacts with residues in the quinolone resistance determining region (QRDR). This suggests a structural basis for the reduced impact of QRDR mutations on antibacterial activity of 25 compared to fluoroquinolones.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , Drug Design , Fluoroquinolones/pharmacology , Staphylococcus aureus/drug effects , Topoisomerase II Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Drug Resistance, Bacterial/drug effects , Mice , Topoisomerase II Inhibitors/chemistry
6.
J Med Chem ; 63(5): 2013-2027, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31059256

ABSTRACT

Direct pharmacological inhibition of RAS has remained elusive, and efforts to target CRAF have been challenging due to the complex nature of RAF signaling, downstream of activated RAS, and the poor overall kinase selectivity of putative RAF inhibitors. Herein, we describe 15 (LXH254, Aversa, R.; et al. Int. Patent WO2014151616A1, 2014), a selective B/C RAF inhibitor, which was developed by focusing on drug-like properties and selectivity. Our previous tool compound, 3 (RAF709; Nishiguchi, G. A.; et al. J. Med. Chem. 2017, 60, 4969), was potent, selective, efficacious, and well tolerated in preclinical models, but the high human intrinsic clearance precluded further development and prompted further investigation of close analogues. A structure-based approach led to a pyridine series with an alcohol side chain that could interact with the DFG loop and significantly improved cell potency. Further mitigation of human intrinsic clearance and time-dependent inhibition led to the discovery of 15. Due to its excellent properties, it was progressed through toxicology studies and is being tested in phase 1 clinical trials.


Subject(s)
Antineoplastic Agents/chemistry , Drug Discovery/methods , Mutation/genetics , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Animals , Antineoplastic Agents/pharmacology , Drug Design , Drug Discovery/trends , Humans , Molecular Docking Simulation/methods , Molecular Docking Simulation/trends , Mutation/drug effects , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays/methods
7.
J Control Release ; 118(2): 216-24, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-17239466

ABSTRACT

A novel drug targeting system for acidic solid tumors has been developed based on ultra pH-sensitive polymer and cell penetrating TAT. The delivery system consisted of two components: 1) A polymeric micelle that has a hydrophobic core made of poly(l-lactic acid) (PLLA) and a hydrophilic shell consisting of polyethylene glycol (PEG) conjugated to TAT (TAT micelle), 2) an ultra pH-sensitive diblock copolymer of poly(methacryloyl sulfadimethoxine) (PSD) and PEG (PSD-b-PEG). The anionic PSD is complexed with cationic TAT of the micelles to achieve the final carrier, which could systemically shield the micelles and expose them at slightly acidic tumor pH. TAT micelles had particle sizes between 20 and 45 nm and their critical micelle concentrations were 3.5 mg/l to 5.5 mg/l. The TAT micelles, upon mixing with pH-sensitive PSD-b-PEG, showed a slight increase in particle size between pH 8.0 and 6.8 (60-90 nm), indicating complexation. As the pH was decreased (pH 6.6 to 6.0) two populations were observed, one that of normal TAT micelles (45 nm) and the other of aggregated hydrophobic PSD-b-PEG. Zeta potential measurements showed similar trend substantiating the shielding/deshielding process. Flow cytometry and confocal microscopy showed significantly higher uptake of TAT micelles at pH 6.6 compared to pH 7.4 indicating shielding at normal pH and deshielding at tumor pH. The confocal microscopy indicated that the TAT not only translocates into the cells but is also seen on the surface of the nucleus. These results strongly indicate that the above micelles would be able to target any hydrophobic drug near the nucleus.


Subject(s)
Antineoplastic Agents/metabolism , Breast Neoplasms/metabolism , Drug Carriers , Gene Products, tat/metabolism , Micelles , Peptide Fragments/metabolism , Polymers/chemistry , Active Transport, Cell Nucleus , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Breast Neoplasms/chemistry , Cell Line, Tumor , Cell Nucleus/metabolism , Cytoplasm/metabolism , Drug Delivery Systems , Female , Flow Cytometry , Gene Products, tat/chemistry , Humans , Hydrogen-Ion Concentration , Lactic Acid/chemistry , Microscopy, Confocal , Particle Size , Peptide Fragments/chemistry , Pinocytosis , Polyesters , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Time Factors
8.
J Med Chem ; 60(12): 4869-4881, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28557458

ABSTRACT

RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify. Herein, we describe 14 (RAF709) [ Aversa , Biaryl amide compounds as kinase inhibitors and their preparation . WO 2014151616, 2014 ], a selective B/C RAF inhibitor, which was developed through a hypothesis-driven approach focusing on drug-like properties. A key challenge encountered in the medicinal chemistry campaign was maintaining a balance between good solubility and potent cellular activity (suppression of pMEK and proliferation) in KRAS mutant tumor cell lines. We investigated the small molecule crystal structure of lead molecule 7 and hypothesized that disruption of the crystal packing would improve solubility, which led to a change from N-methylpyridone to a tetrahydropyranyl oxy-pyridine derivative. 14 proved to be soluble, kinase selective, and efficacious in a KRAS mutant xenograft model.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , raf Kinases/antagonists & inhibitors , ras Proteins/genetics , 2,2'-Dipyridyl/chemistry , 2,2'-Dipyridyl/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Benzamides/chemistry , Crystallography, X-Ray , Dogs , Drug Design , Drug Discovery , Drug Stability , Humans , Inhibitory Concentration 50 , Mice , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Eur J Pharm Sci ; 88: 191-201, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-26948852

ABSTRACT

A co-crystal is defined as a single crystalline structure composed of two or more components with no proton transfer which are solid at room temperature. Our group has come up with the following rationale selection of co-formers for initial co-crystal screening: 1) selection of co-formers with the highest potential for hydrogen bonding with the API and 2) selection of co-formers with diversity of secondary structural characteristics. We demonstrate the feasibility of this technique with a Novartis drug candidate A. In the first tier, 20 co-formers were screened and two hits were identified. By examining the two co-formers, which worked from the first round, a second round of screening was undertaken with more focused chemical matter. Nineteen co-crystal formers closely related to the two hits in the first screen were screened in the second tier. From this screen five hits were identified. All the hits were compared for their physical and chemical stability and dissolution profile. Based on the comparison 4-aminobenzoic co-crystal was chosen for in-vivo comparison with the free form. The co-crystal had 12 times higher exposure than the free form thus overcoming the solubility limited exposure.


Subject(s)
4-Aminobenzoic Acid/chemistry , Chemical Engineering/methods , Chemistry, Pharmaceutical/methods , Oxadiazoles/chemistry , Triazines/chemistry , Calorimetry, Differential Scanning , Crystallization , Dosage Forms , Magnetic Resonance Spectroscopy , Molecular Structure , Solubility , X-Ray Diffraction
10.
Pharm Res ; 25(3): 657-66, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17999164

ABSTRACT

A new pH-sensitive micelle delivery system based on TAT cell penetrating peptide and biodegradable sulfonamide grafted disulfide polymer is presented. The system consists of two components: (1) A polymeric micelle made of Poly(L-lactic acid)-b-poly(ethylene glycol) (PLLA-b-PEG) conjugated to TAT (TAT-micelle), (2) A pH-sensitive diblock copolymer (poly(L-cystine bisamide-g-sulfadiazine))-b-PEG (PCBS-b-PEG). The anionic PCBS complexed with cationic TAT of TAT-micelles forms the final carrier. PCBS showed rapid degradation in the presence of cysteine. The TAT-micelles showed increase in particle size between pH 8.0 and 7.0 upon mixing with PCBS-b-PEG indicating complexation. As the pH was further decreased (pH 6.8 to 6.0) two populations were observed, one of normal TAT-micelles and the other of aggregated PCBS-b-PEG. Flow cytometry showed significantly higher uptake of TAT-micelles at pH 6.6 indicating deshielding compared to pH 7.4. The anticancer drug doxorubicin (DOX) was encapsulated into the TAT-micelles, and the in vitro cytotoxicity at different pHs was evaluated. The system was able to distinguish pHs 7.2 and 7.0 in terms of cytotoxicity.


Subject(s)
Antineoplastic Agents/chemistry , Biocompatible Materials , Doxorubicin/chemistry , Drug Carriers , Micelles , Polymers/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Transport , Cell Line, Tumor , Cell Survival/drug effects , Chemistry, Pharmaceutical , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Compounding , Humans , Hydrogen-Ion Concentration , Lactates/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Particle Size , Peptide Fragments/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Polymers/chemical synthesis , Polymers/metabolism , Sulfadiazine/chemistry , Trans-Activators/chemistry
11.
Biomacromolecules ; 7(1): 64-70, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16398499

ABSTRACT

The feasibility of pH-sensitive polymeric nanoparticles that effectively target the acidic extracellular matrix of tumors is demonstrated. Plasmid DNA was complexed with polyethyleneimine (PEI) and further with a pH-sensitive diblock copolymer, poly(methacryloyl sulfadimethoxine) (PSD)-block-PEG (PSD-b-PEG), to obtain naonparticles. The shielding/deshielding of nanoparticles was tested along with cell viability and transfection efficiency at physiological and tumor pH. The nanoparticles composed of DNA/PEI/PSD-b-PEG were 300 nm in size and showed low cytotoxicity and transfection at pH 7.4 due to shielding of PEI by PSD-b-PEG. The PSD-b-PEG bound to PEI/DNA complex decreased the interaction of PEI positive charges with cells and reduced the cytotoxicity by 60%. At pH 6.6, the nanoparticles demonstrated high cytotoxicity and transfection, indicating PSD-b-PEG detachment from the nanoparticles and permit PEI to interact with cells. PSD-b-PEG is able to discern the small difference in pH between normal and tumor tissues and hence has remarkable potential in drug targeting to tumor areas.


Subject(s)
DNA/chemistry , Neoplasms/genetics , Polyethyleneimine/chemistry , Sulfonamides/chemistry , Transfection/instrumentation , Transfection/methods , Cations/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Delivery Systems , Genes, Reporter/genetics , Humans , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Molecular Structure , Nanostructures/chemistry , Neoplasms/pathology , Organ Specificity , Particle Size , Plasmids/genetics , Plasmids/ultrastructure , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polyethyleneimine/pharmacology , Sulfonamides/pharmacology
12.
Anticancer Agents Med Chem ; 6(6): 525-35, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17100557

ABSTRACT

Amphiphilic block copolymers often form core-shell type micelles by self-organization of the blocks in an aqueous medium or under specific experimental conditions. Polymeric micelles constructed from these polymers that contain a segment whose physical or chemical properties respond to small changes in environmental conditions are collectively called 'stimuli-sensitive' micelles. This class of nano-scaled constructs has been investigated as a promising anti-cancer drug carrier because the micelles are able to utilize small environmental changes and modify drug release kinetics, biodistribution and the interactions with tissues and cells. This review summarizes the recent progress in stimuli-sensitive micelles for tumor chemotherapy, particularly for those responding to hyperthermic conditions, tumor pH and endosomal/lysosomal pH.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers , Drug Delivery Systems , Micelles , Neoplasms/drug therapy , Polymers/chemistry , Animals , Biocompatible Materials , Humans , Hydrogen-Ion Concentration , Nanostructures , Nanotechnology , Permeability , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL