Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 94(5): 969-986, 2023 11.
Article in English | MEDLINE | ID: mdl-37526361

ABSTRACT

OBJECTIVE: GM2 gangliosidosis is usually fatal by 5 years of age in its 2 major subtypes, Tay-Sachs and Sandhoff disease. First reported in 1881, GM2 gangliosidosis has no effective treatment today, and children succumb to the disease after a protracted neurodegenerative course and semi-vegetative state. This study seeks to further develop adeno-associated virus (AAV) gene therapy for human translation. METHODS: Cats with Sandhoff disease were treated by intracranial injection of vectors expressing feline ß-N-acetylhexosaminidase, the enzyme deficient in GM2 gangliosidosis. RESULTS: Hexosaminidase activity throughout the brain and spinal cord was above normal after treatment, with highest activities at the injection sites (thalamus and deep cerebellar nuclei). Ganglioside storage was reduced throughout the brain and spinal cord, with near complete clearance in many regions. While untreated cats with Sandhoff disease lived for 4.4 ± 0.6 months, AAV-treated cats lived to 19.1 ± 8.6 months, and 3 of 9 cats lived >21 months. Correction of the central nervous system was so effective that significant increases in lifespan led to the emergence of otherwise subclinical peripheral disease, including megacolon, enlarged stomach and urinary bladder, soft tissue spinal cord compression, and patellar luxation. Throughout the gastrointestinal tract, neurons of the myenteric and submucosal plexuses developed profound pathology, demonstrating that the enteric nervous system was inadequately treated. INTERPRETATION: The vector formulation in the current study effectively treats neuropathology in feline Sandhoff disease, but whole-body targeting will be an important consideration in next-generation approaches. ANN NEUROL 2023;94:969-986.


Subject(s)
Gangliosidoses, GM2 , Sandhoff Disease , Child , Animals , Cats , Humans , Sandhoff Disease/genetics , Sandhoff Disease/therapy , Sandhoff Disease/veterinary , Multiple Organ Failure/therapy , Genetic Vectors , Central Nervous System/pathology , Genetic Therapy
2.
Brain ; 145(2): 655-669, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34410345

ABSTRACT

GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal ß-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral (AAV) vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline ß-galactosidase was intravenously administered at 1.5×1013 vector genomes/kg body weight to six GM1 cats at ∼1 month of age. The animals were divided into two cohorts: (i) a long-term group, which was followed to humane end point; and (ii) a short-term group, which was analysed 16 weeks post-treatment. Clinical assessments included neurological exams, CSF and urine biomarkers, and 7 T MRI and magentic resonance spectroscopy (MRS). Post-mortem analysis included ß-galactosidase and virus distribution, histological analysis and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurological function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. CSF biomarkers were normalized, indicating decreased CNS cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. MRI and MRS showed partial preservation of the brain in treated animals, which was supported by post-mortem histological evaluation. ß-Galactosidase activity was increased throughout the CNS, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and CSF. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal ß-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of ß-galactosidase activity in the CNS and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. These data support the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.


Subject(s)
Gangliosidosis, GM1 , Neurodegenerative Diseases , Animals , Biomarkers , Cats , Dependovirus/genetics , G(M1) Ganglioside/therapeutic use , Gangliosides , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/pathology , Gangliosidosis, GM1/therapy , Genetic Therapy/methods , Humans , Quality of Life , Tissue Distribution , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
3.
Proc Natl Acad Sci U S A ; 117(49): 31177-31188, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33219123

ABSTRACT

A transplanted stem cell's engagement with a pathologic niche is the first step in its restoring homeostasis to that site. Inflammatory chemokines are constitutively produced in such a niche; their binding to receptors on the stem cell helps direct that cell's "pathotropism." Neural stem cells (NSCs), which express CXCR4, migrate to sites of CNS injury or degeneration in part because astrocytes and vasculature produce the inflammatory chemokine CXCL12. Binding of CXCL12 to CXCR4 (a G protein-coupled receptor, GPCR) triggers repair processes within the NSC. Although a tool directing NSCs to where needed has been long-sought, one would not inject this chemokine in vivo because undesirable inflammation also follows CXCL12-CXCR4 coupling. Alternatively, we chemically "mutated" CXCL12, creating a CXCR4 agonist that contained a strong pure binding motif linked to a signaling motif devoid of sequences responsible for synthetic functions. This synthetic dual-moity CXCR4 agonist not only elicited more extensive and persistent human NSC migration and distribution than did native CXCL 12, but induced no host inflammation (or other adverse effects); rather, there was predominantly reparative gene expression. When co-administered with transplanted human induced pluripotent stem cell-derived hNSCs in a mouse model of a prototypical neurodegenerative disease, the agonist enhanced migration, dissemination, and integration of donor-derived cells into the diseased cerebral cortex (including as electrophysiologically-active cortical neurons) where their secreted cross-corrective enzyme mediated a therapeutic impact unachieved by cells alone. Such a "designer" cytokine receptor-agonist peptide illustrates that treatments can be controlled and optimized by exploiting fundamental stem cell properties (e.g., "inflammo-attraction").


Subject(s)
Chemokine CXCL12/genetics , Neurons/metabolism , Protein Binding/genetics , Receptors, CXCR4/genetics , Astrocytes/metabolism , Astrocytes/pathology , Cell Movement/genetics , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Induced Pluripotent Stem Cells , Inflammation/genetics , Ligands , Mutagenesis/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Neurons/pathology
4.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958602

ABSTRACT

Most studies on ketosis have focused on short-term effects, male athletes, or weight loss. Hereby, we studied the effects of short-term ketosis suppression in healthy women on long-standing ketosis. Ten lean (BMI 20.5 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9) maintaining nutritional ketosis (NK) for > 1 year (3.9 years ± 2.3) underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Adherence to each phase was confirmed with daily capillary D-beta-hydroxybutyrate (BHB) tests (P1 = 1.9 ± 0.7; P2 = 0.1 ± 0.1; and P3 = 1.9 ± 0.6 pmol/L). Ageing biomarkers and anthropometrics were evaluated at the end of each phase. Ketosis suppression significantly increased: insulin, 1.78-fold from 33.60 (± 8.63) to 59.80 (± 14.69) pmol/L (p = 0.0002); IGF1, 1.83-fold from 149.30 (± 32.96) to 273.40 (± 85.66) µg/L (p = 0.0045); glucose, 1.17-fold from 78.6 (± 9.5) to 92.2 (± 10.6) mg/dL (p = 0.0088); respiratory quotient (RQ), 1.09-fold 0.66 (± 0.05) to 0.72 (± 0.06; p = 0.0427); and PAI-1, 13.34 (± 6.85) to 16.69 (± 6.26) ng/mL (p = 0.0428). VEGF, EGF, and monocyte chemotactic protein also significantly increased, indicating a pro-inflammatory shift. Sustained ketosis showed no adverse health effects, and may mitigate hyperinsulinemia without impairing metabolic flexibility in metabolically healthy women.


Subject(s)
Cattle Diseases , Diet, Ketogenic , Hyperinsulinism , Ketosis , Animals , Cattle , Humans , Male , Female , Young Adult , Adult , Cattle Diseases/metabolism , Insulin/pharmacology , 3-Hydroxybutyric Acid/metabolism
5.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563503

ABSTRACT

The oxidation of proline to pyrroline-5-carboxylate (P5C) leads to the transfer of electrons to ubiquinone in mitochondria that express proline dehydrogenase (ProDH). This electron transfer supports Complexes CIII and CIV, thus generating the protonmotive force. Further catabolism of P5C forms glutamate, which fuels the citric acid cycle that yields the reducing equivalents that sustain oxidative phosphorylation. However, P5C and glutamate catabolism depend on CI activity due to NAD+ requirements. NextGen-O2k (Oroboros Instruments) was used to measure proline oxidation in isolated mitochondria of various mouse tissues. Simultaneous measurements of oxygen consumption, membrane potential, NADH, and the ubiquinone redox state were correlated to ProDH activity and F1FO-ATPase directionality. Proline catabolism generated a sufficiently high membrane potential that was able to maintain the F1FO-ATPase operation in the forward mode. This was observed in CI-inhibited mouse liver and kidney mitochondria that exhibited high levels of proline oxidation and ProDH activity. This action was not observed under anoxia or when either CIII or CIV were inhibited. The duroquinone fueling of CIII and CIV partially reproduced the effects of proline. Excess glutamate, however, could not reproduce the proline effect, suggesting that processes upstream of the glutamate conversion from proline were involved. The ProDH inhibitors tetrahydro-2-furoic acid and, to a lesser extent, S-5-oxo-2-tetrahydrofurancarboxylic acid abolished all proline effects. The data show that ProDH-directed proline catabolism could generate sufficient CIII and CIV proton pumping, thus supporting ATP production by the F1FO-ATPase even under CI inhibition.


Subject(s)
Proline Oxidase , Ubiquinone , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Electron Transport Complex I/metabolism , Glutamic Acid/metabolism , Mice , Mitochondria/metabolism , Proline/metabolism , Proline Oxidase/metabolism , Ubiquinone/metabolism
6.
Neurobiol Dis ; 147: 105152, 2021 01.
Article in English | MEDLINE | ID: mdl-33153970

ABSTRACT

The neuropathology of hippocampal seizure foci in human temporal lobe epilepsy (TLE) and several animal models of epilepsy reveal extensive neuronal loss along with astrocyte and microglial activation. Studies of these models have advanced hypotheses that propose both pathological changes are essential for seizure generation. However, some seizure foci in human TLE show an extreme loss of neurons in all hippocampal fields, giving weight to hypotheses that favor neuroglia as major players. The epileptic (EL) mouse is a seizure model in which there is no observable neuron loss but associated proliferation of microglia and astrocytes and provides a good model to study the role of activated neuroglia in the presence of an apparently normal population of neurons. While many studies have been carried out on the EL mouse, there is a paucity of studies on the molecular changes in the EL mouse hippocampus, which may provide insight on the role of neuroglia in epileptogenesis. In this paper we have applied high throughput gene expression analysis to identify the molecular changes in the hippocampus that may explain the pathological processes. We have observed several classes of genes whose expression levels are changed. It is hypothesized that the upregulation of heat shock proteins (HSP70, HSP72, FOSL2 (HSP40), and their molecular chaperones BAG3 and DNAJB5 along with the down regulated gene MALAT1 may contribute to the neuroprotection observed. The increased expression of BDNF along with immediate early gene expression (FosB, JunB, ERG4, NR4A1, NR4A2, FBXO3) and the down regulation of GABRD, DBP and MALAT1 it is hypothesized may contribute to the hyperexcitability of the hippocampal neurons in this model. Activated astrocytes and microglia may also contribute to excitability pathomechanisms. Activated astrocytes in the ELS mouse are deficient in glutamine synthetase and thus reduce the clearance of extracellular glutamate. Activated microglia which may be associated with C1Q and MHC class I molecules we propose may mediate a process of selective removal of defective GABAergic synapses through a process akin to trogocytosis that may reduce neuronal inhibition and favor hyperexcitability.


Subject(s)
Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , Neuroglia/metabolism , Neurons/metabolism , Transcriptome , Animals , Mice , Mice, Mutant Strains
7.
Nutr J ; 19(1): 87, 2020 08 22.
Article in English | MEDLINE | ID: mdl-32828130

ABSTRACT

INTRODUCTION: Despite recent interest in the use of ketogenic diets (KDs) for cancer, evidence of beneficial effects is lacking. This study examined the impact of a randomly assigned KD on quality of life, physical activity and biomarkers in patients with breast cancer. METHOD: A total of 80 patients with locally advanced or metastatic breast cancer and without a history of renal disease or diabetes were randomly assigned to either a KD or a control group for this 12-week trial. Concurrent with the first, third, and fifth chemotherapy sessions, quality of life, physical activity, and biomarkers (thyroid function tests, electrolytes, albumin, ammonia, ALP, lactate and serum ketones) were assessed. Dietary intake was also recorded on admission and the end of the treatment. RESULTS: No significant differences were seen in quality of life or physical activity scores between the two groups after 12 weeks; however, the KD group showed higher global quality of life and physical activity scores compared to the control group at 6 weeks (P = 0.02 P = 0.01). Also, serum lactate and ALP levels decreased significantly in the KD group compared to the control group at the end of the intervention (10.7 ± 3 vs 13.3 ± 4, 149 ± 71 vs 240 ± 164, P = 0.02 and P = 0.007, respectively). A significant inverse association was observed between total carbohydrate intake and serum beta-hydroxybutyrate at 12 weeks (r = - 0.77 P < 0.001). No significant differences between groups were observed in thyroid hormones, electrolytes, albumin, LDH or ammonia. Compliance among KD subjects ranged from 66.7 to 79.2% as assessed by dietary intake and serum ketones levels of > 0.5. CONCLUSION: According to our results, besides a higher global quality of life and physical activity scores compared to the control group at 6 weeks, KD diet combined to chemotherapy in patients with breast cancer does not bring additional benefit about quality of life and physical activity at 12 weeks. However, decreases seen in levels of lactate and ALP in the KD group suggest that a KD may benefit patients with breast cancer. TRIAL REGISTRATION: This trial has been registered on Iranian Registry of Clinical Trials (IRCT) under the identification code: IRCT20171105037259N2 https://www.irct.ir/trial/30755.


Subject(s)
Breast Neoplasms , Diet, Ketogenic , Biomarkers , Exercise , Female , Humans , Iran , Quality of Life
8.
Neurochem Res ; 44(10): 2392-2404, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31025151

ABSTRACT

No major advances have been made in improving overall survival for glioblastoma (GBM) in almost 100 years. The current standard of care (SOC) for GBM involves immediate surgical resection followed by radiotherapy with concomitant temozolomide chemotherapy. Corticosteroid (dexamethasone) is often prescribed to GBM patients to reduce tumor edema and inflammation. The SOC disrupts the glutamate-glutamine cycle thus increasing availability of glucose and glutamine in the tumor microenvironment. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive GBM growth through substrate level phosphorylation in the cytoplasm and the mitochondria, respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability while elevating ketone bodies that are neuroprotective and non-fermentable. Information is presented from preclinical and case report studies showing how KMT could target tumor cells without causing neurochemical damage thus improving progression free and overall survival for patients with GBM.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Ketone Bodies/metabolism , Standard of Care , Brain Neoplasms/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Glucose/metabolism , Glutamine/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Temozolomide/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology
9.
J Am Coll Nutr ; 38(1): 1-14, 2019 01.
Article in English | MEDLINE | ID: mdl-30511901

ABSTRACT

Cancer is a major public health problem and is the second leading cause of death in the United States and worldwide; nearly one in six deaths are attributable to cancer. Approximately 20% of all cancers diagnosed in the United States are attributable to unhealthy diet, excessive alcohol consumption, physical inactivity, and body fatness. Individual cancers are distinct disease states that are multifactorial in their causation, making them exceedingly cumbersome to study from a nutrition standpoint. Genetic influences are a major piece of the puzzle and personalized nutrition is likely to be most effective in disrupting cancer during all stages. Increasing evidence shows that after a cancer diagnosis, continuing standard dietary recommendations may not be appropriate. This is because powerful dietary interventions such as short-term fasting and carbohydrate restriction can disrupt tumor metabolism, synergizing with standard therapies such as radiation and drug therapy to improve efficacy and ultimately, cancer survival. The importance of identifying dietary interventions cannot be overstated, and the American College of Nutrition's commitment to advancing knowledge and research is evidenced by dedication of the 2017 ACN Annual Meeting to "Disrupting Cancer: The Role of Personalized Nutrition" and this resulting proceedings manuscript, which summarizes the meeting's findings.


Subject(s)
Diet , Life Style , Neoplasms/therapy , Fasting , Humans , Neoplasms/diet therapy , Nutritional Status , United States
10.
Biochim Biophys Acta Bioenerg ; 1859(9): 975-983, 2018 09.
Article in English | MEDLINE | ID: mdl-29580805

ABSTRACT

Succinate is known to act as an inflammatory signal in classically activated macrophages through stabilization of HIF-1α leading to IL-1ß production. Relevant to this, hypoxia is known to drive succinate accumulation and release into the extracellular milieu. The metabolic alterations associated with succinate release during inflammation and under hypoxia are poorly understood. Data are presented showing that Mycoplasma arginini infection of VM-M3 cancer cells enhances the Warburg effect associated with succinate production in mitochondria and eventual release into the extracellular milieu. We investigated how succinate production and release was related to the changes of other soluble metabolites, including itaconate and 2-HG. Furthermore, we found that hypoxia alone could induce succinate release from the VM-M3 cells and that this could occur in the absence of glucose-driven lactate production. Our results elucidate metabolic pathways responsible for succinate accumulation and release in cancer cells, thus identifying potential targets involved in both inflammation and hypoxia. This article is part of a Special Issue entitled 20th European Bioenergetics Conference, edited by László Zimányi and László Tretter.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Hypoxia/complications , Inflammation/complications , Mycoplasma Infections/complications , Mycoplasma/pathogenicity , Succinates/metabolism , Animals , Brain Neoplasms/etiology , Brain Neoplasms/metabolism , Energy Metabolism , Glioblastoma/etiology , Glioblastoma/metabolism , Metabolome , Mice , Tumor Cells, Cultured
11.
Biochim Biophys Acta ; 1861(11): 1727-1735, 2016 11.
Article in English | MEDLINE | ID: mdl-27542539

ABSTRACT

Encysted embryos (cysts) of the crustacean Artemia franciscana exhibit enormous tolerance to adverse conditions encompassing high doses of radiation, years of anoxia, desiccation and extreme salinity. So far, several mechanisms have been proposed to contribute to this extremophilia, however, none were sought in the lipid profile of the cysts. Here in, we used high resolution shotgun lipidomics suited for detailed quantitation and analysis of lipids in uncharacterized biological membranes and samples and assembled the total, mitochondrial and mitoplastic lipidome of Artemia franciscana cysts. Overall, we identified and quantitated 1098 lipid species dispersed among 22 different classes and subclasses. Regarding the mitochondrial lipidome, most lipid classes exhibited little differences from those reported in other animals, however, Artemia mitochondria harboured much less phosphatidylethanolamine, plasmenylethanolamines and ceramides than mitochondria of other species, some of which by two orders of magnitude. Alternatively, Artemia mitochondria exhibited much higher levels of phosphatidylglycerols and phosphatidylserines. The identification and quantitation of the total and mitochondrial lipidome of the cysts may help in the elucidation of actionable extremophilia-affording proteins, such as the 'late embryogenesis abundant' proteins, which are known to interact with lipid membranes.


Subject(s)
Artemia/embryology , Artemia/metabolism , Embryo, Nonmammalian/metabolism , Lipid Metabolism , Metabolome , Mitochondria/metabolism , Animals , Blotting, Western , Cardiolipins/metabolism , Cluster Analysis
12.
J Neurochem ; 141(2): 162-164, 2017 04.
Article in English | MEDLINE | ID: mdl-28299805

ABSTRACT

Read the highlighted article 'Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer's disease' on page 195.


Subject(s)
Alzheimer Disease , Citric Acid Cycle , Amino Acids , Animals , Hippocampus , Humans , Mice , Mice, Transgenic
13.
Proc Natl Acad Sci U S A ; 111(47): 16647-53, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25404320

ABSTRACT

Although major research efforts have focused on how specific components of foodstuffs affect health, relatively little is known about a more fundamental aspect of diet, the frequency and circadian timing of meals, and potential benefits of intermittent periods with no or very low energy intakes. The most common eating pattern in modern societies, three meals plus snacks every day, is abnormal from an evolutionary perspective. Emerging findings from studies of animal models and human subjects suggest that intermittent energy restriction periods of as little as 16 h can improve health indicators and counteract disease processes. The mechanisms involve a metabolic shift to fat metabolism and ketone production, and stimulation of adaptive cellular stress responses that prevent and repair molecular damage. As data on the optimal frequency and timing of meals crystalizes, it will be critical to develop strategies to incorporate those eating patterns into health care policy and practice, and the lifestyles of the population.


Subject(s)
Disease , Eating , Health Status , Circadian Rhythm , Humans , Time Factors
14.
Ultrastruct Pathol ; 41(3): 234-244, 2017.
Article in English | MEDLINE | ID: mdl-28375672

ABSTRACT

Mitochondria-associated membranes (MAMs) are currently considered an intracellular organelle "hot spot" for the intracellular signaling. MAMs are thought to function in cellular energy homeostasis, apoptosis, and calcium signaling. MAM ultrastructure in surgical specimens from human astrocytic neoplasms was studied. Abnormalities in respect to density, length, and width were found. Poorly differentiated glioma like-stem cells deficient in MAM and well-differentiated glioma cells abundant in MAM were observed. This finding could be the structural basis of functional role of MAM linked to some metabolic abnormalities in astrocytic tumors associated to mitochondrial dysfunction and the Warburg effect and their therapeutics implications.


Subject(s)
Astrocytoma/ultrastructure , Endoplasmic Reticulum/ultrastructure , Mitochondria/ultrastructure , Mitochondrial Membranes/ultrastructure , Calcium Signaling , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/metabolism , Mitochondrial Membranes/metabolism
15.
J Lipid Res ; 56(5): 1006-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25795792

ABSTRACT

Bis(monoacylglycero)phosphate (BMP) is a negatively charged glycerophospholipid with an unusual sn-1;sn-1' structural configuration. BMP is primarily enriched in endosomal/lysosomal membranes. BMP is thought to play a role in glycosphingolipid degradation and cholesterol transport. Elevated BMP levels have been found in many lysosomal storage diseases (LSDs), suggesting an association with lysosomal storage material. The gangliosidoses are a group of neurodegenerative LSDs involving the accumulation of either GM1 or GM2 gangliosides resulting from inherited deficiencies in ß-galactosidase or ß-hexosaminidase, respectively. Little information is available on BMP levels in gangliosidosis brain tissue. Our results showed that the content of BMP in brain was significantly greater in humans and in animals (mice, cats, American black bears) with either GM1 or GM2 ganglioside storage diseases, than in brains of normal subjects. The storage of BMP and ganglioside GM2 in brain were reduced similarly following adeno-associated viral-mediated gene therapy in Sandhoff disease mice. We also found that C22:6, C18:0, and C18:1 were the predominant BMP fatty acid species in gangliosidosis brains. The results show that BMP accumulates as a secondary storage material in the brain of a broad range of mammals with gangliosidoses.


Subject(s)
Cat Diseases/metabolism , Gangliosidosis, GM1/veterinary , Lysophospholipids/metabolism , Monoglycerides/metabolism , Sandhoff Disease/veterinary , Animals , Brain/metabolism , Cats , Female , Gangliosidosis, GM1/metabolism , Humans , Lipid Metabolism , Male , Mice, 129 Strain , Mice, Knockout , Sandhoff Disease/metabolism , Ursidae
16.
J Biol Chem ; 289(10): 7011-7024, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24469453

ABSTRACT

Bacterially derived lipopolysaccharide (LPS) stimulates naive B lymphocytes to differentiate into immunoglobulin (Ig)-secreting plasma cells. Differentiation of B lymphocytes is characterized by a proliferative phase followed by expansion of the intracellular membrane secretory network to support Ig production. A key question in lymphocyte biology is how naive B cells reprogram metabolism to support de novo lipogenesis necessary for proliferation and expansion of the endomembrane network in response to LPS. We report that extracellularly acquired glucose is metabolized, in part, to support de novo lipogenesis in response to LPS stimulation of splenic B lymphocytes. LPS stimulation leads to increased levels of endogenous ATP-citrate lyase (ACLY), and this is accompanied by increased ACLY enzymatic activity. ACLY produces cytosolic acetyl-CoA from mitochondrially derived citrate. Inhibition of ACLY activity in LPS-stimulated B cells with the selective inhibitor 2-hydroxy-N-arylbenzenesulfonamide (compound-9; C-9) blocks glucose incorporation into de novo lipid biosynthesis, including cholesterol, free fatty acids, and neutral and acidic phospholipids. Moreover, inhibition of ACLY activity in splenic B cells results in inhibition of proliferation and defective endomembrane expansion and reduced expression of CD138 and Blimp-1, markers for plasma-like B cell differentiation. ACLY activity is also required for LPS-induced IgM production in CH12 B lymphoma cells. These data demonstrate that ACLY mediates glucose-dependent de novo lipogenesis in response to LPS signaling and identify a role for ACLY in several phenotypic changes that define plasma cell differentiation.


Subject(s)
ATP Citrate (pro-S)-Lyase/physiology , B-Lymphocytes/immunology , Glucose/metabolism , Lipogenesis/immunology , Lipopolysaccharides/immunology , Lymphocyte Activation , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Animals , B-Lymphocytes/cytology , Cell Differentiation , Mice , Mice, Inbred BALB C
17.
Carcinogenesis ; 35(3): 515-27, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24343361

ABSTRACT

Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual's unique physiology.


Subject(s)
Neoplasms/metabolism , Neoplasms/therapy , Energy Metabolism , Genes, p53 , Genes, ras , Humans , Mitochondria/metabolism , Mutation , Neoplasms/genetics
18.
Nat Med ; 13(4): 439-47, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17351625

ABSTRACT

Intracranial transplantation of neural stem cells (NSCs) delayed disease onset, preserved motor function, reduced pathology and prolonged survival in a mouse model of Sandhoff disease, a lethal gangliosidosis. Although donor-derived neurons were electrophysiologically active within chimeric regions, the small degree of neuronal replacement alone could not account for the improvement. NSCs also increased brain beta-hexosaminidase levels, reduced ganglioside storage and diminished activated microgliosis. Additionally, when oral glycosphingolipid biosynthesis inhibitors (beta-hexosaminidase substrate inhibitors) were combined with NSC transplantation, substantial synergy resulted. Efficacy extended to human NSCs, both to those isolated directly from the central nervous system (CNS) and to those derived secondarily from embryonic stem cells. Appreciating that NSCs exhibit a broad repertoire of potentially therapeutic actions, of which neuronal replacement is but one, may help in formulating rational multimodal strategies for the treatment of neurodegenerative diseases.


Subject(s)
Brain/cytology , Embryonic Stem Cells/cytology , Neurons/cytology , Sandhoff Disease/therapy , Stem Cell Transplantation , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , Animals , Humans , Immunohistochemistry , Mice , Mice, Knockout , Microglia/metabolism , Patch-Clamp Techniques , Sandhoff Disease/drug therapy , beta-N-Acetylhexosaminidases/antagonists & inhibitors , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/metabolism
19.
Mol Ther ; 21(12): 2136-47, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23817205

ABSTRACT

Canavan's disease (CD) is a fatal pediatric leukodystrophy caused by mutations in aspartoacylase (AspA) gene. Currently, there is no effective treatment for CD; however, gene therapy is an attractive approach to ameliorate the disease. Here, we studied progressive neuropathology and gene therapy in short-lived (≤ 1 month) AspA(-/-) mice, a bona-fide animal model for the severest form of CD. Single intravenous (IV) injections of several primate-derived recombinant adeno-associated viruses (rAAVs) as late as postnatal day 20 (P20) completely rescued their early lethality and alleviated the major disease symptoms, extending survival in P0-injected rAAV9 and rAAVrh8 groups to as long as 2 years thus far. We successfully used microRNA (miRNA)-mediated post-transcriptional detargeting for the first time to restrict therapeutic rAAV expression in the central nervous system (CNS) and minimize potentially deleterious effects of transgene overexpression in peripheral tissues. rAAV treatment globally improved CNS myelination, although some abnormalities persisted in the content and distribution of myelin-specific and -enriched lipids. We demonstrate that systemically delivered and CNS-restricted rAAVs can serve as efficacious and sustained gene therapeutics in a model of a severe neurodegenerative disorder even when administered as late as P20.


Subject(s)
Amidohydrolases/genetics , Canavan Disease/therapy , Central Nervous System/pathology , Dependovirus/genetics , Amidohydrolases/deficiency , Amidohydrolases/metabolism , Animals , Animals, Newborn , Canavan Disease/pathology , Central Nervous System/metabolism , Disease Models, Animal , Gene Knockout Techniques , Genetic Therapy , Genetic Vectors , Humans , Injections, Intravenous , Mice , MicroRNAs/genetics , Organ Specificity , X-Ray Diffraction
20.
Mol Ther ; 21(7): 1306-15, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23689599

ABSTRACT

Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of ß-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and ß-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.


Subject(s)
Cat Diseases/enzymology , Cat Diseases/therapy , Sandhoff Disease/enzymology , Sandhoff Disease/therapy , beta-N-Acetylhexosaminidases/metabolism , Animals , Cat Diseases/genetics , Cats , Dependovirus/genetics , Disease Models, Animal , Genetic Therapy/methods , Genetic Vectors/genetics , Sandhoff Disease/genetics , beta-N-Acetylhexosaminidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL