Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Br J Haematol ; 204(4): 1439-1449, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37807708

ABSTRACT

Induction therapy followed by CD34+ cell mobilisation and autologous transplantation represents standard of care for multiple myeloma (MM). However, the anti-CD38 monoclonal antibodies daratumumab and isatuximab have been associated with mobilisation impairment, yet the mechanism remains unclear. In this study, we investigated the effect of three different regimens (dara-VCd, isa-KRd and VTd) on CD34+ cells using flow cytometry and transcriptomics. Decreased CD34+ cell peak concentration and yields, longer collection and delayed engraftment were reproduced after dara-VCd/isa-KRd versus VTd induction in 34 patients in total. Using flow cytometry, we detected major changes in the proportion of apheresis product and bone marrow CD34+ subsets in patients treated with regimens containing anti-CD38 therapy; however, without any decrease in CD38high B-lymphoid progenitors in both materials. RNA-seq of mobilised CD34+ cells from 21 patients showed that adhesion genes are overexpressed in CD34+ cells after dara-VCd/isa-KRd and JCAD, NRP2, MDK, ITGA3 and CLEC3B were identified as potential target genes. Finally, direct in vitro effect of isatuximab in upregulating JCAD and CLEC3B was confirmed by quantitative PCR. These findings suggest that upregulated adhesion-related interactions, rather than killing of CD34+ cells by effector mechanisms, could be leading causes of decreased mobilisation efficacy in MM patients treated with anti-CD38 therapy.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/therapy , Antigens, CD34/analysis , Bone Marrow/chemistry , Flow Cytometry , Hematopoietic Stem Cell Mobilization , ADP-ribosyl Cyclase 1
2.
Eur J Haematol ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390851

ABSTRACT

Minimal residual disease (MRD) is one of the most important prognostic factors in multiple myeloma (MM) and a valid surrogate for progression-free survival (PFS) and overall survival (OS). Recently, MRD negativity was approved as an early clinical endpoint for accelerated drug approval in MM. Nevertheless, there is limited evidence of MRD utility in real-world setting. In this retrospective multicenter study, we report outcomes of 331 newly diagnosed MM patients with MRD evaluation at Day+100 after autologous stem cell transplantation using flow cytometry with a median limit of detection of 0.001%. MRD negativity was reached in 47% of patients and was associated with significantly prolonged median PFS (49.2 months vs. 18.4 months; hazard ratios (HR) = 0.37; p < 0.001) and OS (not reached vs. 74.9 months; HR = 0.50; p = 0.007). Achieving MRD negativity was associated with PFS improvements regardless of age, International Staging System (ISS) stage, lactate dedydrogenase (LDH) level, or cytogenetic risk. Importantly, MRD positive patients benefited from lenalidomide maintenance versus no maintenance (18-months PFS: 81% vs. 46%; HR = 0.24; p = 0.002) while in MRD negative patients such benefit was not observed (p = 0.747). The outcomes of our real-world study recapitulate results from clinical trials including meta-analyses and support the idea that MRD positive patients profit more from lenalidomide maintenance than MRD negative ones.

3.
BMC Biol ; 20(1): 66, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35296310

ABSTRACT

BACKGROUND: The plastid genomes of the green algal order Chlamydomonadales tend to expand their non-coding regions, but this phenomenon is poorly understood. Here we shed new light on organellar genome evolution in Chlamydomonadales by studying a previously unknown non-photosynthetic lineage. We established cultures of two new Polytoma-like flagellates, defined their basic characteristics and phylogenetic position, and obtained complete organellar genome sequences and a transcriptome assembly for one of them. RESULTS: We discovered a novel deeply diverged chlamydomonadalean lineage that has no close photosynthetic relatives and represents an independent case of photosynthesis loss. To accommodate these organisms, we establish the new genus Leontynka, with two species (L. pallida and L. elongata) distinguishable through both their morphological and molecular characteristics. Notable features of the colourless plastid of L. pallida deduced from the plastid genome (plastome) sequence and transcriptome assembly include the retention of ATP synthase, thylakoid-associated proteins, the carotenoid biosynthesis pathway, and a plastoquinone-based electron transport chain, the latter two modules having an obvious functional link to the eyespot present in Leontynka. Most strikingly, the ~362 kbp plastome of L. pallida is by far the largest among the non-photosynthetic eukaryotes investigated to date due to an extreme proliferation of sequence repeats. These repeats are also present in coding sequences, with one repeat type found in the exons of 11 out of 34 protein-coding genes, with up to 36 copies per gene, thus affecting the encoded proteins. The mitochondrial genome of L. pallida is likewise exceptionally large, with its >104 kbp surpassed only by the mitogenome of Haematococcus lacustris among all members of Chlamydomonadales hitherto studied. It is also bloated with repeats, though entirely different from those in the L. pallida plastome, which contrasts with the situation in H. lacustris where both the organellar genomes have accumulated related repeats. Furthermore, the L. pallida mitogenome exhibits an extremely high GC content in both coding and non-coding regions and, strikingly, a high number of predicted G-quadruplexes. CONCLUSIONS: With its unprecedented combination of plastid and mitochondrial genome characteristics, Leontynka pushes the frontiers of organellar genome diversity and is an interesting model for studying organellar genome evolution.


Subject(s)
Chlorophyceae , Chlorophyta , Genome, Plastid , Chlorophyta/genetics , Evolution, Molecular , Photosynthesis/genetics , Phylogeny , Plastids
4.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982699

ABSTRACT

During innate immune responses, myeloid differentiation primary response 88 (MyD88) functions as a critical signaling adaptor protein integrating stimuli from toll-like receptors (TLR) and the interleukin-1 receptor (IL-1R) family and translates them into specific cellular outcomes. In B cells, somatic mutations in MyD88 trigger oncogenic NF-κB signaling independent of receptor stimulation, which leads to the development of B-cell malignancies. However, the exact molecular mechanisms and downstream signaling targets remain unresolved. We established an inducible system to introduce MyD88 to lymphoma cell lines and performed transcriptomic analysis (RNA-seq) to identify genes differentially expressed by MyD88 bearing the L265P oncogenic mutation. We show that MyD88L265P activates NF-κB signaling and upregulates genes that might contribute to lymphomagenesis, including CD44, LGALS3 (coding Galectin-3), NFKBIZ (coding IkBƺ), and BATF. Moreover, we demonstrate that CD44 can serve as a marker of the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) and that CD44 expression is correlated with overall survival in DLBCL patients. Our results shed new light on the downstream outcomes of MyD88L265P oncogenic signaling that might be involved in cellular transformation and provide novel therapeutical targets.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , NF-kappa B , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Galectin 3/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , Gene Expression Profiling , Basic-Leucine Zipper Transcription Factors/genetics , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Adaptor Proteins, Signal Transducing/metabolism
5.
BMC Oral Health ; 23(1): 563, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573343

ABSTRACT

BACKGROUND: Ameloblastic carcinoma and metastasising ameloblastoma are rare epithelial odontogenic tumours with aggressive features. Distinguishing between these two lesions is often clinically difficult but necessary to predict tumour behaviour or to plan future therapy. Here, we provide a brief review of the literature available on these two types of lesions and present a new case report of a young man with an ameloblastoma displaying metastatic features. We also use this case to illustrate the similarities and differences between these two types of tumours and the difficulties of their differential diagnosis. CASE PRESENTATION: Our histopathological analyses uncovered a metastasising tumour with features of ameloblastic carcinoma, which developed from the ameloblastoma. We profiled the gene expression of Wnt pathway members in ameloblastoma sample of this patient, because multiple molecules of this pathway are involved in the establishing of cell polarity, cell migration or for epithelial-mesenchymal transition during tumour metastasis to evaluate features of tumor behaviour. Indeed, we found upregulation of several cell migration-related genes in our patient. Moreover, we uncovered somatic mutation BRAF p.V600E with known pathological role in cancerogenesis and germline heterozygous FANCA p.S858R mutation, whose interpretation in this context has not been discussed yet. CONCLUSIONS: In conclusion, we have uncovered a unique case of ameloblastic carcinoma associated with an alteration of Wnt signalling and the presence of BRAF mutation. Development of harmful state of our patient might be also supported by the germline mutation in one FANCA allele, however this has to be confirmed by further analyses.


Subject(s)
Ameloblastoma , Carcinoma , Odontogenic Tumors , Male , Humans , Ameloblastoma/genetics , Ameloblastoma/diagnosis , Proto-Oncogene Proteins B-raf/genetics , Odontogenic Tumors/diagnosis , Odontogenic Tumors/genetics , Mutation , Carcinoma/pathology
6.
Mol Phylogenet Evol ; 177: 107607, 2022 12.
Article in English | MEDLINE | ID: mdl-35963589

ABSTRACT

Eustigmatophyceae is one of the ∼17 classes of the vast algal phylum Ochrophyta. Over the last decade, the eustigmatophytes emerged as an expansive group that has grown from the initially recognized handful of species to well over 200 genetically distinct entities (potential species). Yet the majority of eustigs, remain represented by unidentified strains, or even only metabarcode sequences obtained from environmental samples. Moreover, the formal classification of the group has not yet been harmonized with the recently uncovered diversity and phylogenetic relationships within the class. Here we make a major step towards resolving this issue by addressing the diversity, phylogeny and classification of one of the most prominent eustigmatophyte clades previously informally called the "Eustigmataceae group". We obtained 18S rDNA and rbcL gene sequences from four new strains from the "Eustigmataceae group", and from several additional eustig strains, and performed the most comprehensive phylogenetic analyses of Eustigmatophyceae to date. Our results of these analyses confirm the monophyly of the "Eustigmataceae group" and define its major subclades. We also sequenced plastid genomes of five "Eustigmataceae group" strains to not only improve our understanding of the plastid gene content evolution in eustigs, but also to obtain a robustly resolved eustigmatophyte phylogeny. With this new genomic data, we have solidified the view of the "Eustigmataceae group" as a well-defined family level clade. Crucially, we also have firmly established the genus Chlorobotrys as a member of the "Eustigmataceae group". This new molecular evidence, together with a critical analysis of the literature going back to the 19th century, provided the basis to radically redefine the historical concept of the family Chlorobotryaceae as the formal taxonomic rubric corresponding to the "Eustigmataceae group". With this change, the family names Eustigmataceae and Characiopsidaceae are reduced to synonymy with the Chlorobotryaceae, with the latter having taxonomic priority. We additionally studied in detail the morphology and ultrastructure of two Chlorobotryaceae members, which we describe as Neustupella aerophytica gen. et sp. nov. and Lietzensia polymorpha gen. et sp. nov. Finally, our analyses of partial genomic data from several Chlorobotryaceae representatives identified genes for hallmark flagellar proteins in all of these strains. The presence of the flagellar proteins strongly suggests that zoosporogenesis is a common trait of the family and also occurs in the members never observed to produce flagellated stages. Altogether, our work paints a rich picture of one of the most diverse principal lineages of eustigmatophyte algae.


Subject(s)
Genome, Plastid , Stramenopiles , DNA, Ribosomal , Phylogeny , Plastids/genetics , Stramenopiles/genetics
7.
J Phycol ; 56(3): 630-648, 2020 06.
Article in English | MEDLINE | ID: mdl-32068883

ABSTRACT

The class Eustigmatophyceae includes mostly coccoid, freshwater algae, although some genera are common in terrestrial habitats and two are primarily marine. The formal classification of the class, developed decades ago, does not fit the diversity and phylogeny of the group as presently known and is in urgent need of revision. This study concerns a clade informally known as the Pseudellipsoidion group of the order Eustigmatales, which was initially known to comprise seven strains with oval to ellipsoidal cells, some bearing a stipe. We examined those strains as well as 10 new ones and obtained 18S rDNA and rbcL gene sequences. The results from phylogenetic analyses of the sequence data were integrated with morphological data of vegetative and motile cells. Monophyly of the Pseudellipsoidion group is supported in both 18S rDNA and rbcL trees. The group is formalized as the new family Neomonodaceae comprising, in addition to Pseudellipsoidion, three newly erected genera. By establishing Neomonodus gen. nov. (with type species Neomonodus ovalis comb. nov.), we finally resolve the intricate taxonomic history of a species originally described as Monodus ovalis and later moved to the genera Characiopsis and Pseudocharaciopsis. Characiopsiella gen. nov. (with the type species Characiopsiella minima comb. nov.) and Munda gen. nov. (with the type species Munda aquilonaris) are established to accommodate additional representatives of the polyphyletic genus Characiopsis. A morphological feature common to all examined Neomonodaceae is the absence of a pyrenoid in the chloroplasts, which discriminates them from other morphologically similar yet unrelated eustigmatophytes (including other Characiopsis-like species).


Subject(s)
RNA, Ribosomal, 16S , Chrysophyta/genetics , DNA, Ribosomal , Phylogeny , Sequence Analysis, DNA
8.
Chromosoma ; 125(3): 437-51, 2016 06.
Article in English | MEDLINE | ID: mdl-26596989

ABSTRACT

Telomeres are nucleoprotein structures that distinguish native chromosomal ends from double-stranded breaks. They are maintained by telomerase that adds short G-rich telomeric repeats at chromosomal ends in most eukaryotes and determines the TnAmGo sequence of canonical telomeres. We employed an experimental approach that was based on detection of repeats added by telomerase to identify the telomere sequence type forming the very ends of chromosomes. Our previous studies that focused on the algal order Chlamydomonadales revealed several changes in telomere motifs that were consistent with the phylogeny and supported the concept of the Arabidopsis-type sequence being the ancestral telomeric motif for green algae. In addition to previously described independent transitions to the Chlamydomonas-type sequence, we report that the ancestral telomeric motif was replaced by the human-type sequence in the majority of algal species grouped within a higher order clade, Caudivolvoxa. The Arabidopsis-type sequence was apparently retained in the Polytominia clade. Regarding the telomere sequence, the Chlorogonia clade within Caudivolvoxa bifurcates into two groups, one with the human-type sequence and the other group with the Arabidopsis-type sequence that is solely formed by the Chlorogonium species. This suggests that reversion to the Arabidopsis-type telomeric motif occurred in the common ancestral Chlorogonium species. The human-type sequence is also synthesized by telomerases of algal strains from Arenicolinia, Dunaliellinia and Stephanosphaerinia, except a distinct subclade within Stephanosphaerinia, where telomerase activity was not detected and a change to an unidentified telomeric motif might arise. We discuss plausible reasons why changes in telomeric motifs were tolerated during evolution of green algae.


Subject(s)
Amino Acid Motifs/genetics , Repetitive Sequences, Nucleic Acid/genetics , Telomerase/genetics , Telomere/genetics , Volvocida/genetics , Base Sequence , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Telomere Shortening/genetics
9.
Eur J Haematol ; 99(6): 469-478, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28886236

ABSTRACT

Waldenström's macroglobulinemia (WM) is a complex disease characterized by apparent morphological heterogeneity within the malignant clonal cells representing a continuum of small lymphocytes, plasmacytoid lymphocytes, and plasma cells. At the molecular level, the neoplastic B cell-derived clone has undergone somatic hypermutation, but not isotype switching, and retains the capability of plasmacytic differentiation. Although by classical definition, WM is formed by monoclonal expansion, long-lived clonal B lymphocytes are of heterogeneous origin. Even more, according to current opinion, plasma cells also conform certain population with pathogenic and clinical significance. In this article, we review the recent advances in the WM clonal architecture, briefly describe B-cell development during which the molecular changes lead to the malignant transformation and mainly focus on differences between two principal B-lineage clones, including analysis of their genome and transcriptome profiles, as well as immunophenotype features. We assume that the correct identification of a number of specific immunophenotypic molecular and expression alterations leading to proper aberrant clone detection can help to guide patient monitoring throughout treatment and successfully implement therapy strategies directed against both B- and plasma cell tumor WM clones.


Subject(s)
Waldenstrom Macroglobulinemia/diagnosis , Waldenstrom Macroglobulinemia/etiology , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Clonal Evolution/genetics , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Genetic Variation , Humans , Immunophenotyping , Phenotype , Plasma Cells/metabolism , Plasma Cells/pathology , Signal Transduction , Tumor Burden
11.
J Eukaryot Microbiol ; 63(2): 198-209, 2016.
Article in English | MEDLINE | ID: mdl-26352484

ABSTRACT

In this study, we surveyed six species of cockroaches, two synanthropic (i.e. ecologically associated with humans) and four wild, for intestinal trypanosomatid infections. Only the wild cockroach species were found to be infected, with flagellates of the genus Herpetomonas. Two distinct genotypes were documented, one of which was described as a new species, Herpetomonas tarakana sp. n. We also propose a revision of the genus Herpetomonas and creation of a new subfamily, Phytomonadinae, to include Herpetomonas, Phytomonas, and a newly described genus Lafontella n. gen. (type species Lafontella mariadeanei comb. n.), which can be distinguished from others by morphological and molecular traits.


Subject(s)
Cockroaches/parasitology , Trypanosomatina/classification , Animals , Biodiversity , Czech Republic , DNA, Protozoan/genetics , Genotype , Microscopy, Electron, Transmission , Phylogeny , Polymerase Chain Reaction/methods , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Slovakia , Trypanosomatina/genetics , Trypanosomatina/isolation & purification , Trypanosomatina/ultrastructure
12.
Front Oncol ; 13: 1287650, 2023.
Article in English | MEDLINE | ID: mdl-38188288

ABSTRACT

Objective: Oral squamous cell carcinoma (OSCC) originates from the mucosal lining of the oral cavity. Almost half of newly diagnosed cases are classified as advanced stage IV disease, which makes resection difficult. In this study, we investigated the pathological features and mutation profiles of tumor margins in OSCC. Methods: We performed hierarchical clustering of principal components to identify distinct patterns of tumor growth and their association with patient prognosis. We also used next-generation sequencing to analyze somatic mutations in tumor and marginal tissue samples. Results: Our analyses uncovered that the grade of worst pattern of invasion (WPOI) is strongly associated with depth of invasion and patient survival in multivariable analysis. Mutations were primarily detected in the DNA isolated from tumors, but several mutations were also identified in marginal tissue. In total, we uncovered 29 mutated genes, mainly tumor suppressor genes involved in DNA repair including BRCA genes; however none of these mutations significantly correlated with a higher chance of relapse in our medium-size cohort. Some resection margins that appeared histologically normal harbored tumorigenic mutations in TP53 and CDKN2A genes. Conclusion: Even histologically normal margins may contain molecular alterations that are not detectable by conventional histopathological methods, but NCCN classification system still outperforms other methods in the prediction of the probability of disease relapse.

13.
J Clin Oncol ; 41(7): 1383-1392, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36315921

ABSTRACT

PURPOSE: Primary plasma cell leukemia (PCL) is the most aggressive monoclonal gammopathy. It was formerly characterized by ≥ 20% circulating plasma cells (CTCs) until 2021, when this threshold was decreased to ≥ 5%. We hypothesized that primary PCL is not a separate clinical entity, but rather that it represents ultra-high-risk multiple myeloma (MM) characterized by elevated CTC levels. METHODS: We assessed the levels of CTCs by multiparameter flow cytometry in 395 patients with newly diagnosed transplant-ineligible MM to establish a cutoff for CTCs that identifies the patients with ultra-high-risk PCL-like MM. We tested the cutoff on 185 transplant-eligible patients with MM and further validated on an independent cohort of 280 transplant-ineligible patients treated in the GEM-CLARIDEX trial. The largest published real-world cohort of patients with primary PCL was used for comparison of survival. Finally, we challenged the current 5% threshold for primary PCL diagnosis. RESULTS: Newly diagnosed transplant-ineligible patients with MM with 2%-20% CTCs had significantly shorter progression-free survival (3.1 v 15.6 months; P < .001) and overall survival (14.6 v 33.6 months; P = .023) than patients with < 2%. The 2% cutoff proved to be applicable also in transplant-eligible patients with MM and was successfully validated on an independent cohort of patients from the GEM-CLARIDEX trial. Most importantly, patients with 2%-20% CTCs had comparable dismal outcomes with primary PCL. Moreover, after revealing a low mean difference between flow cytometric and morphologic evaluation of CTCs, we showed that patients with 2%-5% CTCs have similar outcomes as those with 5%-20% CTCs. CONCLUSION: Our study uncovers that ≥ 2% CTCs is a biomarker of hidden primary PCL and supports the assessment of CTCs by flow cytometry during the diagnostic workup of MM.


Subject(s)
Leukemia, Plasma Cell , Multiple Myeloma , Neoplastic Cells, Circulating , Humans , Multiple Myeloma/drug therapy , Prognosis , Plasma Cells/pathology , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor
15.
Front Genet ; 13: 848557, 2022.
Article in English | MEDLINE | ID: mdl-35571032

ABSTRACT

Carcinomas of the oral cavity and oropharynx belong among the ten most common malignancies in the human population. The prognosis of head and neck squamous cell carcinoma (HNSCC) is determined by the degree of invasiveness of the primary tumor and by the extent of metastatic spread into regional and distant lymph nodes. Moreover, the level of the perineural invasion itself associates with tumor localization, invasion's extent, and the presence of nodal metastases. Here, we summarize the current knowledge about different aspects of epigenetic changes, which can be associated with HNSCC while focusing on perineural invasion (PNI). We review epigenetic modifications of the genes involved in the PNI process in HNSCC from the omics perspective and specific epigenetic modifications in OSCC or other neurotropic cancers associated with perineural invasion. Moreover, we summarize DNA methylation status of tumor-suppressor genes, methylation and demethylation enzymes and histone post-translational modifications associated with PNI. The influence of other epigenetic factors on the HNSCC incidence and perineural invasion such as tobacco, alcohol and oral microbiome is overviewed and HPV infection is discussed as an epigenetic factor associated with OSCC and related perineural invasion. Understanding epigenetic regulations of axon growth that lead to tumorous spread or uncovering the molecular control of axon interaction with cancer tissue can help to discover new therapeutic targets for these tumors.

16.
Nat Commun ; 13(1): 6820, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357400

ABSTRACT

Serum monoclonal immunoglobulin (Ig) is the main diagnostic factor for patients with multiple myeloma (MM), however its prognostic potential remains unclear. On a large MM patient cohort (n = 4146), we observe no correlation between serum Ig levels and patient survival, while amount of intracellular Ig has a strong predictive effect. Focused CRISPR screen, transcriptional and proteomic analysis identify deubiquitinase OTUD1 as a critical mediator of Ig synthesis, proteasome inhibitor sensitivity and tumor burden in MM. Mechanistically, OTUD1 deubiquitinates peroxiredoxin 4 (PRDX4), protecting it from endoplasmic reticulum (ER)-associated degradation. In turn, PRDX4 facilitates Ig production which coincides with the accumulation of unfolded proteins and higher ER stress. The elevated load on proteasome ultimately potentiates myeloma response to proteasome inhibitors providing a window for a rational therapy. Collectively, our findings support the significance of the Ig production machinery as a biomarker and target in the combinatory treatment of MM patients.


Subject(s)
Multiple Myeloma , Proteasome Inhibitors , Humans , Proteasome Inhibitors/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Bortezomib/pharmacology , Bortezomib/therapeutic use , Proteomics , Apoptosis , Proteasome Endopeptidase Complex/metabolism , Immunoglobulins , Deubiquitinating Enzymes , Ubiquitin-Specific Proteases
17.
Cells ; 10(5)2021 04 21.
Article in English | MEDLINE | ID: mdl-33919155

ABSTRACT

Cellular immunotherapy is becoming a new pillar in cancer treatment after recent striking results in different clinical trials with chimeric antigen receptor T cells. However, this innovative therapy is not exempt from challenges such as off-tumor toxicity, tumor recurrence in heterogeneous tumors, and affordability. To surpass these limitations, we exploit the unique anti-tumor characteristics of natural killer (NK) cells. In this study, we aimed to obtain a clinically relevant number of allogeneic NK cells derived from peripheral blood (median of 14,050 million cells from a single donor) to target a broad spectrum of solid and liquid tumor types. To boost their anti-tumor activity, we combined allogeneic NK cells with the approved anti-cluster of differentiation 38 (CD-38) monoclonal antibody Daratumumab to obtain a synergistic therapeutic effect against incurable multiple myeloma. The combination therapy was refined with CD16 polymorphism donor selection and uncomplicated novel in vitro pretreatment to avoid undesired fratricide, increasing the in vitro therapeutic effect against the CD-38 positive multiple myeloma cell line by more than 20%. Time-lapse imaging of mice with established human multiple myeloma xenografts revealed that combination therapy of selected and pretreated NK cells with Daratumumab presented tumor volumes 43-fold smaller than control ones. Combination therapy with an allogeneic source of fully functional NK cells could be beneficial in future clinical settings to circumvent monoclonal antibodies' low therapeutic efficiency due to NK cell dysfunctionality in MM patients.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Cell- and Tissue-Based Therapy/methods , Immunotherapy/methods , Killer Cells, Natural/immunology , Multiple Myeloma/drug therapy , Animals , Case-Control Studies , Cell Line, Tumor , Female , Humans , Mice , Mice, SCID
18.
Cancers (Basel) ; 12(7)2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32635428

ABSTRACT

Cell-to-cell communication is a fundamental process in every multicellular organism. In addition to membrane-bound and released factors, the sharing of cytosolic components represents a new, poorly explored signaling route. An extraordinary example of this communication channel is the direct transport of mitochondria between cells. In this review, we discuss how intercellular mitochondrial transfer can be used by cancer cells to sustain their high metabolic requirements and promote drug resistance and describe relevant molecular players in the context of current and future cancer therapy.

19.
Cancers (Basel) ; 12(5)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456165

ABSTRACT

: Hematological malignancies comprise over a hundred different types of cancers and account for around 6.5% of all cancers. Despite the significant improvements in diagnosis and treatment, many of those cancers remain incurable. In recent years, cancer cell-based therapy has become a promising approach to treat those incurable hematological malignancies with striking results in different clinical trials. The most investigated, and the one that has advanced the most, is the cell-based therapy with T lymphocytes modified with chimeric antigen receptors. Those promising initial results prepared the ground to explore other cell-based therapies to treat patients with blood cancer. In this review, we want to provide an overview of the different types of cell-based therapies in blood cancer, describing them according to the cell source.

20.
Leukemia ; 34(2): 589-603, 2020 02.
Article in English | MEDLINE | ID: mdl-31595039

ABSTRACT

The reason why a few myeloma cells egress from the bone marrow (BM) into peripheral blood (PB) remains unknown. Here, we investigated molecular hallmarks of circulating tumor cells (CTCs) to identify the events leading to myeloma trafficking into the bloodstream. After using next-generation flow to isolate matched CTCs and BM tumor cells from 32 patients, we found high correlation in gene expression at single-cell and bulk levels (r ≥ 0.94, P = 10-16), with only 55 genes differentially expressed between CTCs and BM tumor cells. CTCs overexpressed genes involved in inflammation, hypoxia, or epithelial-mesenchymal transition, whereas genes related with proliferation were downregulated in CTCs. The cancer stem cell marker CD44 was overexpressed in CTCs, and its knockdown significantly reduced migration of MM cells towards SDF1-α and their adhesion to fibronectin. Approximately half (29/55) of genes differentially expressed in CTCs were prognostic in patients with newly-diagnosed myeloma (n = 553; CoMMpass). In a multivariate analysis including the R-ISS, overexpression of CENPF and LGALS1 was significantly associated with inferior survival. Altogether, these results help understanding the presence of CTCs in PB and suggest that hypoxic BM niches together with a pro-inflammatory microenvironment induce an arrest in proliferation, forcing tumor cells to circulate in PB and seek other BM niches to continue growing.


Subject(s)
Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplastic Cells, Circulating/pathology , Transcription, Genetic/genetics , Bone Marrow/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression/genetics , Humans , Hypoxia/genetics , Hypoxia/pathology , Inflammation/genetics , Inflammation/pathology , Neoplastic Stem Cells/pathology , Prognosis , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL